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Abstract: In the area of remote sensing, the decision making 

are not generally deterministic due to the involvement of fuzziness 

in the classification of remotely sensed imagery. A considerable 

number of identification errors are due to pixels that show an 

affinity with several information classes. The fuzzy concept is a 

valuable tool for dealing with classification problems. In remote 

sensing classification, fuzzy based classifiers are becoming 

increasingly popular. Due to the wide acceptance of  fuzzy c-mean 

(FCM) and possibilistic c-means (PCM) classifiers, this has been 

used as a benchmark to evaluate the performance of other 

classifiers with optimized value of weighting exponent ‘m’ in this 

research. Evaluation of soft classification through FERM, SCM 

and Fuzzy kappa coefficient, using Euclidean norm based 

measures led to an improvement wherein FCM-Overall accuracy 

(MIN-LEAST) operator reflects higher classification accuracy, 

i.e., 97% and the value of Fuzzy Kappa coefficient is 0.97 with 

minimum uncertainty in it, for the optimized value of weighting 

exponent ‘m’ i.e.  4.0. In this experimentation two supervised 

classifiers namely FCM and PCM  have been selected to 

demonstrate the improvement in the classification accuracy by 

FERM, SCM, MIN-MIN, MIN-LEAST, Fuzzy Kappa coefficient 

and uncertainty in SCM and  Fuzzy Kappa coefficients. 

 

Index Terms: Fuzzy c-Mean (FCM), Fuzzy Error Matrix 

(FERM), Possiblistic c-Mean (PCM), Sub-pixel 

confusion-uncertainty matrix(SCM),  

I. INTRODUCTION 

  Remote sensing images contain a mixture of pure and mixed 

pixels. While digital image classification, however, a pixel is 

frequently considered as a unit belonging to a single land 

cover class. However, due to limited image resolution, pixels 

often represent ground areas, which comprise by two or more 

discrete land cover classes. For this reason, it has been 
proposed that fuzziness should be accommodated in the 

classification procedure so that pixels may have multiple or 

partial class membership [1]. In this case, a measure of the 

strength of membership for each class is output by the 

classifier, resulting in a soft classification technique [2]. Also 

recent advances in supervised image classification have 

shown that conventional ‘hard’ classification techniques, 

which allocate each pixel to a specific class, are often 

inappropriate for applications where mixed pixels are 

abundant in the image [3]. 

[4] – [6] used nonlinearity to fuzzify the crisp c-means. 
The method of [4] – [5] and [7] has another feature: it 

smoothes the crisp solution into a differentiable one. 

Moreover this fuzzy solution approximates the crisp one in 
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the sense that the fuzzy solution converges to the crisp 

solution as; 1m . 

Mixed pixels are assigned to the class with the highest 

proportion of coverage to yield a hard classification. Due to 

which a considerable amount of information is lost. To 

overcome this loss, soft classification was introduced. A soft 

classification assigns a pixel to different classes according to 

the area it represents inside the pixel. This soft classification 

yields a number of fraction images equal to the number of 

land cover classes. Several researchers have addressed this 
soft mixture problem. Among the most popular techniques 

for soft classification are artificial neural networks [8], 

mixture modeling [9] and supervised fuzzy c-means 

classification [10].  

The use of fuzzy set based classification methods in remote 

sensing has received growing interests for their particular 

value in situations where the geographical phenomena are 

inherently fuzzy [11]. The role of ‘m’ weighting exponent, 

controls the degree of fuzziness in FCM and PCM classifier. 

However, in FCM, as ‘m’ increases, it represents increase in 

sharing of pixel in all clusters, whereas in PCM, increased 

value of ‘m’ represents increased possibility of all pixels in 

the dataset completely belonging to a given cluster. The 

output generated by soft classification amounts some degree 

of uncertainty in the class allocation of each pixel [12]. 

