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       Abstract:  Cloud computing is a profound revolution in the 

way it offers the computation capability. The main objective now 

is to reduce the cost of deploying a service in the cloud and 

having proper coordinative in between models. Public, private, 

and hybrid cloud environments all face the performance 

limitations inherent in today’s applications and networks. In 

order for enterprises to maximize the flexibility and cost savings 

of the Public, private, and hybrid cloud they must overcome the 

same latency and bandwidth constraints that challenge 

distributed IT infrastructure environments. By overcoming 

application and network performance problems, Cloud 

Steelhead accelerates the process of migrating data and 

applications to the cloud, and accelerates access to that data 

from anywhere Cloud Computing applications that offer data 

management services are emerging. Such clouds support 

caching of data in order to provide quality query services. The 

users can query the cloud data, paying the price for the 

infrastructure they use. Cloud management necessitates an 

economy that manages the service of multiple users in an 

efficient, but also, resource economic way that allows for cloud 

profit. Naturally, the maximization of cloud profit given some 

guarantees for user satisfaction presumes an appropriate 

price-demand model that enables optimal pricing of query 

services. Optimal pricing is achieved based on a dynamic pricing 

scheme that adapts to time changes. This proposes a novel 

price-demand model designed for a cloud cache and a dynamic 

pricing scheme for queries executed in the cloud cache. The 

pricing solution employs a novel method that estimates the 

correlations of the cache services in a time-efficient manner and 

also applied some prediction technique in between correlation 

models with the use of cooperative cache from self as well as 

different hybrid cloud. 

 

      Index Terms: cloud data management, data services, cloud 

service pricing, Cooperative Cache, Prediction Technique. 

I. INTRODUCTION 

cloud computing represents a new tipping point for the value 

of network computing. It delivers higher efficiency, massive 

scalability, and faster, easier software accessibility. It’s about 

new programming models, new IT infrastructure, and the 

enabling of new business models. The quality of services that 

the users receive depends on the utilization of the resources. 

The operation cost of used resources is amortized through 

user payments. Cloud resources can be anything, from 

infrastructure (CPU, memory, bandwidth, network), to 

platforms and applications deployed on the infrastructure. 
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Cloud management necessitates an economy, and, therefore, 

incorporation of economic concepts in the provision of cloud 

services. The goal of cloud economy is to optimize: 1) user 

Satisfaction 2) cloud profit 3) Cloud web Security. While the 

success of the cloud service depends on the optimization of 

both objectives, businesses typically prioritize profit. To 

maximize cloud profit we need a pricing scheme and apply 

the some intelligence optimization technique that guarantees 

user satisfaction while  

adapting to demand changes. Recently, cloud computing has 

found its way into the provision of web services [15], [18]. 

Information, as well as software is permanently stored in 

Internet servers and probably cached temporarily on the user 

side. Current businesses on cloud computing such as 

Amazon Web Services [14], Microsoft Azure [19], VMware 

[41], Google Plus [41], McAfee Cloud Searching Virus [42], 

Oracle Cloud Data Management [43] have begun to offer 

data management services:. A used web application passes a 

query to the server and collects information with the help of 

query massive data, like those supported by CERN [17], need 

a caching service and intelligent optimization technique 

which can be provided by the cloud [31]. 

The goal of such a cloud is to provide efficient 

proper way querying on the back-end data at a low cost with 

intelligent manner while being economically Viable, and 

furthermore, optimal profitable and also getting reduction of 

scheduling cost on demand changes. A price over the 

operating cost for each structure can ensure profit for the 

cloud. And also internally cloud is periodically update his 

caches information as required on different cloud and other 

demand will virtually manages a different dedicated server at 

a time on cloud. We propose a novel scheme with some 

pattern recognition technique by the soft computing hat 

achieves optimal pricing for the services of a cloud cache 

with explain on demand prediction cost. 

1.1 Setting the on Demand Price for Cloud based Caching 

Services with Prediction cost estimation on Demand 

model. 

The cloud makes profit from selling its services at a price that 

is higher than the actual cost. Setting the right price for a 

service is a nontrivial problem, because when there is 

competition the demand for services grows inversely but not 

proportionally to the price. There are three major challenges 

when trying to define an optimal pricing scheme for the 

cloud caching service with on demand cost prediction. First 

one 1) the price demand Dependency, to achieve a feasible 

pricing solution, but not 

economically feasible as 
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required on demand same services, that is not representative.  

