
 International Journal of Soft Computing and Engineering (IJSCE)

 ISSN: 2231-2307, Volume-2, Issue-3, July 2012

531

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0847062312/2012©BEIESP

 Abstract: Cloud computing is a profound revolution in the

way it offers the computation capability. The main objective now

is to reduce the cost of deploying a service in the cloud and

having proper coordinative in between models. Public, private,

and hybrid cloud environments all face the performance

limitations inherent in today’s applications and networks. In

order for enterprises to maximize the flexibility and cost savings

of the Public, private, and hybrid cloud they must overcome the

same latency and bandwidth constraints that challenge

distributed IT infrastructure environments. By overcoming

application and network performance problems, Cloud

Steelhead accelerates the process of migrating data and

applications to the cloud, and accelerates access to that data

from anywhere Cloud Computing applications that offer data

management services are emerging. Such clouds support

caching of data in order to provide quality query services. The

users can query the cloud data, paying the price for the

infrastructure they use. Cloud management necessitates an

economy that manages the service of multiple users in an

efficient, but also, resource economic way that allows for cloud

profit. Naturally, the maximization of cloud profit given some

guarantees for user satisfaction presumes an appropriate

price-demand model that enables optimal pricing of query

services. Optimal pricing is achieved based on a dynamic pricing

scheme that adapts to time changes. This proposes a novel

price-demand model designed for a cloud cache and a dynamic

pricing scheme for queries executed in the cloud cache. The

pricing solution employs a novel method that estimates the

correlations of the cache services in a time-efficient manner and

also applied some prediction technique in between correlation

models with the use of cooperative cache from self as well as

different hybrid cloud.

 Index Terms: cloud data management, data services, cloud

service pricing, Cooperative Cache, Prediction Technique.

I. INTRODUCTION

cloud computing represents a new tipping point for the value

of network computing. It delivers higher efficiency, massive

scalability, and faster, easier software accessibility. It’s about

new programming models, new IT infrastructure, and the

enabling of new business models. The quality of services that

the users receive depends on the utilization of the resources.

The operation cost of used resources is amortized through

user payments. Cloud resources can be anything, from

infrastructure (CPU, memory, bandwidth, network), to

platforms and applications deployed on the infrastructure.

Manuscript Received on July 04, 2012.

Deepak Mishra, Information Technology, RGPV/ LNCT/ LNCT, Bhopal

(M.P.), India,

Dr. Manish Shrivastava, Information Technology, RGPV/ LNCT/ LNCT,

Bhopal (M.P.), India

Cloud management necessitates an economy, and, therefore,

incorporation of economic concepts in the provision of cloud

services. The goal of cloud economy is to optimize: 1) user

Satisfaction 2) cloud profit 3) Cloud web Security. While the

success of the cloud service depends on the optimization of

both objectives, businesses typically prioritize profit. To

maximize cloud profit we need a pricing scheme and apply

the some intelligence optimization technique that guarantees

user satisfaction while

adapting to demand changes. Recently, cloud computing has

found its way into the provision of web services [15], [18].

Information, as well as software is permanently stored in

Internet servers and probably cached temporarily on the user

side. Current businesses on cloud computing such as

Amazon Web Services [14], Microsoft Azure [19], VMware

[41], Google Plus [41], McAfee Cloud Searching Virus [42],

Oracle Cloud Data Management [43] have begun to offer

data management services:. A used web application passes a

query to the server and collects information with the help of

query massive data, like those supported by CERN [17], need

a caching service and intelligent optimization technique

which can be provided by the cloud [31].

The goal of such a cloud is to provide efficient

proper way querying on the back-end data at a low cost with

intelligent manner while being economically Viable, and

furthermore, optimal profitable and also getting reduction of

scheduling cost on demand changes. A price over the

operating cost for each structure can ensure profit for the

cloud. And also internally cloud is periodically update his

caches information as required on different cloud and other

demand will virtually manages a different dedicated server at

a time on cloud. We propose a novel scheme with some

pattern recognition technique by the soft computing hat

achieves optimal pricing for the services of a cloud cache

with explain on demand prediction cost.

1.1 Setting the on Demand Price for Cloud based Caching

Services with Prediction cost estimation on Demand

model.

The cloud makes profit from selling its services at a price that

is higher than the actual cost. Setting the right price for a

service is a nontrivial problem, because when there is

competition the demand for services grows inversely but not

proportionally to the price. There are three major challenges

when trying to define an optimal pricing scheme for the

cloud caching service with on demand cost prediction. First

one 1) the price demand Dependency, to achieve a feasible

pricing solution, but not

economically feasible as

Optimal Service Pricing for Cloud Based

Services

Deepak Mishra, Manish Shrivastava

Optimal Service Pricing for Cloud Based Services

532

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0847062312/2012©BEIESP

required on demand same services, that is not representative.

For Example, a static pricing scheme cannot be optimal if the

Demand for services has deterministic seasonal fluctuations;

in this case correlation is automatically stopped on between

different clouds when demand is increases on particular

services because everyone wants to get on demand profit. The

second challenge is to define a pricing scheme that is

adaptable to 1) modeling errors, 2) Mean Percentage Error

(MPE) on load distribution, 3) time-dependent model

changes, and 4) stochastic behavior of the application.

A representative model for the cloud cache and

prediction techniques should take In to account that the cloud

cache structures (table columns or Indexes or correlation

cache identification number) may compete or collaborate

during query execution and any such a situation will come it

will take self-decision on demand load balance, cloud

services may be free or offered on a pay-per-usage model, No

wasted resources because you pay for what you use [47], A

cloud storage gateway provides basic protocol translation and

simple connectivity to allow the incompatible technologies to

communicate transparently [48]. And the goal is to minimize

the number of cross-node distributed transactions, which

incur overhead both because of the extra work done on each

node and because of the increase in the time spent holding

locks at the back-ends. OODBMS caching is keep only

positive impact factor or successfully satisfying the

information. So by the using cloud optimized cache we

directly minimize the following cost 1) Hash join costs, 2)

Sort costs, 3) Table scan costs, 4) Index block access costs

[49].

Fig. 1. A cloud cache.

First time cost is high not much more but when more request

is do same process then setup and maintains cost is come very

lower level by the using caching. So cloud cache service can

satisfy infinite demand as long as it is maintained only the

demand for a cache service pauses if this service is not

available. Moreover, the cloud can schedule the service

availability according to the guarantees for the overall

revenue estimated by the long term optimization [45].

Nevertheless, it is important that the long-term optimization

process is flexible enough to receive corrections while it is

still in progress and there have no optimization scheduling or

intelligent caches in between public, private & hybrid cloud.

