
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-3, July 2012

302

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0757062312 /2012©BEIESP



 Abstract: This project addresses the issues associated with

providing Decentralized Data Offloading service to HPC

Centers. HPC centers are High Performance Computing centers

that use Parallel Processing for running advanced applications

more reliably and efficiently. The main concept of this project is

the offloading of data from a HPC Center to the destination site

in decentralized mode. This project uses the decentralization

concept where it is possible for the end user to retrieve the data

even when the center logs out. This is possible by moving the

data from the center to the Scratch Space. From Scratch space

the data is moved to the intermediate storage nodes 1..n and

from the nth node the data is transferred to the destination site

within a deadline. These techniques are implemented within a

Production Job Scheduler which schedules the jobs and Bit

Torrent tool is used for data transfer in a decentralized

environment. Thus the total offloading times are minimized;

data loss and offload delays are also prevented.

Index Terms: High Performance Data Management, HPC

Center Serviceability.

I. INTRODUCTION

HPC centers are High Performance Computing centers

that use Parallel Processing for running advanced

applications more reliably and efficiently. The data sets are

required to be offloaded to end-user locations. This project

uses the decentralization concept where it is possible for the

end user to retrieve the data even when the center logs out.

This is implemented using the Distributed Hash Table

Algorithm. As the complexity and size of applications

increase, the offloading of data rates decreases. It is

impractical to store all user data indefinitely at the center.

The local storage in HPC centers, the scratch space, is used

for job input, output, and intermediate data, which is

typically on the order of terabytes. Scratch space is a space on

the hard disk drive which is used for temporary storage and it

is in the order of Terabytes. Scratch is built using a parallel

file system that supports very high aggregate I/O throughput.

To ensure efficient I/O and faster job turnaround use of

scratch by applications is encouraged. HPC centers enforce

purge policies to manage the precious scratch space, wherein

data is deleted based on a time window, ranging from a few

hours to a few days. As centers become crowded, the purge

policies get more stringent to provide space for incoming

Manuscript received on July, 2012.

P. Nishmi Irin, Computer Science, Vins Christian College of Engineering,

Anna University, Nagercoil, India,

K.John Peter, Information Technology, Vins Christian College of

Engineering, Anna University, Nagercoil, India.

I. Nancy Jeba Jingle, Computer Science, Vins Christian College of

Engineering, Anna University, Nagercoil, India.

jobs. The purge window is, therefore, a product of the

center’s load, its provisioned storage, and its desire to

maintain a certain level of serviceability.

II. RELATED WORK

This project is enhanced to send messages through the

intermediate nodes to reach the destination. The nodes can be

monitored and directory sharing is also implemented. In

concern to security, the project is enhanced to provide private

conversation between the nodes using the Random walk

algorithm. The message can be transferred directly from one

node to another node, many nodes to one node, one to many

nodes, many to many nodes. In one to one transfer, a

participating node can share message with another node

belonging to the same channel publically. Similarly many

nodes of the same channel can share message to another node

of the same channel. A single node can share a message with

multiple nodes of the same channel publically. Multiple

nodes of the same channel can share a message with another

set of multiple nodes belonging to the same channel. All

these transfers can be implemented by means of Distributed

Hash Table Algorithm. However, in the case of Private

communication the DHT algorithm fails and is less

compatible. Hence Random Walk Algorithm is used for

Private communication between the nodes.

 In concern to security the message can be offloaded

between any two nodes privately. This private

communication is implemented to provide security for the

messages and for Preventing Unauthorized Access. It uses

RW Algorithm to implement private communication

between the authorized nodes. Random Walk Algorithm is a

conservative search algorithm which belongs to DFS

Methods. Query source sends a query message called walker

to one of its neighbors. The neighbor node sends the walker

to all of its neighbors except source. Search cost is reduced.

Coverage of RW grows with hop counts. Offloading rates can

be reduced to about 90.4%. Network Traffic can be

prevented. Prevents loss of data and avoids Offload delays. It

provides security to message transfer between nodes. A

streaming system usually has multiple channels, and peers

may form multiple groups for content distribution. In this

project, a distributed overlay framework for dynamic groups

where users may frequently hop from one group to another

while the total pool of users remain stable has been proposed.

The mesh supports dynamic host joining and leaving, and

will guide the construction of

delivery trees.