For Example, a static pricing scheme cannot be optimal if the 

Demand for services has deterministic seasonal fluctuations; 

in this case correlation is automatically stopped on between 

different clouds when demand is increases on particular 

services because everyone wants to get on demand profit. The 

second challenge is to define a pricing scheme that is 

adaptable to 1) modeling errors, 2) Mean Percentage Error 

(MPE) on load distribution, 3) time-dependent model 

changes, and 4) stochastic behavior of the application.  

A representative model for the cloud cache and 

prediction techniques should take In to account that the cloud 

cache structures (table columns or Indexes or correlation 

cache identification number) may compete or collaborate 

during query execution and any such a situation will come it 

will take self-decision on demand load balance, cloud 

services may be free or offered on a pay-per-usage model, No 

wasted resources because you pay for what you use [47], A 

cloud storage gateway provides basic protocol translation and 

simple connectivity to allow the incompatible technologies to 

communicate transparently [48]. And the goal is to minimize 

the number of cross-node distributed transactions, which 

incur overhead both because of the extra work done on each 

node and because of the increase in the time spent holding 

locks at the back-ends. OODBMS caching is keep only 

positive impact factor or successfully satisfying the 

information. So by the using cloud optimized cache we 

directly minimize the following cost 1) Hash join costs, 2) 

Sort costs, 3) Table scan costs, 4) Index block access costs 

[49].  

 
 

Fig. 1. A cloud cache. 
 

First time cost is high not much more but when more request 

is do same process then setup and maintains cost is come very 

lower level by the using caching. So cloud cache service can 

satisfy infinite demand as long as it is maintained only the 

demand for a cache service pauses if this service is not 

available. Moreover, the cloud can schedule the service 

availability according to the guarantees for the overall 

revenue estimated by the long term optimization [45]. 

Nevertheless, it is important that the long-term optimization 

process is flexible enough to receive corrections while it is 

still in progress and there have no optimization scheduling or 

intelligent caches in between public, private & hybrid cloud.  

1.2 Related Work 

The problem is that, no one proper handling at a time when 

user demand is increases on cloud services ,like that  1)Ease 

of Use, 2) Zero maintenance, 3) Automatic scaling, 4) High 

availability, 5) high level of parallelism, 6) Pay per actual 

usage vs. pay per instance size, resulting in over subscription, 

7) automation and ease-of-use of a Database-as-a-Service, 8) 

minimal investment and maintenance of in-house hardware, 

9) periodically Combining cache interoperability standards, 

10) capability of dynamic traffic switching to balance 

utilization, because this are major problem that’s why a price 

scheme is fluctuated on cloud and The “stateless” and 

dynamic nature of the cloud poses unique challenges for the 

“state full” database tier – which is the most sensitive and 

critical part of the application, and the hardest to scale, all 

this problem on present cloud , Each development team is 

free to use whatever local support it likes in this 

VM—Amazon doesn’t care. The creators of one application 

might choose a Java EE app server and MySQL, for example, 

while another Group might go with Ruby on Rails. While the 

service EC2 Provides is quite basic, it’s also very general, 

and so it can be used in many different ways. Existing clouds 

focus on the provision of web services targeted to developers, 

such as Amazon Elastic Compute Cloud (EC2) [14], or the 

deployment of servers, such as Go Grid [18], cloud platform 

providing local support is Force.com, offered by 

Salesforce.com. Emerging clouds such as the Amazon   

Simple DB and Simple Storage Service offer data 

management services. Optimal pricing of cached structures 

is central to maximizing profit for a cloud that offers data 

services.  

Microsoft cloud spotlight is provide content 

sharing, like photo video ,audio etc. but the problem is 

Content Delivery Networks (CDNs) are critical for 

enhancing your site’s quality, reliability and scalability ,so 

fast loading and increasing synchronization of content is 

important , in this condition it will fail [50]. Mariposa [35] 

discusses an economy for querying in distributed databases. 

This economy is limited to offering budget options to the 

users, and does not propose any pricing scheme. Other 

solutions for similar frameworks [38], [8], [29], [21], [4], 

[22], [26],[36][25 focus on job scheduling and bid 

negotiation, issues orthogonal to optimal pricing.      

Pricing schemes were proposed recently for the optimal 

allocation of grid resources in order to increase revenue [36], 

or to achieve equilibrium of grid and user satisfaction [25], 

service demand is known a priori and all users are charged 

the same for the consumption of the same service. Similarly, 

dynamic pricing for web services [23] focuses on scheduling 

user requests. This work is orthogonal to ours, as we require 

that users’ requests for service are satisfied right away.  