1.2 Related Work

The problem is that, no one proper handling at a time when

user demand is increases on cloud services ,like that 1)Ease

of Use, 2) Zero maintenance, 3) Automatic scaling, 4) High

availability, 5) high level of parallelism, 6) Pay per actual

usage vs. pay per instance size, resulting in over subscription,

7) automation and ease-of-use of a Database-as-a-Service, 8)

minimal investment and maintenance of in-house hardware,

9) periodically Combining cache interoperability standards,

10) capability of dynamic traffic switching to balance

utilization, because this are major problem that’s why a price

scheme is fluctuated on cloud and The “stateless” and

dynamic nature of the cloud poses unique challenges for the

“state full” database tier – which is the most sensitive and

critical part of the application, and the hardest to scale, all

this problem on present cloud , Each development team is

free to use whatever local support it likes in this

VM—Amazon doesn’t care. The creators of one application

might choose a Java EE app server and MySQL, for example,

while another Group might go with Ruby on Rails. While the

service EC2 Provides is quite basic, it’s also very general,

and so it can be used in many different ways. Existing clouds

focus on the provision of web services targeted to developers,

such as Amazon Elastic Compute Cloud (EC2) [14], or the

deployment of servers, such as Go Grid [18], cloud platform

providing local support is Force.com, offered by

Salesforce.com. Emerging clouds such as the Amazon

Simple DB and Simple Storage Service offer data

management services. Optimal pricing of cached structures

is central to maximizing profit for a cloud that offers data

services.

Microsoft cloud spotlight is provide content

sharing, like photo video ,audio etc. but the problem is

Content Delivery Networks (CDNs) are critical for

enhancing your site’s quality, reliability and scalability ,so

fast loading and increasing synchronization of content is

important , in this condition it will fail [50]. Mariposa [35]

discusses an economy for querying in distributed databases.

This economy is limited to offering budget options to the

users, and does not propose any pricing scheme. Other

solutions for similar frameworks [38], [8], [29], [21], [4],

[22], [26],[36][25 focus on job scheduling and bid

negotiation, issues orthogonal to optimal pricing.

Pricing schemes were proposed recently for the optimal

allocation of grid resources in order to increase revenue [36],

or to achieve equilibrium of grid and user satisfaction [25],

service demand is known a priori and all users are charged

the same for the consumption of the same service. Similarly,

dynamic pricing for web services [23] focuses on scheduling

user requests. This work is orthogonal to ours, as we require

that users’ requests for service are satisfied right away.

Research on the identification of non-correlated indexes

using the query structure [39] does not determine the

negative and positive correlations with combining intelligent

caching. Identification of index correlations by modeling

physical design as a sub modular and super-modular problem

[5] is restricted to one-column indexes and one index per

query. Identification of negative index correlation [2] does

not consider the positive and no Correlation case. A recent

index interaction model [33] attempts to find all index

correlations. As we show in Section 4, it does not satisfy three

critical requirements for the pricing scheme: 1) sensitivity to

the range of all possible

correlations, 2)

 International Journal of Soft Computing and Engineering (IJSCE)

 ISSN: 2231-2307, Volume-2, Issue-3, July 2012

533

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0847062312/2012©BEIESP

production of normalized values, and 3) fast computation

[45]. 4) Less downtime and power usage, 5) accommodate

multiple caching strategies under the same domain. 6)

client-side modifications to the cache 5) automatic global

web intelligent abstraction.

1.3 Our Proposal

Many Web applications are now hosted in elastic cloud

environments where the unit of resource allocation is a

virtual machine (VM) instance, A variety of techniques can

reduce the latency of communication between VMs

co-located on the same server in, say, a private cloud but The

cloud caching service can maximize its profit using an

optimal pricing scheme. Optimal pricing necessitates an

appropriately simplified price-demand model that

incorporates the correlations of structures in the cache

services. The pricing scheme should be adaptable to time

changes, with provide automatic dynamic cache in way of

load balancing so distributed data caches is to store fast

changing data that is accessed by multiple servers, and

solving web service cost and it will give minimum load with

dynamic automatic balance and according to situation it will

take a self-decision, and giving self-tuning features like

Control Panel – API Built to deliver quick access and

real-time solutions, your Cloud Cache CDN, Control Panel

gives you everything you need to manage, monitor and

distribute your content effortlessly! From control of content

behavior to robust reporting options, you get the

Prime tools you need to take charge of your site’s technology

quickly and easily. Instant Provisioning – No waiting! Use

ours immediately. Purge Cache – Immediately purge your

entire cache, or select only a single file. You decide what

works best for you. Reporting – Get real-time easy-to-read

reporting of all relevant metrics when you need them.

Timely Updates – Make a change and they’re done, just like

that. Open API – full integration with your favourite

third-party and custom applications. Privacy Preserving

Mask Matrix - that allows the cloud to filter out a certain

percentage of matched files by using soft computing

technique. Differential Query Services - the queries with

higher rank can retrieve higher percentage of matched files.

Intelligent Postmark – Intelligent Postmark is a file-system

benchmark that simulates cloud workload in the form of

intelligent distributed cache. In each VM we run Post-Mark

with dynamic initial files and dynamic transaction, and this

all process are done by parallelism automatic tuning then

find out Postmark primarily measures better IO performance.

Optimized price demand model – We model the price-

-demand dependency employing second order differential

equations with constant parameters. This modeling is

flexible enough to represent a wide variety of demands as a

function of price. Optional structure availability allows for

optimal scheduling of structure availability, such that the

cloud profit is maximized. The model of price-demand

dependency for a set of structures incorporates their

correlation in query execution [45].

Price adapting to time changes. Profit maximization is

pursued in a finite long-term horizon. The horizon includes

sequential, no overlapping intervals that allow for scheduling

structure availability. At the beginning of each interval, the

cloud redefines availability by taking offline some of the

currently available structures and taking online some of the

unavailable ones. Pricing optimization proceeds in iterations

on a sliding time window that allows online corrections on

the predicted demand, via reinjection of the real demand

values at each sliding instant. Also, the iterative optimization

allows for redefinition of the parameters in the price-demand

model, if the demand deviates substantially from the

predicted. Modeling Structure correlations. We propose a

method for the efficient computation of structure correlation

by extending a cache based query cost estimation module and

a template-based workload compression technique.

Dynamic Cooperative caches modelling –When we are

using dynamic cooperative caches in between different

model, then top two benefits of cloud computing are found

speed and cost. Users can be up and running in minutes

instead of weeks or months and this will come from

parallelism of dynamic load balance distribution by using

elastically scalable grid architecture. And because cloud

computing is pay-per-use, operates at high scale and is highly

automated, the cost and efficiency of cloud computing is very

compelling as well. And in any situation a failure is come,

then there no problem because all thing is done by intelligent

cache cooperative because we use sharing cache file and this

will provide highly benefits like 1) On-demand self-service,

2) Broad network access, 3) Rapid elasticity,4)Measured

service ,5)Elastic scalability ,6) Low upfront costs

,7)Economies of scale ,8)Operating expense , 9)Simpler to

manage 10)Greater control of security, compliance and

quality of service ,11) Resource pooling. So this model is

removed unpredictable demand patterns problems because

intelligent soft computing method is doing scaling up or

scaling down of resources for a given application on

demand.

Neuro - Genetic Price Model - To recap, cloud computing

is characterized by real, new capabilities such as self-service,

auto-scaling and chargeback, but is also based on many

established technologies such as grid computing,

virtualization, SOA shared services and large-scale, systems

management automation. Apply there some intelligent

technique by the using this, for maximization of user profit

analysis the previous pattern data from cooperative caches

and find out demand price prediction by the using of

Artificial neural network with Genetic algorithm and trained

the cooperative cache, so we easily getting the information

when demand is increase for particular price, then how price

is come on minimized and also getting information about

Mean Percentage error on between cloud web service cost.