Further, soft reference data may also indicate the uncertainty 

in class allocation on reference data. For the evaluation of 

uncertainty in classification results, the SCM uncertainty, and 

uncertainty analysis in Fuzzy Kappa coefficient, criterion is 

proposed. This paper follows the parameter optimization of 

weighting exponent ‘m’ across all spatial resolution in the 

classification process. As commercially available image 

processing software’s were not having soft classification 

algorithms used in this work. So in-house developed SMIC 

(Sub-pixel Multi-Spectral Image Classifier) System [13] 

having fuzzy and entropy based fuzzy classifier with 

accuracy assessment module for fraction images used in this 

research work. 

II.  CLASSIFIERS AND ACCURACY APPROACHES 

Fuzzy c-Means (FCM) was originally introduced by [5]. In 

this supervised classification technique each data point 

belongs to a cluster to some degree that is specified by a 

membership grade, and the sum of the memberships for each 

pixel must be unity. This can be achieved by minimizing the 

generalized least - square error objective function given in 

Eq. (1), and subject to Eq. (2), 
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where Xi is the vector denoting spectral response of a pixel 

i, x is the collection of vector of cluster centers xj, ij is class 
membership values of a pixel, c and N are number of clusters 

and pixels respectively, m is a weighting exponent (1<m<), 

which controls the degree of fuzziness, 2

i j A
X x  is the 

squared distance (dij) between Xi and xj, and is given in Eq. 

(3), 
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Where A is the weight matrix. Amongst a number of 

A-norms, three namely Euclidean, Diagonal and 

Mahalonobis norm, each induced by specific weight matrix, 

are widely used. The formulations of each norm are given in 

Eq. (4), [5],  
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Where I is the identity matrix, Dj is the diagonal matrix 

having diagonal elements as the eigen values of the variance 

covariance matrix, Cj  given in Eq.(5), 

 

  
1

N
T

j i j i j

i

C X x X x


  
       

(5) 

The class membership matrix ij is obtained using Eq. (6) 

wherein 
2

ikd is computed using Eq. (7), 
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In PCM, for a good classification is it expected that actual 

feature classes will have high membership value, while 

unrepresentative features will have low membership values 

[14]. The objective function, which satisfies this requirement, 

may be formulated as given in Eq. (8) and constraint criterion 
is mentioned in Eq. (9); 
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  µij is calculated from Eq. (6). 

 

In Eq. (8) where j is the suitable positive number, first 
term demands that the distances from the feature vectors to 

the prototypes be as low as possible, whereas the second term 

forces the ij to be as large as possible, thus avoiding the 

trivial solution. Generally, j depends on the shape and 
average size of the cluster j and its value may be computed as 

given in Eq. (10); 
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Where K is a constant and is generally kept as one. After 

this, class memberships, ij are obtained as mentioned in Eq. 
(11);  
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SOFT ACCURACY ASSESSMENT APPROACH  

While allocating the class as soft, i.e. pixels with varying 

class membership values both in the classified image and 

reference data, Euclidean and the L1 distance [15], 

cross-entropy [16] and correlation coefficients measures 

were sought for accuracy assessment. All these measures 

may be treated as indirect methods of assessing the accuracy 

of soft classification because the accuracy evaluation is 

interpretative than a representation of actual value as denoted 

by the traditional error matrix measures. [6] Put forth the 

concept of fuzzy error matrix (FERM) to assess the accuracy 
of soft classification. This is a new concept that has been 

developed to assess the accuracy of soft classifiers [6]. The 

layout of a fuzzy error matrix is similar to the traditional error 

matrix that is used for assessing the accuracy of hard 

classifiers. The exception is that elements of a fuzzy error 

matrix can be any non-negative real number as opposable to 

non-negative integer numbers used for hard classifiers. The 

elements of the fuzzy error matrix represent class 

proportions, corresponding to soft reference data (Rn) and 

soft classified data (Cm), to class n and m, respectively. The 

procedure used to construct the fuzzy error matrix employs a 
fuzzy minimum operator to determine the matrix elements M 

(m, n), in which the degree of membership in the fuzzy 

intersection (Cm Rn) is computed from Eq. (12),  
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Where X is testing sample data set and x denotes a testing 

sample in X. 