Research on the identification of non-correlated indexes 

using the query structure [39] does not determine the 

negative and positive correlations with combining intelligent 

caching. Identification of index correlations by modeling 

physical design as a sub modular and super-modular problem 

[5] is restricted to one-column indexes and one index per 

query. Identification of negative index correlation [2] does 

not consider the positive and no Correlation case. A recent 

index interaction model [33] attempts to find all index 

correlations. As we show in Section 4, it does not satisfy three 

critical requirements for the pricing scheme: 1) sensitivity to 

the range of all possible 

correlations, 2)  
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production of normalized values, and 3) fast computation 

[45]. 4) Less downtime and power usage, 5) accommodate 

multiple caching strategies under the same domain. 6) 

client-side modifications to the cache 5) automatic global 

web intelligent abstraction. 

1.3 Our Proposal 

Many Web applications are now hosted in elastic cloud 

environments where the unit of resource allocation is a 

virtual machine (VM) instance, A variety of techniques can 

reduce the latency of communication between VMs 

co-located on the same server in, say, a private cloud but The 

cloud caching service can maximize its profit using an 

optimal pricing scheme. Optimal pricing necessitates an 

appropriately simplified price-demand model that 

incorporates the correlations of structures in the cache 

services. The pricing scheme should be adaptable to time 

changes, with provide automatic dynamic cache in way of 

load balancing so distributed data caches is to store fast 

changing data that is accessed by multiple servers, and 

solving web service cost and it will give minimum load with 

dynamic automatic balance and according to situation it will 

take a self-decision, and giving self-tuning features like 

Control Panel – API Built to deliver quick access and 

real-time solutions, your Cloud Cache CDN, Control Panel 

gives you everything you need to manage, monitor and 

distribute your content effortlessly! From control of content 

behavior to robust reporting options, you get the  

Prime tools you need to take charge of your site’s technology 

quickly and easily. Instant Provisioning – No waiting! Use 

ours immediately. Purge Cache – Immediately purge your 

entire cache, or select only a single file. You decide what 

works best for you. Reporting – Get real-time easy-to-read 

reporting of all relevant metrics when you need them. 

Timely Updates – Make a change and they’re done, just like 

that. Open API – full integration with your favourite 

third-party and custom applications. Privacy Preserving 

Mask Matrix - that allows the cloud to filter out a certain 

percentage of matched files by using soft computing 

technique. Differential Query Services - the queries with 

higher rank can retrieve higher percentage of matched files. 

Intelligent Postmark – Intelligent Postmark is a file-system 

benchmark that simulates cloud workload in the form of 

intelligent distributed cache. In each VM we run Post-Mark 

with dynamic initial files and dynamic transaction, and this 

all process are done by parallelism automatic tuning then 

find out Postmark primarily measures better IO performance. 

Optimized price demand model – We model the price- 

-demand dependency employing second order differential 

equations with constant parameters. This modeling is 

flexible enough to represent a wide variety of demands as a 

function of price. Optional structure availability allows for 

optimal scheduling of structure availability, such that the 

cloud profit is maximized. The model of price-demand 

dependency for a set of structures incorporates their 

correlation in query execution [45]. 

Price adapting to time changes. Profit maximization is 

pursued in a finite long-term horizon. The horizon includes 

sequential, no overlapping intervals that allow for scheduling 

structure availability. At the beginning of each interval, the 

cloud redefines availability by taking offline some of the 

currently available structures and taking online some of the 

unavailable ones. Pricing optimization proceeds in iterations 

on a sliding time window that allows online corrections on 

the predicted demand, via reinjection of the real demand 

values at each sliding instant. Also, the iterative optimization 

allows for redefinition of the parameters in the price-demand 

model, if the demand deviates substantially from the 

predicted. Modeling Structure correlations. We propose a 

method for the efficient computation of structure correlation 

by extending a cache based query cost estimation module and 

a template-based workload compression technique. 

Dynamic Cooperative caches modelling –When we are 

using dynamic cooperative caches in between different 

model, then top two benefits of cloud computing are found  

speed and cost. Users can be up and running in minutes 

instead of weeks or months and this will come from 

parallelism of dynamic load balance distribution by using 

elastically scalable grid architecture. And because cloud 

computing is pay-per-use, operates at high scale and is highly 

automated, the cost and efficiency of cloud computing is very 

compelling as well. And in any situation a failure is come, 

then there no problem because all thing is done by intelligent 

cache cooperative because we use sharing cache file and this 

will provide highly benefits like 1) On-demand self-service, 

2) Broad network access, 3) Rapid elasticity,4)Measured 

service ,5)Elastic scalability ,6) Low upfront costs  

,7)Economies of scale ,8)Operating expense , 9)Simpler to 

manage 10)Greater control of security, compliance and 

quality of service ,11) Resource pooling. So this model is 

removed unpredictable demand patterns problems because 

intelligent soft computing method is doing  scaling up or 

scaling down of resources for a given application on 

demand. 