1.4 Contributions

This paper makes the following contributions:

1. A novel demand-pricing model designed for cloud caching

services and the problem formulation for the dynamic pricing

scheme that maximizes profit and incorporates the objective

for user satisfaction.

2. An efficient solution to the pricing problem, based on

nonlinear programming, adaptable to time changes.

3. A correlation measure for cooperative cache structures that

is suitable for the cloud cache pricing scheme and a method

for its efficient computation.

Optimal Service Pricing for Cloud Based Services

534

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0847062312/2012©BEIESP

4. Soft computing technique is giving parallel and

distributing cooperative caches which are done and take

self-decision when any user poses a query on cloud for

finding information about price prediction for particular

demand at a time and model is highly trained as self-tuning

from cooperative caches data from current and previous price

demand model data.

5. Neuro - Genetic techniques is giving functionality

cooperation on different caches scheme, like system create

only default cache but highly trained network on cloud is

create a different type cache file like 1) Purge cache, 2)

default cache, 3) cooperative cache 4) load balance

-distribution cache, 5) cooperative optimization cache, 6)

external query poses query information cache and simulating

on different ways as need of demand self-take a decision and

self-destroy this caches file.

6. An experimental study which shows that the highly

trained network controller with dynamic pricing demand

scheme outperforms any static one by achieving to orders of

magnitude more profit per time unit with the future price on

level of demand.

2 QUERY EXECUTION MODEL

Cloud databases can offer significant advantages over their

traditional counterparts, including increased accessibility,

automatic failover and fast automated recovery from failures,

automated on-the-go scaling, minimal investment and

maintenance of in-house hardware, and potentially better

performance. At the same time, cloud databases have their

share of potential drawbacks, including security and privacy

issues as well as the potential loss of or inability to access

critical data in the event of a disaster or bankruptcy of the

cloud database service provider this basic problem is giving

more hazards for web user which using cloud services so

apply the intelligent cooperative cache concept [51] Like

OODBMS Cache enables certain tables, rows and columns

and session information with network address reference from

Database to be cached in the memory of the middle tier

servers, access it with the highly trained network cloud and

apply self-tuning methodology for the delivering very low

latency and high throughput. Data remains synchronized

with Database and is accessed through a standard interface

first time when using. RDBMS In-Memory Database Cache

also supports clustering for elastic scalability and high

availability. Our motivation for the necessity of such a cloud

data service provider derives from the data management

needs of huge analytical data, such as scientific data [31], for

example physics data from CERN [17] and astronomy data

from SDSS [20]. Users pose queries to the cloud, which are

charged in order to be served. Following the business

example of Amazon and Google, Microsoft, MacAfee, Panda

etc., we assume that data reside in the same data centre and

that users pay on-the-go based on the infrastructure they use,

therefore, they pay by the query. We assume that the cloud

infrastructure provides sufficient amount of storage space for

a large number of cache structures. Each cache structure has

a building and maintenance cost [45] and offered security

cost on web user pricing scheme adaptation level.

Global: cache structures S, prices P, availability Δ

QueryExecution()

 if q can be satisfied in the cache then

 (result, cost)←runQueryInCache (q)

else

 (result,cost)←runQueryInBackend(q)

end if

S←addNewStructures()

return result,cost

optimalPricing (horizon T, intervals t[i], S)

(,P)←determineAvailability&Prices(T, t,S)

return ,P

main()

Execute in parallel tasks T1 and T2:

T1:

for every new i do

slide the optimization window

optimalPricing(T, t[i],S)

end for

T2:

while new query q do

(result,cost)←queryExecution(q)

end while

if q executed in cache then

charge cost to user

else

Calculate total price and charge price to user

end if [45].

Modified algorithm is: Intelligent Parametric

Organization algorithm:

Input: Generate the super plan contains the access the data.

Output: Top down optimizer

Procedure: process steps

1. We are works based on star schema

2. Star schema contains the different dimensions of tables

3. New queries also are joining inside the dimension tables

4. Generate the dynamic load allocation with first iteration to

next iteration.

5. We are generate good join planner specification process

6. Join planner works based on cache systems

7. Using the time variation changes new cache systems, we

are create under reduced cost building processor

8. It can works on sequential interval amount of time

9. Provides the optimization results

10. Optimization results show the integration.

11. We are increases iteration and integrate the number of

iteration process.

12. Gets the results as a minimized cost with feasible and

optimal solution

13. Optimal solution focus on discretization (genetic

algorithm-AI, NN)

14. It can works on branch and bound algorithm

15. We are gets the target results identification process

Fig. 2. Query execution model for the Intelligent

Parametric Organization algorithm.

Fig. 2 represent Query execution model for the

Intelligent Parametric Organization algorithm

represents at a high level the query execution model of the

cloud cache. The names of variables and functions are

self-explanatory form OODBMS but the cache model is

modified by cloud admin.

 International Journal of Soft Computing and Engineering (IJSCE)

 ISSN: 2231-2307, Volume-2, Issue-3, July 2012

535

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0847062312/2012©BEIESP

The user query is executed in the cache if all the columns it

refers to are already cached. Otherwise it is executed in the

back-end databases. The modified result is returned to the

user with prediction model demand price and the cost is the

query execution cost (the cost of operating the cloud cache or

the cost of transferring the result via the network to the user).

The cloud cache Determines which structures (cached

columns, views, indexes, previous related demand price,

offered price, future price reduction probability offered,

offered price correlation),in destination cloud cache is

periodically update by the source cloud as like router.

Artificial Neural Network. The back-propagation learning

algorithm is one of the most important developments in

neural networks. This learning algorithm is applied to

multilayer feed-forward networks consisting of processing

element with continuous differentiable activation functions.

ANN & GA is finding best survival of genes from previous

network cloud caches with poses query by the user demand

request and intelligent cloud is self-take a decision for

heuristic Cloud Cache Data Set then again find, what Mean

absolute percentage error (MAPE) will be come on heuristic

Cloud Cache and decide which one is best for the user

demand. Now we again apply Hybrid model (GA Tuned &

ANN) and find out of cloud load traffic information, backend

traffic load, number of client request traffic load, client

request load distribution by the cloud, measurement of cloud

dedicated server on demand creation with control of number

of parallelism cache transfer information from network

server and A real coded and binary chromosome will be

considered for optimization of the weight of ANN.

Training Algorithm of ANN:

The error back-propagation learning algorithm can be

outlined in the following algorithm:

Step 0: Initialize weights and learning rate (take some

small random values).

Step 1: Perform Steps 2-9 when stopping condition is

false.

Step 2: Perform Steps 3-8 for each training pair.

Phase 1: Feed forward Algorithm

Step 3: Each input unit receives input signal ix and

end it to the hidden unit (i =1 to n).

Step 4: Each hidden unit jz (j = 1 to p) sums its weighted

input signals to calculate net input

i

ijijinj vxvz 0

Calculate output of the hidden unit by applying its activation

functions over injz (Binary or bipolar sigmoidal activation

functional):

 inji zfz

And send the output signal from the hidden unit to the input

of output layer units.