Here, 
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 is the class membership (or class 
proportion) of the testing sample x in Rn and Cm 

respectively. 

From FERM, overall accuracy (OA) may be calculated 

from Eq. (13), 

    










c

j
j

R

c

j
ji

M

OA

1

1
),(

                (13) 

Where c is number of classes. 
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Similarly, User’s (UAj) and Producer’s accuracy (PAj) of 

class j may be computed from Eq. (14),  

    j
C

ji
M

j
UA

),(


 and j
R

ji
M

j
PA

),(


                (14)  

The applicability of generating accuracy indices such as 

the overall accuracy, the user and producer accuracy, the 
kappa and the conditional kappa coefficients (e.g., [6] – [7], 

[17] gives types of accuracy indication. Indeed, derived 

indices do not account for the off-diagonal cells of the matrix; 

rather, they are based only on the diagonal cells and the total 

grades from the reference and assessed datasets [6]. Recently, 

a composite operator was proposed for computing a cross 

comparison matrix that exhibits some of the aforementioned 

desirable characteristics [18]. [18] Showed how the 

composite operator can be used for a multi-resolution 

assessment of raster maps and compared it with other 

alternatives, including the traditional hardening pixels, the 

minimum operator [6], and the product operator [19]. This 
composite operator was also suggested as a viable tool for the 

soft comparison of maps [20]. Although several desirable 

properties are found in the composite operator, its utility has 

been only demonstrated on the use of traditional accuracy 

indices [18], [20] – [21] reviewed existing accuracy 

assessment methods for soft accuracy assessment, while 

identifying major drawbacks and desirable properties based 

on cross-comparison matrices. [22] Developed theoretical 

grounds, for a more general accuracy assessment of soft 

classifications, which account for the soft class distribution 

uncertainty. 
In formal grounds, one requires the agreement - 

disagreement measure to conform Eq. (15), where A and D 

denote agreement and disagreement operators respectively, 

where 
'

nks
 and 

'

nlr
 denote the over and underestimation 

errors at pixel n. 
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Different operators have been developed under distinct 

pixel otologies, listed in Table I. 

The minimum operator (MIN) is the classic fuzzy set 

intersection operator. This operator has been suggested as the 

natural choice for producing cross-comparison matrices for 

fuzzy classifications [6]. The MIN matrix can overestimate 

the actual soft agreement-disagreement and, consequently, 

the marginal sums can be greater than the sup-pixel fractions. 

Also even in case of a perfect match, non-null degrees of 

mismatch are obtained for the off-diagonal cells. These 

characteristics generally limit the matrix’s utility for drawing 
a conclusion about the confusion among the classes. 

Table I: Four basic operators 
Operator 

ID 

Operator of the form
a
 C 

( nlnk rs , ) 

Traditional 

interpretation 

Soft 

interpretation 

MIN 
min ( nlnk rs , ) 

Fuzzy set 

intersection 

Maximum 

overlap 

SI 

nlnk

nlnk

rs

rs




1  

Similarity 

index 

Normalized 

maximum 

PROD 
nlnk rs   

Joint 

probability 

Expected 

overlap 

LEAST )0,1max(  nlnk rs  
Minimum 

overlap 

Minimum 

overlap 
a snk and rnk denote assessed and reference grades of class K at 

pixel n. 

A variant of the MIN operator is sometimes used as a 

similarity index (SI) for comparing soft classifications. This 

variant results after normalizing the MIN operator by the sum 

of the grade values, and can be expressed as shown in Table I. 

The SI operator is also meaning for soft comparison, as it 

corresponds to a normalized maximum soft; overlap. 

Nevertheless, it does not satisfy the homogeneity property, as 

it is invariant under scaling of grade values. A 

cross-comparison matrix based on the SI operator does not 

satisfy the diagonalization and marginal sums characterstics.  