Neuro - Genetic Price Model - To recap, cloud computing 

is characterized by real, new capabilities such as self-service, 

auto-scaling and chargeback, but is also based on many 

established technologies such as grid computing, 

virtualization, SOA shared services and large-scale, systems 

management automation. Apply there some intelligent 

technique by the using this, for maximization of user profit 

analysis the previous pattern data from cooperative caches 

and find out demand price prediction by the using of 

Artificial neural network with Genetic algorithm and trained 

the cooperative cache, so we easily getting the information 

when demand is increase for particular price, then how price 

is come on minimized and also getting information about 

Mean Percentage error on between cloud web service cost. 

1.4 Contributions 

This paper makes the following contributions: 

1. A novel demand-pricing model designed for cloud caching 

services and the problem formulation for the dynamic pricing 

scheme that maximizes profit and incorporates the objective 

for user satisfaction.  

2. An efficient solution to the pricing problem, based on   

nonlinear programming, adaptable to time changes. 

3. A correlation measure for cooperative cache structures that 

is suitable for the cloud cache pricing scheme and a method 

for its efficient computation.  
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4. Soft computing technique is giving parallel and 

distributing cooperative caches which are done and take 

self-decision when any user poses a query on cloud for 

finding information about price prediction for particular 

demand at a time and model is highly trained as self-tuning 

from cooperative caches data from current and previous price 

demand model data. 

5. Neuro - Genetic techniques is giving functionality 

cooperation on different caches scheme, like system create 

only default cache but highly trained network on cloud is 

create a different type cache file like 1) Purge cache, 2) 

default cache, 3) cooperative cache 4) load balance 

-distribution cache, 5) cooperative optimization cache, 6) 

external query poses query information cache and simulating 

on different ways as need of demand self-take a decision and 

self-destroy this caches file. 

6. An experimental study which shows that the highly 

trained network controller with dynamic pricing demand 

scheme outperforms any static one by achieving to orders of 

magnitude more profit per time unit with the future price on 

level of demand. 

2 QUERY EXECUTION MODEL 

Cloud databases can offer significant advantages over their 

traditional counterparts, including increased accessibility, 

automatic failover and fast automated recovery from failures, 

automated on-the-go scaling, minimal investment and 

maintenance of in-house hardware, and potentially better 

performance. At the same time, cloud databases have their 

share of potential drawbacks, including security and privacy 

issues as well as the potential loss of or inability to access 

critical data in the event of a disaster or bankruptcy of the 

cloud database service provider this basic problem is giving 

more hazards for web user which using cloud services so 

apply the intelligent cooperative cache concept [51] Like 

OODBMS Cache enables certain tables, rows and columns 

and session information with network address reference from 

Database to be cached in the memory of the middle tier 

servers, access it with the highly trained network cloud and 

apply self-tuning methodology for the delivering very low 

latency and high throughput. Data remains synchronized 

with Database and is accessed through a standard interface 

first time when using. RDBMS In-Memory Database Cache 

also supports clustering for elastic scalability and high 

availability. Our motivation for the necessity of such a cloud 

data service provider derives from the data management 

needs of huge analytical data, such as scientific data [31], for 

example physics data from CERN [17] and astronomy data 

from SDSS [20]. Users pose queries to the cloud, which are 

charged in order to be served. Following the business 

example of Amazon and Google, Microsoft, MacAfee, Panda 

etc., we assume that data reside in the same data centre and 

that users pay on-the-go based on the infrastructure they use, 

therefore, they pay by the query. We assume that the cloud 

infrastructure provides sufficient amount of storage space for 

a large number of cache structures. Each cache structure has 

a building and maintenance cost [45] and offered security 

cost on web user pricing scheme adaptation level. 