Step 5: For each output unit ky (k= 1 to m), calculate the

net input:

p

j

jkjkink wzwy
1

0

And apply the activation function to compute output signal

 inkk yfy

Phase 2: Back-propagation of error AlgorithmStep 6:

Each output unit ky (k =1 to m) receives a target pattern

corresponding to the input training Pattern and computes the

error correction term:

 inkfkkk yyt '

On the basis of the calculated error correction term, update

the change in weights and bias:

kk

jkjk

w
zw

0

 Also, send k to the hidden layer backwards.

Step 7: Each hidden unit (jw , j = 1 to p) sums its delta

inputs from the output units:

m

k

jkkinj w
1

The term inj gets multiplied with the derivative of

 injzf to calculate the error term:

 injinjk zf '

On the basis of the calculated j , update the change in

weights and bias:

jj

ijij

v
xv

0

Weight and bias updation (Phase III)

Step 8: Each output unit (ky , k=1 to m) updates the bias and

weights:

koldknewk

jkoldjknewjk

www
www

0)(0)(0

)()(

Optimal Service Pricing for Cloud Based Services

536

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0847062312/2012©BEIESP

Each hidden unit (jz , j=1 to p) updates the bias and weights:

joldjnewk

ijoldijnewjk

vwv
vvv

0)(0)(0

)()(

Step 9: Check for the stopping condition. The stopping

condition may be certain number of epochs reached or when

the actual output equals the target output [52].

The above algorithm uses the incremental approach for

updating of weights, i.e., the weights are being changed

immediately after a training pattern is presented, When a

BPN is used as a classifier, it is equivalent to the optimal

Bayesian discriminate function for asymptotically large sets

of statistically independent training patterns.

Genetic Algorithm. An implementation of a genetic

algorithm begins with a population of typically random

chromosomes One then evaluates these structures and

allocates reproductive opportunities In such a way that those

chromosomes which represent a better solution to the target

problem are given more chances to reproduce than those

chromosomes which are poorer solutions The goodness of a

solution is typically defined with respect to the current

population. So this will help on 1)selection, 2) cross over , 3)

mutation, 4) reassembly cloud network caches, 5)

decomposition: fitness.

3 MODELING OPTIMAL PRICING ON USER

DEMAND REQUEST

This section describes the problem formulation of

maximizing the cloud profit with intelligent cloud decision

with cooperative solicitor network caches information. The

presentation of the pricing scheme is guided by propositions

that state the main heuristic rationale of our approach.

3.1. Problem Formulation

This section defines the objective and the constraints of the

problem, and gives the mathematical problem definition.

3.1.1. Objective

The cloud cache offers to the users query services on the

cloud data. The user queries are answered by intelligent

cloud admin query plans that use cache structures, i.e.,

cached columns, views, indexes, previous related demand

price, offered price, future price reduction probability

offered, offered price correlation. We assume that the set of

possible cache structures is S = {S1, . . . , Sm }.

Whenever a structure S is built in the cache, it has a onetime

building cost BS. While S is maintained in the cache it has a

low maintenance cost which depends on time with network

solicitor, MS (t). Heuristic computing and parallelism on

cloud infrastructure may benefit the performance of structure

creation, for a column, the building cost is the cost of

transferring it from the backend and combining it with the

currently optimized cached columns. The maintenance cost

of a column or an index is just the cost of using disk space in

the cloud. Hence, building a column or an index in the cache

has a one-time static cost, whereas their maintenance yields a

storage cost that is linear with time1. for more information on

the building and maintenance cost of cloud cache structures

the reader is referred to [7]. In any case, the cost of a structure

S as soon as it is built at time (tbuilt) in the cache and until it is

discarded is

Cs(t) = BS+ MS(t _ tbuilt). ……………. (1)

Co_caches=ScacheIndex(t)+NcacheIndexdest

Cache services are offered through query execution that Uses

cache structures, cooperative caches (Co_caches) is

combination of caches which is maintained by self OODBMS

query in cloud ScacheIndex(t) and network cloud cooperation

caches NcacheIndexdest maintained self-tuned heuristic function

on the controls of this with respect to time (t).

Definition 1. The demand for a cache structure S, denoted as

λs(t), is the number of times that S is employed in query plans

selected for execution at time t. Naturally, in realistic

situations the demand for a structure is measured in time

intervals. If a structure S is built in the cache then query plans

that involve it can be selected, i.e. λs(t)> 0, otherwise not,

i.e., λs(t)=0. Intuitively, there is a trade-off between 1)

keeping a structure in the cache and paying the maintenance

cost, and 2) soft computing model is dynamically

maintaining the structure occasionally and 3) maintaining

load balancing of caches transfer on network traffic, on user

demand request with respect to time (t).

1. Index updating is assumed to incur rebuilding the index

from scratch. Data updates on caches from network solicitor

are external factors but that can be controlled by the heuristic

optimization procedure. In Section 6, we study the effect of

updates to the dynamic pricing solution.

Than pay the maintenance cost; if the demand is high, then

the opposite tactic may be more profitable for the cloud. The

cloud makes profit by charging the usage of structures in

selected query plans for a price. Let us assume that the price

of a structure S at time t is pS(t). Then the profit of the cloud

at a specific time is

 m

r(t) = ∑ δi.(λsi(t) . psi(t) - csi(t), δi = 0,1, ……. 2

 i

Where δi represents the fact that the structure Si is present in

the cloud cache. Specifically, a structure may be present or

not in the cache at any time point in [0, T]. and not present

before the beginning of optimization time, i.e.

Based on this, the cost of a structure w.r.t. time becomes

Where t0 is the start time of cost observation. Structures can

be built and discarded at any time t Є [0, T] and the total

profit of the cloud is R (T) =∫0
T r(t) dt. The goal is to

maximize the total profit in [0, T] by choosing which

structures to build or discard and which price to assign to

each built structure at any time.

 International Journal of Soft Computing and Engineering (IJSCE)

 ISSN: 2231-2307, Volume-2, Issue-3, July 2012

537

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0847062312/2012©BEIESP

max R(t) = =∫0
T r(t) dt (4)

δ,p

3.1.2 Problem Constraints

It is necessary to constrain the optimization of the objective 4,

so that a reasonable and correct solution can be found. Value

constraints.

It is straightforward that both the demand and the price of a

structure must be positive numbers. Furthermore, it is

necessary to impose an upper bound on the price. The reason

is that the optimum solution is to instantaneously raise the

price of at least one structure to infinity, if this is allowed.2

these bounds can be formulated as follows:

0 ≤ λi , i = 1,……..,m . (5)

0 ≤ pi ≤ pmax , i = 1,……..,m . (6)

Dynamics of the demand. Naturally, the demand and the

price of a structure are connected variables: intuitively, as the

price for a structure increases the demand decreases and vice

versa. In order to solve the optimization problem (4).

2. Mathematically, the integral of (4) goes to infinity if the

price for one structure is infinite and the demand for this

structure is not zero. If the demand is zero, the profit, ∞ * 0 is

undefined.

Proposition 1. The demand of a structure S has memory:

the demand at time t depends on the demand before (t)

consequently, the relationship between price and demand

is

 (7)

Where m ≤ n, to respect the causality principle, as m > n

would imply that demand could change (due to a change of

price) before the price has changed. In particular, since there

is no inertia in setting a price for a structure, m = 0 and (7)

can be rewritten in its explicit form

Justification 1. As the cloud cache and its users has inertia,

which means that the current system behavior depends on

past and influences future behavior. Two intuitive

exemplifying reasons for this are: 1) the structure is already

built and remains available because the building cost is

already amortized, while the maintenance cost is not very

high; and 2) the structure.