Decentralized Data Offloading in High

Performance Computing Centers using Scratch

Space
P. Nishmi Irin, K. John Peter, I. Nancy Jeba Jingle

Decentralized Data Offloading in High Performance computing Centers using Scratch Space

303

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0757062312 /2012©BEIESP

III. PROPOSED SYSTEM

 In the proposed System, a more enhanced scheme for

decentralized offloading scheme for job output data is

designed. This project has been enhanced to share the entire

directory of a particular node. So it is not necessary to

download each file separately all the time from the scratch

space. By the use of Directory sharing it is possible to

download all the files at a time from the particular directory

of a node. Hence the total offloading times can be reduced

and performance can be improved significantly. The DHT

algorithm alone cannot implement this concept. Hence the

Distributed Hash Table algorithm is combined with the

Random Walk algorithm to implement the directory sharing

concept. In this project, a distributed overlay framework for

dynamic groups where users may frequently hop from one

group to another while the total pool of users remain stable

has been proposed. The mesh supports dynamic host joining

and leaving, and will guide the construction of delivery trees.

A decision making component is designed that factors in

parameters such as a center’s purge deadline, user delivery

schedule and a snapshot of current network conditions

between the center and the end user, to determine the most

suitable approach to offload. Active monitoring is employed

using the Network Weather Service (NWS), to make the data

offload process react to bandwidth degradation, thus

ensuring that a user-specified delivery constraint or a purge

deadline can be met. Erasure coding schemes are utilized to

ensure that the offload is fault tolerant. The offloading

service components have been implemented and evaluated

using both trace-driven simulations, using a realistic

simulator, as well as actual tests using the Planet Lab test

bed. Finally, the solution is integrated with a job submission

system.

We design a new software component, Data Offload

Manager, to capture the interactions and drive the offloading

process. The Manager is integrated into the HPC center

management software suite, and is provided with a number of

critical center parameters and job descriptions to guide its

operation. Compared to a direct transfer, our techniques have

the added benefits of resilience in the face of end-resource

failure and the exploitation of orthogonal bandwidth that

might be available in the end-to-end data path.

A decision making component is designed that factors in

parameters such as a center’s purge deadline, user delivery

schedule and a snapshot of current network conditions

between the center and the end user, to determine the most

suitable approach to offload. Active monitoring is employed

using the Network Weather Service, to make the data offload

process react to bandwidth degradation, thus ensuring that a

user-specified delivery constraint or a purge deadline can be

met. Erasure coding schemes are utilized to ensure that the

offload is fault tolerant. Finally, the solution is integrated

with real-world tools.

A. Channel Detection

Each user creates a node with a user name and a common

password applicable to the entire channel. The users of

another channel have to create their node using a different

password applicable to their channel. If the password is

wrong then the user cannot get access to the channel. Special

directives are provided with which users can annotate their

job scripts. These directives are parsed by the offload

manager to extract and maintain a list of user-specified

intermediate nodes. The data offload manager then submits

the job to the scheduler. Thus the overlay of intermediate

nodes becomes an integral part of the job and can be used for

the delivery of the job’s result data. End users can further

qualify the intermediate node specification with usage

policies, which specify the available storage and the load

threshold at the intermediate node.

B. Channel Discovery

A new node is merged to available channel by entering the

common password of that particular channel. If the password

is correct then the node of that particular channel is

discovered. If the password is wrong then the node belongs to

another channel. The intermediate nodes are selected from

among the participating sites that are interested in the data

transfer. The distributed and decentralized communication

substrate provided by structured p2p networks is utilized to

locate Nis in a dynamic environment. A p2p overlay is used

to arrange sites that intend to participate in the collaborative

offload. Overlay provides reliable communication with other

participants in the network. Nis use the overlay to advertise

their availability to other nodes in the overlay using random

broadcast. Nodes that receive these messages build local

information about available nodes for offload. A given node

can use its own policies and information about a remote

node’s capacity to make a decision regarding whether to use

the remote node for the offload. Ns interacts with the center

to sort the Nis with increasing latency from the center and

with decreasing latency from Ns. The sorted set of nodes is

provided to the center to utilize as the intermediate nodes,

and becomes an integral part of the job’s workflow.

C. Decentralized Transfer

Distributed Hash Table Algorithm is an algorithm that

works in a decentralized environment and provides a look up

service similar to Hash Table (key, Value) pairs. Any

participating node can efficiently retrieve the value

associated with the given key. DHT algorithm scales the no.

of nodes, node arrivals, departures and failures with minimal

disruption. Each peer node is identified by a (x, y) pair. A

node wishing to join the overlay locates an initial node,

referred to as a bootstrap node.