The product operator (PROD) arises from a pure 
probabilistic view of the pixel-class relationship. In the 

traditional probabilistic ontology, the pixel-class relationship 

represents the probability that pixel belongs to a class, and the 

PROD operator gives the joint probability that the reference 

and assessed pixels belong to two given classes, provided that 

the pixels have been independently classified. A 

cross-comparison matrix based on the PROD operator has 

marginal sums that agree with the per-class areas. However, 

non-null disagreement values can result from the perfect 

matching case. In fact, it does not satisfy the upper-bound and 

homogeneity properties. 
LEAST operator was recently incorporated in the soft 

comparison of maps [20]. LEAST operator measures the 

minimum possible soft overlap between two classes. Even 

though this operator is meaningful for soft accuracy 

assessment, it may be of little use for other contexts, as it has 

even more counter institutive characteristics than the PROD 

operator. Specifically, this operator fails to fulfill all but the 

commutativity and nullity properties.   

The single operator does not satisfy diagonalization 

characteristic; indeed, composite operator can exhibit the 

diagonalization characteristic. 

The MIN-PROD composite operator was recently 
proposed by [18]. It uses the minimum operator for the 

diagonal cells and a normalized product operator for the 

off-diagonal cells, thus combining the fuzzy set view with the 

probabilities view.   

The MIN-MIN composite operator uses the minimum 

operator for both agreement and disagreement. However, it 

differs from the MIN operator in that it assigns agreement in a 

first step and then, in a second step, it computes the 

disagreement based on the over and under estimation errors. 
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Table II: List of Composite operators 

Operator ID Agreementa Disagreementb (kl) Soft confusion 

MIN-PROD min( nlrnks , ) 




i nir

nlrnks

'

''
 Constrained expected 

MIN-MIN min( nlrnks , ) min(
'' , nlnk rs ) Constrained maximum 

MIN- LEAST min( nlrnks , ) min( )0,
'''
nii rnlrnks   

Constrained minimum 

a snk and rnk denote the assessed and reference grades for 

class K at pixel n. 

b s’nk and r’nk denote the over and under estimation errors of 

class i at pixel n. 

The MIN-LEAST composite operator uses the MIN 

operator for the diagonal cells and a re-normalized LEAST 

operator for the off-diagonal cells (Table II). 

A composite operator is necessary to warrant the 

diagonalization characteristic and the MIN operator is the 
most appropriate candidate for agreement measure. 

Nevertheless, there is no unique way to exactly allocate the 

remaining soft proportion into the off-diagonal cells. 

However, the confusion interval [ MINMIN
KLP

LEASTMIN
kl

P


, ], 

formed by the MIN-LEAST and MIN-MIN operator 

accounts soft distribution uncertainty. Practically, it is 

convenient to express each confusion interval in the form 

,
kl

U
kl

P  where Pkl and Ukl are the interval center and the 

interval half-width, respectively. These are computed as 

indicated by Eq. (16) and (17), respectively. 

    2
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(17) 

The accuracy indices so-derived can not reflect the 

uncertainty of confusion as they do not depend on the 

off-diagonal cells. Another possibility, which is pursued 

here, is to consider column and rows totals as intervals. These 

intervals can be used to derive intervals of accuracy indices 

that reflect the uncertain nature of class soft distribution [22]. 

Table III shows the general structure of the sub-pixel 

confusion-uncertainty matrix (SCM) with derive intervals of 

accuracy indices that reflect the uncertain nature of class soft 

distribution. 

Table III: General structure of the SCM (a) and derived sub-pixel accuracy-uncertainty indices (b) 

Class Reference    Row total 

 Class1 Class2 … Class K  

Class 1 P11 P12  U12 … P1K  U1K P1+  U1+ 

Class 2 P21  U21 P22 … P2K  U2K P2+  U2+ 

. 

. 

. 

. 