3. Note that an abrupt drop is expressed by a first order

differential equation, which is encapsulated in the second

order one, as the parameter a can be set to 0.

 We

constrain f to be an ordinary differential relation between

price and demand.

The parameters α, β, γ are constrained to be constants. This

means that the price model considers a static relation

between demand and price. Therefore, it is necessary to

extend (9) so that it captures correlations of demand and

prices between pairs of structures. Let us assume that V is a

(m * m) matrix where the row and the column (i)

corresponds to the structure (Si i = 1, . . ., m.) Each element

(vij, i, j = 1, . . ., m)corresponds to the correlation of the price

of Sj to the demand of Si. We call V the correlation matrix of

prices and demands. If (˄) and (P) are the (m * 1) matrices of

demands and prices for the respective structures in S, and A,

B, Γ are (m *1)matrices of parameters, then the constraint

in (9) becomes

(10) is actually a set of constraints of the form:

Problem definition. The previous discussion leads to the

following problem formulation for optimal pricing: The

maximization of the cloud OODBMS profit is achieved with

the solution of the following optimization problem:

Subject to the constraints:

3.2 Generalization of Optimization Objective

From a mathematical point of view, we expect a solution that

is on the boundaries of the feasible area, meaning a solution

along the constraints of the problem that satisfies the

objective. The constraints on the price-demand dependency

in (10) do not actually constrain the sought solution, but only

the value of the optimal profit, if the solution is applied;

therefore, the sought solution is expected to be on the

boundaries of the allowed price, (6), and demand values, (5),

meaning maximum price selections as long as the demand

for structures is above zero, This is called a bang-bang

solution and the mathematical reason for this expectation is

that the objective of the problem is linear w.r.t. the control

variables: the price p and the structure availability δ

intuitively.

Proposition 2. The altruistic tend of pricing optimization is

Expressed as: 1) a guarantee for a low limit on user

satisfaction,

Or, 2) an additional maximization objective.

Justification 2. There are two policies in order to incorporate

an altruistic tend in pricing optimization. The

first is to give a much lower priority to user satisfaction than

cloud profit, which results into a constraint (static or time

dependent) that passively

restricts the maximization of

profit, i.e., expression (4). The

Optimal Service Pricing for Cloud Based Services

538

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0847062312/2012©BEIESP

second is to handle it as a secondary goal of the pricing

optimization, which results into a new objective that actively

restricts profit maximization. “Passive” restriction means

that the altruistic tend turns down pricing solutions proposed

by the optimization procedure,

 If the altruistic tend is expressed as low-limit guarantee on

user satisfaction, then it can be formulated as an additional

constraint of the optimization problem of Section 3.1 on the

demand drop

 where

λmin is the selected minimum value of demand drop rate.

In this case, the problem can accommodate, either a new

constraint or a new optimization objective. In the first case,

the constraint can be

Where (rmin) is the selected minimum value of cloud profit.

Adding one of the constraints (11) or (12) to the optimization

problem does not change the objective of the optimization.

If the altruistic tend is expressed as a new maximization goal,

the optimization objective is a combination of (4) and (12)

where (w) is a weight that calibrates the influence of the

Altruistic tend to the optimization procedure. The

augmented optimization objective (14) leads the

optimization procedure to seek a trajectory that balances the

opposite egoistic and altruistic tends.

4. MODELING PRICE-DEMAND CORRELATIONS

The pricing scheme depends on the estimated values of

price-demand correlations for all structures, which is stored

in the matrix V (see the constraint (10)). success of the

scheme depends greatly on the accuracy of the estimation of

the correlation degree for all candidate structures. We refer to

the elements, (vij, i, j = i., m) of V, as correlation coefficients,

defined as follows:

Definition 2. For any pair of structures Si and Sj we define

the symmetric correlation coefficient (vij ≡ vji) that

represents the combined usage of Si and Sj in executed query

plans.

4.1 Correlation Requirements

In order to construct a measure for correlation estimation, we

define the following requirements.4

Proposition 3. The correlation coefficient vij should satisfy

the following requirements:

R1. vij is negative if Si can replace Sj and the opposite,

positive if they collaborate, and zero if they are used

independent of each other in query plans.

R2. vij can be normalized for any pair of Si and Sj.

R3. vij is easy to compute.

Justification 3. R1: The sign of the coefficient vij denotes the

competitive or collaborative behaviour between a Si and

Example 1. In a workload with only one query = select A

from T where B = ’b’ and C = ’c’, the columns B and C

should have positive correlation, while the indexes IA-D =

T(A,B,C,D) and IA-E = T(A,B,C,D,E) should have negative

correlation, and an irrelevant to the query index T(E,F)

should have zero correlation. It is straightforward that the

pricing scheme requires these properties from the correlation

coefficients V.

4. Please note that the correlation requirements that we

propose are tailored to the problem in hand. These

requirements may be too strict for other use cases of

management of data structures.

R2: The correlation coefficients V determine the price of all

the structures in the cloud cache (see constraint (10)).

R3: It is necessary to compute all correlation coefficients V

before the structures are materialized or even selected by the

cloud cache.

4.2 Limitations of the Existing Approaches

Recently Schnaitter et al. [33] proposed a technique that

computes the correlation between indexes. Given a set of

indexes I ⊆ S and two indexes from the set, {Si, Sj}, their

correlation coefficient vq
ij given a query q is

Proposition 4. Measure (16) satisfies the requirements R1 -

R3.

Justification 4. R1: We show that R1 is satisfied by proving

its satisfaction for the extreme cases of structure

collaboration and competition.

Case 1: If Si and Sj do not coexist in query plans, then let us

assume that Si is very beneficial to a query q, hence coq(Xi)

→0 and Sj has no effect on it, hence coq(Xj) → coq({}).

Since the cost function is monotonic [33],coq(Xij) =coq(Xi)

=min{a,b}coq({a,b}) → 0. Hence, vij → 0.

Case 2: If Si and Sj collaborate tightly in the extreme case,

coq(Xi) = coq(Xj) → coq({}) , coq(Xij) → 0.Then vij → 1.

Case 3: If the indexes are the same, then coq(Xi) = coq(Xj)

=coq(Xij) , implying that vij = -1.

 R2: Since the cases discussed above are extreme, all

structure correlation cases fall between them and, therefore

their value is bounded by [-1, 1].

R3: We ensure efficient computation of the correlation

coefficients by reducing the set of possible query plans. For

columns, we propose the following measure:

 If two distinct columns appear in the same query, then they

collaborate, otherwise they do not. Self-correlation or a

column is set to -1, as a column can replace itself.

For a pair of index Sj and column Si, we use the following

measure:

 We extend the correlation computation for a Workload.

If vq
ij is the correlation of Si and Sj for query q, then the

coefficient for an entire workload is

 International Journal of Soft Computing and Engineering (IJSCE)

 ISSN: 2231-2307, Volume-2, Issue-3, July 2012

539

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0847062312/2012©BEIESP

Measure (19) normalizes the coefficients by using the

maximum cost of the query. This allows the “heavy” queries

to provide more weight to the coefficient, when compared to

the “lighter” queries. Computing this measure requires

O(|I|
2
)

optimizer calls to determine the index correlation

coefficients, compared to the exponential number of calls

proposed by the state-of-the-art method, but it is still

expensive to make so many optimizer calls on every query.