The joining node sends a REGISTER with the joining

node’s Node-ID to the bootstrap node. The bootstrap

responds with the information about the nodes that will be

near to the joining node. Each peer maintains links to

successors and to indexed peers.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-3, July 2012

304

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0757062312 /2012©BEIESP

They guarantee the connectivity of the network. Peer p

first communicates with a random peer pB already in the

network. Peer pB is called the bootstrapping peer and is

responsible for finding the successors s1; . . . ; s4 of p. p

locates the information that it should store. p uses its

successors s1; . . . ; s4 to locate its neighbors and to obtain the

required information. Peer p first transfers the information to

the successor node s1. From s1 the data is transferred to the

next successor s2…sn. From sn, the end user retrieves the

data. Thus data is offloaded from center to the end user. A

Data Offload Manager is designed to capture the interactions

and drive the Offloading process. The Manager takes as

input the guidelines regarding job specification from the job

submission system. The specifications include the output

data size, S, the job’s data delivery schedule and JSLA. Then

the Offload manager provides an offload schedule, Os. The

Data offload Manager Shows the files downloaded in the

Scratch Space and Shares with all nodes of that particular

channel.

D. Bandwidth Management

Each participating node joins a clique, which is a group of

sensors that measure bandwidth. A token is passed around

which serves as an indication to a node to probe other nodes

for available bandwidth. The replies are recorded not only at

the node, but also at a central NWS repository. The token is

then forwarded to the next node. The clique gives the center

an estimate of the bandwidth available from it to different

nodes. The center uses this information to decide whether a

chosen fan out is sufficient to meet a particular SLA, or needs

to be increased. If needed, additional nodes from the set of

Nis can be chosen to increase the fan out and meet the SLA.

The Node Manager is responsible for maintaining

Intermediate nodes Nis. The SLA Compliance module uses

bandwidth predictions provided by NWS to guide the offload

process in meeting the SLAs. The Erasure coding module

transforms the data to be sent out into error-coded chunks.

The Transfer Module is charged with pushing out the

encoded chunks to the next level intermediate nodes. Finally,

at the heart of the system is the Offload Manager that

integrates all the modules and uses them to select different

offload schedules and to enable the transfers.

E. Job scheduling

HPC centers utilize job management systems to ensure

proper operation. Typically, the job submission system

constitutes a user job script and a resource manager at the

supercomputer center that schedules the jobs based on a

queuing system. A way for specifying intermediate nodes and

delivery deadlines as annotations is devised within a

standard PBS script. These annotations are specified as

directives, much like other PBS directives. The intermediate

nodes can be further qualified with policy specification that

captures usage constraints. These constraints include the

amount of space available for offload on a node, and the

node’s availability.

More fine grained policies can be easily added. In an

instrumented PBS script, an user specifies the stage out to a

destination, the use of intermediate nodes with their space

constraints, a port number where our transfer protocol is

listening, and a delivery deadline. To handle the

instrumented job script, we have implemented a parser that

runs on the HPC center. When an annotated PBS script is

submitted for execution to the job scheduler at the HPC

center, it is intercepted by our parser that filters out directives

specific to data offloading, and passes those details to the

Offloading Service for data delivery. The remaining PBS

script is then handed over to the PBS queue for standard

processing. The Offloading Service is aware of the center’s

purge deadline and attempts to reconcile that with user

delivery deadline and intermediate/landmark nodes to

achieve a desired data transfer schedule. Once a set of

intermediate nodes is selected using NWS, we use

scatter-gather protocol to transfer the file from the center to

the selected intermediate nodes.

The offload happens as follows: The Offload Manager

creates a metadata “torrent” file for the subset of data to be

transmitted to a set of chosen intermediate nodes. The

Manager also provides tracking services so that the

intermediate nodes may know what data has been

transmitted to which node. Once the nodes receive the torrent

file, they use the metadata information along with the tracker

to “download” the data subset to their local storage. The

process is repeated at all the intermediate node levels. The

end host can also use appropriate torrent files to download

the result data from the intermediate nodes, thus completing

the offloading process.