. 

. 

. 

. 

. 

… …  

Class K PK1 PK2  UK2 … PKK PK+  UK+ 

Column total P+1  U+1 P+2  U+2 … P+K  U+K P++  U++ 
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k-th Producer Accuracy, UAs (k) 
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Kappa Coefficient, Ks 
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With the availability of IRS-P6 satellite data it is possible 

to acquire spectrally same and spatial different data sets of 

same area with same acquition time. Due to the uniqueness of 

availability of these data sets, soft fraction images generated 

from coarser resolution data set (e.g. AWIFS, IRS-P6) can be 

evaluated from fraction images generated from finer 

resolution data sets (e.g. LISS-III/LISS-IV, IRS-P6) as 

reference data set acquired at same time. 

III. STUDY AREA AND DATA USED 

The study area is located near Pantnagar town between 28o 

53’ 57.12” N - 28o 56’ 31.22” N latitudes and 79o 34’ 22.92” E 

- 79o 36’ 35.27” E longitudes (Fig. 1). Pantnagar town is a mix 

of university town and industrial 

area, hosting the first agricultural 

university of India as well as the 
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first Integrated Industrial Estate in the Kumaon region. 

Pantnagar is famous for having the first agricultural 

university of India since 1960 and to have, breed amongst the 

best agriculturists and horticulturists globally. Previously it 

was called Uttar Pradesh Agricultural University, or 

Pantnagar University, it is now known as Govind Ballabh 

Pant University of Agriculture and Technology. SIDCUL has 

established the first Integrated Industrial Estate (IIE) in 

Kumaon region at Pantnagar. IIE Pantnagar is located at 

National Highway No. NH-87, 235 KM (Rudrapur-Haldwani 

road) from National Capital Delhi and 300 KM from state 

capital Dehradun. Industries like Dabur, Nestle, Tata Motors, 

Britannia Industries Ltd. and Havell's India Ltd. have already 

set up their units at IIE Pantnagar. Pantnagar also have the 

only airport in the Kumaon region capable for landing 

commercial flights.  

ResourceSat-1 (IRS-P6), satellite is unique in providing 

multi-spectral data at different spatial resolution, while 

preserving the spectral information. In this research work, 

AWIFS, LISS-III and LISS-IV data sets from ResourceSat-1 

(IRS-P6) satellite have been used as shown in Fig.(1). The 
fraction images and entropy would be used for the purpose of 

accuracy assessment. 

   
    (a). LISS-IV    (b). LISS-III    (c). AWIFS 

Fig. 1. Location of study area 

IV. METHODOLOGY 

All the three datasets (AWiFS, LISS-III and LISS-IV) 

were geometrically corrected with RMSE less than 1/3 of a 

pixel and resampled using nearest neighbor resample method 

at 60m, 20m and 5m spatial resolution respectively to 

maintain the correspondence of a AWiFS pixel with specific 

number of LISS-III pixels (here 9, corresponding to AWIFS) 

as well as with LISS-IV pixels (here 144 pixels, 

corresponding to AWIFS) with respect to sampling during 

accuracy assessment. 

Training data set was collected from AWiFS, LISS-III and 

LISS-IV imageries with reference to toposheet of the same 

area. There are six information classes i ,e. Sal forest, and 

Eucalyptus plantations are  treated as a heterogeneous classes 

and agriculture land with crop, agriculture moist land without 

crop, agriculture dry land without crop, and water body 

classes are considered as an  homogenous classes. For the 

purpose of experimentation, 40 pixels were selected as 

sample according to 10n rule (Jensen, 1996) to train the 

classifiers. For accuracy assessment 100 pixels per class were 

randomly selected from corresponding images. The flow 

chart of the methodology adopted is shown in Fig. 2.  

After pre-processing and training dataset collection the 

AWiFS image was separately classified by FCM and PCM 

algorithm using Euclidean norm. In this study a Euclidean 

distance measure that uses mean of the training class has been 

used for the spectral separability analysis.  