We speed up the correlation computation using the

observation that, even though the total number of index

combinations is O (|I|
2
) the set of possible plans is typically

much smaller. INUM issues hundreds of calls to the

optimizer to find the internal nodes of the plans that can be

reused. Given access to the optimizer, the overhead can be

drastically reduced to just two calls per query by using the

internal optimizer structures [6].

5 SOLVING THE OPTIMAL PRICING PROBLEM

The problem of optimal pricing is an optimal control

problem [11] with a finite horizon, i.e., the maximum time of

optimization T is a given finite value. The free variables are

the prices of the cache structures, pis, called the control

variables, and the dependent variables, called state variables,

is the demand for the structures, λis and the availability of the

structures δis. The problem is augmented with bounds on the

values of both the control and the state variables and by a

constraint on the dependency type of the state on the control

variables.

5.1 Designing the Optimization Solution

The objective function of the problem is the maximization of

an integral, i.e., max∫
T

0(r(t) – w.v(t))dt. The optimality

scope of the sought solution depends on the convexity of the

objective function. The latter is bilinear w.r.t. the demand

and the price (this is the result of factor λs_(t) . ps(t) in (2)

and ps(t) in (12)). It is not possible to prove that the objective

function is convex and, therefore, there is no guarantee of

global optimality of the solution.

Due to: 1) the nonlinearity of the objective function, 2) the

presence of both integer inputs (the δis control binary

variables) and continuous inputs and states (the pis and the

λis, respectively), and 3) the potentially large scale of the

system (when m is high), it is almost impossible to find an

analytical solution to the optimization problem. This calls for

numerical optimization techniques, such as mixed-integer

nonlinear programming (MINLP) [11], which present the

advantage of being implementable online.

We propose the division of the prediction horizon [0, T] into

time intervals: let us assume that there are time points tj ε

[0,T] , j = 0, . . . ,k, such that t0 = 0 and tk = T on which built

structures can be built or discarded. Therefore, the problem is

to maximize the total profit in [0,T] by choosing which

structures to built or discard on each tj ε [0,T], j=1,..k. and

which price to assign to each built structure.

Fig. 3. The optimization procedure is divided into short

time intervals and iterates on a sliding time window.

Fig. 3 depicts the proposed repeated optimization over a

sliding time prediction horizon of length T. For simplicity,

we consider equal time intervals, tj+1 - tj = tj+2 - tj+1,

0,……,k-2. The optimization is performed repeatedly for k

prediction horizons beginning at tstart and ending at tend,

such that: [tstart , tend], tstart = 0, t1 . . . T and tend = T,T + t1,

2T, respectively.

 For example, even for linear dependency of price on time: p

= a * t + b with static a, b, the number of variables in the

problem is doubled.

5.2 Estimating the Parameters Structure

Concerning the constraints on the price-demand dependency

in (10), it is necessary to estimate the parameters A, B, Γ. For

this, the nonhomogeneous m order system of second order

differential equations in (10) has to be solved. One way to do

is to transform the system into a 2 * m order system of first

order differential equations, by breaking each second order

equation into a set of two. The result in both cases is a set of

equations that show the dependency of demand on price

involving the parameters

Where F is a m * m matrix of functions on time and elements

of the parameter matrices A, B, Γ. If the m constraints in (10)

are independent, i.e., if the m differential equations are

independent.

Proposition 5. It is always possible to manage the cache

structures in a way that the constraints in (10) are

independent differential equations.

Justification 5. Independency of the constraints in (10)

means that there are no pair of cache structures for which the

demand depends in the exact same way from the Prices of all

the cache structures, assume two structures S1 and S2. If

these are competitive, each one has a negative dependency on

its own price and a positive dependency on the price of the

other; therefore, it is not possible that they create the same

constraint. If S1 and S2 are collaborative, creating the same

constraint means that they depend on the exact same way on

each other’s price and on the price of the rest of the

structures; this fact implies

that S1 and S2 are always

employed together in the

Optimal Service Pricing for Cloud Based Services

540

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0847062312/2012©BEIESP

cloud; therefore, they can be represented as a set of structures

with a single price [22].

5.3 Optimization Horizon

An important issue is to estimate the appropriate length of

the time period, in which we seek to optimize the cloud

profit. Specifically, we have to determine the value of T

which represents the optimization horizon of (4).

Example 2. Assume a structure S with demand λs(t)and an

optimization procedure of two short phases [0, T small) and [T

small , T big) or a procedure with one long phase [0, T big).

 For simplicity, the demand is a step function i.e. λ s(t) = λ2,t

ε [0 , Tsmall] corresponding to price p1 and λ s(t) = λ2,t ε

[Tsmall , Tbig) corresponding to price p2 (for simplicity we

ignore structure correlations). Assume that the building cost

of S is BS and the maintenance cost is MS(t) = a * t and S is

built once at time t = 0. The cloud profit in [0, T small) is rsmall

= λ1 * p1 - BS -MS (T small). If r small < 0, the cloud decides to

discard S and the second optimization phase starts with S not

available. Since the demand is significant in (T small , T big),

the cloud may decide to build S again, at t ≥ Tsmall, resulting

in profit rbig-smal l ≤ λ2 * p2 - BS - MS(T big _ T small). For the

long-term optimization the profit is: r big = λ1 * p1 + λ2 * p2

- BS - MS(T big). Obviously, r big > r small + r big - small.

Therefore, the result of the two-phase short-term

optimization procedure is not as optimal as that of the

one-phase long-term procedure.

5.4 Discussion on the Model Simplicity

Yet, it is possible that in a real system the dependency of

demand on the prices changes with time, because of any

reasons. This means that the parameters, A, B, Γ should be

time varying. Hence the problem falls in the scope of

optimization of uncertain systems (potentially subject to

model mismatch or Parametric uncertainty or disturbances),

which is an active research domain [12], [34]. In these

situations using tendency models (i.e., models that capture

the main trends of a process) and measurements is generally

sufficient to improve the process performances up to such a

level that the costly efforts for identifying a more accurate

process model are not justified by the loss of optimality [28].

Finally, as the optimization proceeds, new data are collected

and this data can clearly be used to re-identify the

price/demand model periodically.

6 EXPERIMENTAL EVALUATIONS

We present the simulation study for a cloud cache system

That uses the proposed pricing model.

6.1 Experimental Setup and Methodology

The cloud cache is set up with one back-end database. The

cache is operated under a TPC-H-based workload, which

consists of seven TPC-H query templates and simulates the

query evolution of 1 million SDSS [20] queries against a

2.5TB back-end database. The SDSS workload consists of

phases that show locality in data access that repeats. In each

phase the query execution cost may fall in three categories,

low, medium, and high. Queries arrive at 10 second

intervals. We copy the setup in [24], the distribution of the

query templates in one phase consisting of 10,000 queries.

We select this workload, as it is portable across different

OODBMS, allows for the employment of techniques to

improve the runtime of correlation estimations, and the

queries are tunable by using the query generation mechanism

of the TPC-H Benchmark. The building and the maintenance

costs are determined using Amazon’s pricing model and are

based on statistics for the cost of executing the SDSS queries.