IV. RESULT

A realistic simulator is developed for the offloading

process, which models both job execution and data

offloading. A number of large jobs are first scheduled in the

order they arrive, until a majority of the machine’s resources

is allocated. Next, smaller jobs are scheduled. However, such

larger jobs can leave a small but significant number of cores

idle. Back filling helps to avoid this by assigning smaller jobs

to the idle cores. It utilizes a number of different traces to

provide an accurate model of the system. The job traces

provides the arrival time, start time, total job execution time,

and the resources used.

Additionally, the traces also contain the amount of

physical memory and virtual memory used by a job. The

bandwidth traces provide pair wise bandwidth measurements

for the 50 sites over duration of 96 hours. It provides an

output trace with information about overall scratch space

usage and the time it would take to offload the required data

for a given job. This information can then further be used to

determine any delay in meeting job scheduling deadlines.

Each simulated node is assigned a measured trace. Since

there are more nodes in the simulator, some nodes will have

duplicate bandwidth traces. Nodes running for longer than

96 hours simply loop through their associated trace. It

provides an output trace with information about overall

scratch space usage and the time it would take to offload the

required data for a given job. This information can then

further be used to determine any delay in meeting job

scheduling deadlines. It maintains a pool of nodes arranged

in a configurable topology to

use as intermediate nodes.

Decentralized Data Offloading in High Performance computing Centers using Scratch Space

305

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0757062312 /2012©BEIESP

Nodes are randomly selected to facilitate the simulated

offload. If a node is used for multiple offloads at the same

time, the bandwidth is equally divided between the offloads.

Moreover, it can also capture varying storage capacities of

the nodes and can alter offloading paths based on the

capacities. Here, we are mainly concerned with moving the

data from the center to the first-level intermediate nodes

only. The main driver is a Job tracker that reads the logs, and

selects an appropriate action for the simulator to take. At

each job arrival, the tracker places it in a wait queue. The job

input data staging is then started. The staging process may

take many simulator ticks depending on the size of the input

data, but once the process completes the job is moved to a run

queue. The job will wait there until sufficient compute

resources to run the job become available. Once the job

completes its execution, it moves to the offload queue.

Finally, it also provides accounting and statistics about the

offload process, such as the scratch space used and the data

read, as well as other vital statistics.

V. CONCLUSION

 Since distributed offloading is highly competitive, it raises

new research questions in terms of the strategic placement,

and selection, of intermediate nodes between an HPC center

and end-user destinations. Advanced Networking and

Parallel Processing techniques can be implemented along

this project to make it more accurate. This Project can be

simulated to return the total scratch space usage and the

nodes can be monitored to produce a better Offloading rates.

This project is enhanced to provide Private Communication

between the Nodes to provide one to many communication

and many to one communication using the Random walk

Algorithm. The data offloading rates have been significantly

reduced by using the Distributed Hash table algorithm and

the offloading delays are minimized. The entire directory can

be shared easily. Thus the Offloading rates are reduced and

the transfer speed is increased.

REFERENCES

1. F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File System for Large

Computing Clusters,” in Proc., 2002.

2. J. Bester, I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke, “GASS: A

Data Movement and Access Service for Wide Area Computing Systems,”

in Proc., 1999.

3. M. Gleicher, “HSI: Hierarchical Storage Interface for HPSS,” in Proc.,

2010.

4. J.W. Cobb, A. Geist, J.A. Kohl, S.D. Miller, P.F. Peterson, G.G. Pike, M.A.

Reuter, T. Swain, S.S. Vazhkudai, and N.N. Vijayakumar, “The Neutron

Science Teragrid Gateway: A Teragrid Science Gateway to Support the

Spallation Neutron Source: Research Articles,” in Proc., 2007.

5. M. Christie and S. Marru, “The Lead Portal: A Teragrid Gateway and

Application Service Architecture: Research Articles,” in Proc., 2007.

6. R. Wolski, N. Spring, and J. Hayes, “The Network Weather Service: A

Distributed Resource Performance Forecasting Service for

Metacomputing,” in Proc, 1999.

7. H. Monti, A.R. Butt, and S.S. Vazhkudai, “Timely Offloading of

Result-Data in Hpc Centers,” in Proc., 2008.

8. T. Kosar and M. Livny, “Stork: Making Data Placement a First Class

Citizen in the Grid,” in Proc., 2008.

9. DMOVER: Scheduled Data Transfer for Distributed Computational

Workflows, 2008.

10. Sherwood, R. Braud, and B. Bhattacharjee et al, “Slurpie: A Cooperative

Bulk Data Transfer Protocol,” in Proc.,2004.