Global: cache structures S, prices P, availability Δ 

QueryExecution( ) 

 if q can be satisfied in the cache then 

     (result, cost)←runQueryInCache (q) 

else 

     (result,cost)←runQueryInBackend(q) 

end if 

S←addNewStructures() 

return result,cost 

optimalPricing (horizon T, intervals t[i], S) 

(,P)←determineAvailability&Prices(T, t,S) 

return ,P 

main() 

Execute in parallel tasks T1 and T2: 

T1: 

for every new i do 

slide the optimization window 

optimalPricing(T, t[i],S) 

end for 

T2: 

while new query q do 

(result,cost)←queryExecution(q) 

end while 

if q executed in cache then 

charge cost to user 

else 

Calculate total price and charge price to user 

end if [45]. 

Modified algorithm is: Intelligent Parametric 

Organization algorithm: 

Input: Generate the super plan contains the access the data. 

Output: Top down optimizer 

Procedure: process steps 

1. We are works based on star schema 

2. Star schema contains the different dimensions of tables 

3. New queries also are joining inside the dimension tables 

4. Generate the dynamic load allocation with first iteration to 

next iteration. 

5. We are generate good join planner specification process 

6. Join planner works based on cache systems 

7. Using the time variation changes new cache systems, we 

are create under reduced cost building processor 

8. It can works on sequential interval amount of time 

9. Provides the optimization results 

10. Optimization results show the integration. 

11. We are increases iteration and integrate the number of 

iteration process. 

12. Gets the results as a minimized cost with feasible and 

optimal solution  

13. Optimal solution focus on discretization (genetic 

algorithm-AI, NN) 

14. It can works on branch and bound algorithm 

15. We are gets the target results identification process 

Fig. 2. Query execution model for the Intelligent 

Parametric Organization algorithm. 

Fig. 2 represent Query execution model for the 

Intelligent Parametric Organization algorithm  

represents at a high level the query execution model of the 

cloud cache. The names of variables and functions are 

self-explanatory form OODBMS but the cache model is 

modified by cloud admin.  
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The user query is executed in the cache if all the columns it 

refers to are already cached.  Otherwise it is executed in the 

back-end databases. The modified result is returned to the 

user with prediction model demand price and the cost is the 

query execution cost (the cost of operating the cloud cache or 

the cost of transferring the result via the network to the user).  

The cloud cache Determines which structures (cached 

columns, views, indexes, previous related demand price, 

offered price, future price reduction probability offered, 

offered price correlation),in destination cloud cache  is 

periodically update by the source cloud as like router.  

Artificial Neural Network. The back-propagation learning 

algorithm is one of the most important developments in 

neural networks. This learning algorithm is applied to 

multilayer feed-forward networks consisting of processing 

element with continuous differentiable activation functions. 

ANN & GA is finding best survival of genes from previous  

network cloud caches with poses query by the user demand 

request and intelligent cloud is self-take a decision for 

heuristic Cloud Cache Data Set then again find, what Mean 

absolute percentage error (MAPE) will be come on heuristic 

Cloud Cache and decide which one is best for the user 

demand. Now we again apply Hybrid model (GA Tuned & 

ANN) and find out of cloud load traffic information, backend 

traffic load, number of client request traffic load, client 

request load distribution by the cloud, measurement of cloud 

dedicated server on demand creation with control of number 

of parallelism cache transfer information from network 

server and A real coded and binary chromosome will be 

considered for optimization of the weight of ANN. 

Training Algorithm of ANN: 

The error back-propagation learning algorithm can be 

outlined in the following algorithm: 

Step 0: Initialize weights and learning rate (take some                                                                                                                                                                                                       

small random values).        

Step 1: Perform Steps 2-9 when stopping condition is          

false. 

Step 2: Perform Steps 3-8 for each training pair. 

Phase 1: Feed forward Algorithm 

Step 3: Each input unit receives input signal ix  and              

end it to the hidden unit ( i =1 to n ).                                                             

Step 4: Each hidden unit jz  (j = 1 to p) sums its weighted 

input signals to calculate net input

 

i

ijijinj vxvz 0  

Calculate output of the hidden unit by applying its activation 

functions over injz (Binary or bipolar sigmoidal activation 

functional): 

   inji zfz   

And send the output signal from the hidden unit to the input 

of output layer units. 

Step 5: For each output unit ky  ( k= 1 to m), calculate  the 

net input:                

                 




p

j

jkjkink wzwy
1

0          

And apply the activation function to compute output signal 

                 inkk yfy 
 

Phase 2: Back-propagation of error AlgorithmStep 6: 

Each output unit ky  (k =1 to m) receives a target pattern 

corresponding to the input training Pattern and computes the 

error correction term: 

   inkfkkk yyt '  

On the basis of the calculated error correction term, update 

the change in weights and bias:       

 
kk

jkjk

w
zw










0
     

 Also, send k to the hidden layer backwards. 