As an indication, while varying the price from the building

cost (cost) to pmax = 10 * cost, the demand varies from 0 up to

8,000 queries, with many values around 4,000. Set A

contains two structures that collaborate, one more expensive

than the other, and one that is competitive; set B is similar,

but two expensive structures are highly competitive to a third

that is cheap; set C contains two structures that are necessary

to many queries and not correlated to others; set D contains

two collaborative structures of comparable cost. The pricing

optimization problem is implemented and run in Matlab

7.8.0 using the tool Tomlab [16].

Methodology. The initial demand for all structures is set to a

very low value in order 1) to avoid high cloud profit by solely

exploiting high demand values λis and 2) force the pricing

scheme to fluctuate λis in order to maximize the profit. The

price variable for each structure ranges from 0 to 100 % of

the respective building cost, i.e. 0 ≤ pi ≤ BSi * 100. The

experiments measure 1) the average cloud profit per time

point, 2) the average user loss per time point, and 3) the

execution time. Cloud profit is defined in (2) and user loss is

the user satisfaction as defined in (12). The dynamic pricing

scheme is compared with a static pricing scheme that fixes

the cloud profit to a specific percentage of the building cost.

6.2. Experimental Results View

This section summarizes the experimental results.

6.2.1Pricing with Dynamic Structure Availability

Assuming that all structures are constantly available (i.e.,

fixed caching but changeable with permission of cloud), and,

therefore built once in the cache at the beginning of pricing

and maintained ever since, i.e., δi = 1, i = 1,…, m always. As

the optimization horizon is extended the profit drops because

structures are maintained in the cache even though their

demand drops; naturally the bigger the weight w, the smaller

the profit and the user loss. Yet, for long horizons, the

maintenance of non-profitable structures makes it impossible

to satisfy the combined optimization objective in (14) for big

values of weight, i.e., w = 30, 40, resulting in zero profit and

user loss. Assuming that we have complete knowledge of the

workload, we select the best structures to build at the

beginning of time. The best structures are selected after

observation of the matrix V (we spotted groups of

collaborative and competitive structures and we

experimented in order to find the subset that increases profit;

the combinations to examine were few). Experimentation

with various fixed prices of these structures resulted in

maximum possible profit equal to about $400 and user loss

equal to about $30. The results of this experiment are in

accordance with the results of the works in [37].

6.2.2 Pricing with Choice on Structure Availability

This section presents results on the dynamic pricing scheme

assuming that structures are initially built in the cache, but

during optimization they can be discarded and rebuilt.

Contrary to pricing with fixed because optimization

procedure takes advantage of

long-term predictions in order

to schedule the structure

 International Journal of Soft Computing and Engineering (IJSCE)

 ISSN: 2231-2307, Volume-2, Issue-3, July 2012

541

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0847062312/2012©BEIESP

availability in a more optimal way.

6.2.3 Sensitivity of the Optimization Schedule

The profit increases as the number of intervals increases

(and, therefore their length decreases), because the procedure

is allowed to change the structure availability more often, in

order to achieve optimality.

6.2.4 Performance Comparison with Analysis

We compare the performance of the optimization procedure

employing first and second order differential equations for

the pricing model. Models using first order equations are

faster to solve, hence preferred over second order differential

equations if the real-world constraint can be modeled using

them. First order differential equation makes the procedure

slightly faster than using a second order differential

equation. The second order formulation, however, is more

generic and we use it as default. The δ variable makes the

solver an order of magnitude faster than the problem with δ

variables on average. Therefore, the solver spends most of the

time in the branch and bound method that seeks the optimal

integer values [16].

6.2.5 Correlation Binding of Structures

This section presents the index correlations achieved using

(16) and compares the proposed measure for correlation

coefficients (19) with the state-of-the-art measure (15) [33].

Furthermore, it is also bounded by the range [-1, 1].

6.2.6 Predicting the Price Demand for Structures

The demand for these structures shows qualitative

differences: the demand for A reacts smoothly to price

change after some weak inertia to the workload; the demand

for B shows similar inertia but after that it drops abruptly; the

demand for C shows great inertia to the workload.

6.2.7 Optimization in Presence of Updates

The optimization procedure works under the assumption that

data structures do not have to be evicted and rebuilt due to

data updates. Even though updates cannot be controlled by

the optimization procedure, if they can be predicted, they can

be used as new constraints on the optimization problem.

Specifically, an update of structure S at time t incurs a reset of

the respective δ parameter from 1 to 0 at that time. The cloud

profit is bigger if updates are predicted. Yet, as the number of

updates increases, the profit drops and is closer to profit in

the case of no update prediction. User loss is bigger (w = 0 for

these experiments) in case of update prediction, since the

optimization sets higher prices for the structures.

7 CONCLUSIONS

This work proposes a novel pricing demand scheme designed

for a cloud cache that offers querying services and aims at the

maximization of the cloud profit with predictive demand

price solution on economic way of user profit. The proposed

solution allows: on one hand, long-term profit maximization

with price minimization on request of same demand, and, on

the other, dynamic calibration to the actual behaviour of the

cloud application, while the optimization process is in

progress.

Fig. 4. Optimization using or not predictions for updates for 1-5

updates on average per structure.

The viability of the pricing solution is ensured with the proposal of

a method that estimates the correlations of the cache services in an

time-efficient manner.

REFERENCES

1. G.R. Bitran and R. Caldentey, “An Overview of Pricing Models for

Revenue Management,” Manufacturing and Service Operations

Management, vol. 5, no. 3, pp. 203-209, 2003.

2. N. Bruno and S. Chaudhuri, “An Online Approach to Physical Design

Tuning,” Proc. Int’l Conf. Data Eng. (ICDE ’07), 2007.

3. X.-R. Cao, H.-X. Shen, R. Milito, and P. Wirth, “Internet Pricing with a

Game Theoretical Approach: Concepts and Examples,” IEEE/ACM

Trans. Networking, vol. 10, no. 2, pp. 208-216, Apr. 2002.

4. C. Chen, M. Maheswaran, and M. Toulouse, “Supporting Co-Allocation

In an Auctioning-Based Resource Allocator for Grid Systems,” Proc. 16th

Int’l Parallel and Distributed Processing Symp. (IPDPS ’02), 2002.

5. S. Choenni, H.M. Blanken, and T. Chang, “On the Selection of Secondary

Indices In Relational Databases,” Data and Knowledge Eng., vol. 11, no.

3, pp. 207-233, 1993.

6. D. Dash, Y. Alagiannis, C. Maier, and A. Ailamaki, “Caching All Plans

with One Call to the Optimizer,” Proc. Self-Managing Database Systems

(SMDB), 2010.

7. D. Dash, V. Kantere, and A. Ailamaki, “An Economic Model for

Self-Tuned Cloud Caching,” Proc. IEEE Int’l Conf. Data Eng. (ICDE

’09), 2009.

8. C. Ernemann, V. Hamscher, and R. Yahyapour, “Economic Scheduling

In Grid Computing,” Proc. Eighth Int’l Workshop Job Scheduling

Strategies for Parallel Processing (JSSPP ’02), 2002.

9. G. Gallego and G. van Ryzin, “Optimal Dynamic Pricing of Inventories

with Stochastic Demand over Finite Horizons,” Management Science,

vol. 40, no. 8, pp. 999-1020, 1994.