Euclidean Norm of weight matrix ‘A’ in Eq. (4) has been 

taken, as it gives maximum classification accuracy compared 

to other weighted norms and less effected with noise outlier 

present in training data. As Euclidean Norm uses only mean 

value but other norms uses mean as well as 

variance-covariance. Mean is less affected than 

variance-covariance due to the presence of noise in training 

data [23] – [24]. The accuracy of classified imagery is 

validated using, FERM, SCM and Fuzzy Kappa Coefficients. 

The uncertainty in SCM and Fuzzy Kappa Coefficient 

determines the classification appropriateness in the classified 

results. 

After preprocessing and training dataset collection the 

AWiFS image was separately classified by traditional FCM 

and PCM algorithm. Later output fraction images by both 

algorithms were validated with respect to the soft reference 

dataset generated from finer resolution dataset. For accuracy 

assessment different operators has been used [22]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Methodology adopted 

V.  RESULTS AND DISCUSSIONS 

Determining land cover information accurately from 

remote sensing imagery is crucial to understand ecological 

and climatic processes occurring at a range of scales. Soft 

classification offers a flexible way to infer sub-pixel land 

cover information. In this paper, we have shown that the 

fuzzy confusion thicket can be unraveled when membership 

values correspond to land cover fractions, and the amount of 

sub-pixel match among the referenced and assessed pixels 

are shown in Fig. 3, 4, and 5 using FERM, SCM, MIN-MIN, 

and MIN-LEAST operator for FCM and PCM classifiers 

with respect to AWIFS and LISS-III comparison, AWIFS 

and LISS-IV comparison and LISS-III with LISS-IV 

comparison. Using this cross comparison analysis we have 

identified that Overall accuracy using MIN-LEAST operator 

for FCM classifier found a perfect match between the 

reference and assessed data at 

the pixel level, wherein the 

value of weighting exponent 

Preprocessing 

Coarse Resolution 
MX Data 

Classification Experiments 

a. FCM Classifier 

b. PCM Classifier 

 

 

 
Fraction Images 

Accuracy Assessment and Comparison using soft reference data 
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was set to 4.0. The observation of fuzzy kappa coefficient of 

MIN-LEAST operator can also be seen from Fig. 6, 7 and 8 , 

for FCM classifier found 0.97, 0.95 and 0.96 for AWIFS with  

LISS-III comparison, AWIFS with  LISS-IV comparison and 

LISS-III with LISS-IV comparison respectively. This also 

states the match agreement of classification has achieved the 

90% accuracy. Apart from this the other measures like 

uncertainty in SCM and Fuzzy kappa coefficients shown in 

Fig. 9, 10, 11, 12, 13 and 14 can provide  better classification 

accuracy for FCM and PCM classifiers can be achieved, 

using the optimized value of ‘m’ i.e. 4.0. For setting the value 

of ‘m’, a number of experiments have been performed for 

both classifiers by varying ‘m’ from 1.1 to 4.0. The accuracy 

of FCM and PCM clustering increases by increasing the 

value of ‘m’ until ‘m’=4.0, after which the accuracy become 

stable. Thus, the optimum value of ‘m’ for FCM and PCM 

classifier has been fixed as 4.0 for classification. 

 
Fig. 3: Overall Accuracy for FCM and PCM classifiers of 

AWIFS with LISS-III 

 
Fig. 4: Overall Accuracy for FCM and PCM classifiers of 

AWIFS with LISS-IV 

 
Fig. 5: Overall Accuracy for FCM and PCM classifiers of 

LISS-III with LISS-IV 

 
Fig. 6: Fuzzy Kappa Coefficient for FCM and PCM 

classifiers of AWIFS with LISS-III 

 