10. A. Ghose, V. Choudhary, T. Mukhopadhyay, and U. Rajan,“Dynamic

Pricing: A Strategic Advantage for Electronic Retailers,” Proc. Conf.

Information Systems and Technology (CIST), 2003.

11. I.E. Grossmann and Z. Kravanja, Large-Scale Optimization with

Applications: Optimal Design and Control. Springer, 1997.

12. M. Guay and T. Zhang, “Adaptive Extremum Seeking Control of

Nonlinear Dynamic Systems with Parametric Uncertainty,” Automatica,

vol. 39, pp. 1283-1294, 2003.

13. L. He and J. Walrand, “Pricing Differentiated Internet Services,” Proc.

IEEE INFOCOM, pp. 195-204, 2005.

14. http://aws.amazon.com/, 2011.

15. http://code.google.com/appengine/, 2011.

16. http://tomopt.com/tomlab/, 2011.

17. http:/www.cern.ch/, 2011.

18. http://www.gogrid.com/, 2011.

19. http://www.microsoft.com/azure/, 2011.

20. http://www.sdss.org/, 2011.

21. M. Kradolfer and D. Tombros, “Market-Based Workflow Management,”

Int’l J. Cooperative Information Systems, vol. 7, pp. 297-314, 1998.

22. J. Li and R. Yahyapour, “Negotiation Model Supporting Co-Allocation

for Grid Scheduling,” Proc. IEEE/ACM Seventh Int’l Conf. Grid

Computing, 2006.

23. Z. Lin, S. Ramanathan, and H. Zhao, “Usage-Based Dynamic Pricing of

Web Services for Optimizing Resource Allocation,” Information Systems

and E-Business Management, vol. 3, no. 3, pp. 221-242, 2005.

24. T. Malik, X. Wang, R. Burns, D. Dash, and A. Ailamaki, “Automated

Physical Design In Database Caches,” Proc. Workshop Self-Managing

Database Systems (SMDB), 2008.

25. T. Malik, R.C. Burns, and A. Chaudhary, “A Financial Option Based

Grid Resources Pricing Model: Towards an Equilibrium between Service

Quality for User and Profitability for Service Providers,” Proc. Advances

in Grid and Pervasive Computing, pp. 13- 24, 2009.

26. V. Marbukh and K. Mills, “Demand Pricing and Resource Allocation In

Market-Based Compute Grids: A

Model and Initial Results,” Proc.

Int’l Conf. Networking (ICN), pp.

752-757, 2008.

Optimal Service Pricing for Cloud Based Services

542

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0847062312/2012©BEIESP

27. Y. Masuda and S. Whang, “Dynamic Pricing for Network Service:

Equilibrium and Stability,” Management Science, vol. 45, no. 6, pp.

857-869, 1999.

28. M. Morari and J.H. Lee, “Model Predictive Control: Past, Present and

Future,” Computers and Chemical Eng., vol. 23, no. 4/5, pp. 667- 682,

1999.

29. R.A. Moreno, “A.B.: Job Scheduling and Resource Management

Techniques In Economic Grid Environments,” Proc. Across Grids 2003,

pp. 25-32, 2004.

30. Y. Narahari, C.V.L. Raju, K. Ravikumar, and S. Shah, “Dynamic Pricing

Models for Electronic Business,” Dynamic Pricing Models for Electronic

Business, vol. 30, pp. 231-256, 2005.

31. Series of Meetings of the EPFL-IC-IIF-DIAS Lab with the Data

Management Group of the European Organization for Nuclear Research

(CERN) Started on the, Dec. 2008.

32. S. Papadomanolakis, D. Dash, and A. Ailamaki, “Efficient Use of the

Query Optimizer for Automated Database Design,” Proc. 33
rd

 Int’l Conf.

Very Large Data Bases (VLDB ’07), pp. 1093-1104, 2007.

33. K. Schnaitter, N. Polyzotis, and L. Getoor, “Modeling Index

Interactions,” Proc. VLDB Endowment, vol. 2, no. 1, pp. 1234- 1245,

2009.

34. B. Srinivasan, D. Bonvin, E. Visser, and S. Palanki, “Dynamic

Optimization of Batch Processes: Ii. Role of Measurements In Handling

Uncertainty,” Computers and Chemical Eng., vol. 27, pp. 27-44, 2003.

35. M. Stonebraker, P.M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C.

Staelin, and A. Yu, “Mariposa: A Wide-Area Distributed Database

System,” Int’l J. Very Large Data Bases, vol. 5, no. 1, pp. 48-63, 1996.

36. A.Sulistio, K. Kyong Hoon, and R. Buyya, “Using Revenue Management

to Determine Pricing of Reservations,” Proc. IEEE Int’l Conf. e-Science

and Grid Computing, pp. 396-405, 2007.

37. X. Wang, T. Malik, R.C. Burns, S. Papadomanolakis, and A. Ailamaki,

“A Workload-Driven Unit of Cache Replacement for Mid-Tier Database

Caching,” Proc. 12th Int’l Conf. Database Systems for Advanced

Applications (DASFAA ’07), pp. 374-385, 2007.

38. M.P. Wellman, W.E. Walsh, P.R. Wurman, and J.K. Mackie-mason,

“Auction Protocols for Decentralized Scheduling,” Games and Economic

Behavior, vol. 35, pp. 271-303, 2001.

39. K.-Y. Whang, G. Wiederhold, and D. Sagalowicz, “Separability: An

Approach to Physical Database Design,” IEEE Trans. Computers, vol.

C-33, no. 3, pp. 209-222, Mar. 1984.

40. P.-S. You and T.C. Chen, “Dynamic Pricing of Seasonal Goods with Spot

and Forward Purchase Demands,” Computer and Math. Applications,

vol. 54, no. 4, pp. 490-498, 2007.

41. www.vmware.com

42. http://en.wikipedia.org/wiki/Google%2B

43. http://www.mcafee.com/us/products/security-as-a- service/index.aspx

44. http://www.oracle.com/technetwork/oem/cloud-mgmt-496758.html

45. Verena Kantere, Debabrata Dash, Gre´ gory Franc¸ois, Sofia

Kyriakopoulou, and Anastasia Ailamaki, “Optimal Service Pricing for a

Cloud Cache”, IEEE Transaction On Knowledge & Data Engineering,

VOL. 23, NO. 9, SEPTEMBER 2011

46. http://searchcloudcomputing.techtarget.com

47. http://storagedecisions.techtarget.com/seminars/cloud_storage.html

48. http://www.dba-oracle.com/art_builder_cpu_io.htm

49. http://windows.microsoft.com/en-IN/windows/explore/cloud

50. http://www.webopedia.com/TERM/C/cloud_database.html

51. S.N.Sivnandan, S.N.Deepa, ” Introduction To GeneticAlgorithm”, ISBN

978-3-540-73189-4 Springer Berlin Heidelberg New York.

http://www.vmware.com/
http://en.wikipedia.org/wiki/Google%2B
http://www.mcafee.com/us/products/security-as-a-
http://searchcloudcomputing.techtarget.com/
http://www.dba-oracle.com/art_builder_cpu_io.htm
http://www.webopedia.com/TERM/C/cloud_database.html