 
Fig. 7: Fuzzy Kappa Coefficient for FCM and PCM 

classifiers of AWIFS with LISS-IV 

 
Fig. 8: Fuzzy Kappa Coefficient for FCM and PCM 

classifiers of LISS-III with LISS-IV 

 
Fig. 9: SCM Uncertainty for PCM and FCM classifiers of 

AWIFS with LISS-III 

 
Fig. 10: SCM Uncertainty for PCM and FCM classifiers 

of AWIFS with LISS-IV 

 
Fig. 11: SCM Uncertainty for PCM and FCM classifiers 

of LISS-III with LISS-IV 
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Fig. 12: Fuzzy Kappa Coefficient uncertainty for FCM 

and PCM classifiers of AWIFS with LISS-III 

 
Fig. 13: Fuzzy Kappa Coefficient uncertainty for FCM 

and PCM classifiers of AWIFS with LISS-IV 

 
Fig. 14: Fuzzy Kappa Coefficient uncertainty for FCM 

and PCM classifiers of AWIFS with LISS-IV 

VI. CONCLUSION 

In this research work it has been tried to generate fraction 

outputs from FCM and PCM classifiers using Euclidean 

norms. These outputs have been generated from AWIFS, 

LISS-III and LISS-IV images of IRS-P6 data. FERM and 

overall accuracy with various accuracy assessment operators 

like MIN-MIN MIN-LEAST and Fuzzy kappa coefficients 

and their respective uncertainties are being used as 

assessment parameters of accuracy, for various land cover 

classes i.e. water bodies, Sal forest, Eucalyptus plantation, 

agriculture land with crop, agriculture moist land without 

crop, agriculture dry land without crop. Uncertainty is 

intrinsic in spatial data and this generally refers to error, 

inexactness, fuzziness and ambiguity. The objective of this 

research on spatial data to is to investigate, how uncertainties 

arise, or are created and propagated in the spatial data. Based 

on information theory, considering the characteristics of 

randomness of positional data and fuzziness of attribute data 

and taking FERM, SCM and Fuzzy Kappa coefficient as a 

measure, this paper proposes the significant advances on the 

use of remote sensing data for the estimation of land cover 

information with optimized value of weighting exponent ‘m’ 

for FCM and PCM classifiers.  In the area of remote sensing, 

the decision making are not generally deterministic due to the 

involvement of fuzziness in the classification of remotely 

sensed imagery. A considerable number of identification 

errors are due to pixels that show an affinity with several 

information classes. The fuzzy concept is a valuable tool for 

dealing with classification problems. In remote sensing 

classification, fuzzy based classifiers are becoming 

increasingly popular. Due to the wide acceptance of FCM 

and PCM classifiers, this has been used as a benchmark to 

evaluate the performance of other classifiers with optimized 

value of weighting exponent ‘m’ in this research. Evaluation 

of soft classification through FERM, SCM and Fuzzy kappa 

coefficient, using Euclidean norm based measures led to an 

improvement wherein FCM-Overall accuracy 

(MIN-LEAST) operator reflects higher classification 

accuracy, i.e., 97% and the value of Fuzzy Kappa coefficient 

is 0.97 with minimum uncertainty in it, for the optimized 

value of weighting exponent ‘m’ i.e.  4.0. It is shown in Fig. 

3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14. In this 

experimentation two supervised classifiers namely FCM and 

PCM have been selected to demonstrate the improvement in 

the classification accuracy by FERM, SCM, MIN-MIN, 

MIN-LEAST, Fuzzy Kappa coefficient and uncertainty in 

SCM and Fuzzy Kappa coefficients. In this experiment the 

value of weighting exponent ‘m’ is varying from 1.1 to 4.0 

for both the classifiers. It may be mentioned that the value of 

m and its interpretation is different in the PCM than in FCM. 

The weighting exponent m in PCM determines the rate of 

decay of the membership values, however in FCM this 

reflects the degree of sharing. In FCM, as ‘m’ increases, it 

represents the increase in sharing of pixels in all clusters, 

whereas in PCM, it represents increased possibility of all 

pixels in the data set completely belonging to a given cluster.  
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