Step 7: Each hidden unit ( jw , j = 1 to p) sums its delta 

inputs from the output units: 

   




m

k

jkkinj w
1


 

The term inj gets multiplied with the derivative of 

 injzf  to calculate the error term: 

  injinjk zf '   

On the basis of the calculated j , update the change in 

weights and bias: 

 
jj

ijij

v
xv










0
 

Weight and bias updation (Phase III) 

Step 8: Each output unit ( ky , k=1 to m) updates the bias and 

weights: 

    
koldknewk

jkoldjknewjk

www
www

0)(0)(0

)()(
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Each hidden unit ( jz , j=1 to p) updates the bias and weights: 

               
joldjnewk

ijoldijnewjk

vwv
vvv

0)(0)(0

)()(







 

 

Step 9: Check for the stopping condition. The stopping 

condition may be certain number of epochs reached or when 

the actual output equals the target output [52]. 

The above algorithm uses the incremental approach for 

updating of weights, i.e., the weights are being changed 

immediately after a training pattern is presented, When a 

BPN is used as a classifier, it is equivalent to the optimal 

Bayesian discriminate function for asymptotically large sets 

of statistically independent training patterns. 

Genetic Algorithm. An implementation of a genetic 

algorithm begins with a population of typically random 

chromosomes One then evaluates these structures and 

allocates reproductive opportunities In such a way that those 

chromosomes which represent a better solution to the target 

problem are given more chances to reproduce than those 

chromosomes which are poorer solutions The goodness of a 

solution is typically defined with respect to the current 

population. So this will help on  1)selection, 2) cross over , 3) 

mutation, 4) reassembly cloud network caches, 5) 

decomposition: fitness. 

3 MODELING OPTIMAL PRICING ON USER 

DEMAND REQUEST 

This section describes the problem formulation of 

maximizing the cloud profit with intelligent cloud decision 

with cooperative solicitor network caches information. The 

presentation of the pricing scheme is guided by propositions 

that state the main heuristic rationale of our approach. 

3.1.  Problem Formulation 

This section defines the objective and the constraints of the 

problem, and gives the mathematical problem definition. 

3.1.1.  Objective 

The cloud cache offers to the users query services on the 

cloud data. The user queries are answered by intelligent 

cloud admin query plans that use cache structures, i.e., 

cached columns, views, indexes, previous related demand 

price, offered price, future price reduction probability 

offered, offered price correlation. We assume that the set of 

possible cache structures is S = {S1, . . . , Sm }. 

Whenever a structure S is built in the cache, it has a onetime 

building cost BS. While S is maintained in the cache it has a 

low maintenance cost which depends on time with network 

solicitor, MS (t). Heuristic computing and parallelism on 

cloud infrastructure may benefit the performance of structure 

creation, for a column, the building cost is the cost of 

transferring it from the backend and combining it with the 

currently optimized cached columns. The maintenance cost 

of a column or an index is just the cost of using disk space in 

the cloud. Hence, building a column or an index in the cache 

has a one-time static cost, whereas their maintenance yields a 

storage cost that is linear with time1. for more information on 

the building and maintenance cost of cloud cache structures 

the reader is referred to [7]. In any case, the cost of a structure 

S as soon as it is built at time (tbuilt) in the cache and until it is 

discarded is 

Cs(t) = BS+ MS(t _ tbuilt).                     ……………. (1) 

Co_caches=ScacheIndex(t)+NcacheIndexdest 

Cache services are offered through query execution that Uses 

cache structures, cooperative caches (Co_caches) is 

combination of caches which is maintained by self OODBMS 

query in cloud ScacheIndex(t) and network cloud cooperation 

caches NcacheIndexdest maintained self-tuned heuristic function 

on the controls of this with respect to time (t). 

Definition 1. The demand for a cache structure S, denoted as 

λs(t), is the number of times that S is employed in query plans 

selected for execution at time t. Naturally, in realistic 

situations the demand for a structure is measured in time 

intervals. If a structure S is built in the cache then query plans 

that involve it can be selected, i.e.  λs(t)> 0, otherwise not, 

i.e., λs(t)=0. Intuitively, there is a trade-off between 1) 

keeping a structure in the cache and paying the maintenance 

cost, and 2) soft computing model is dynamically 

maintaining the structure occasionally and 3) maintaining 

load balancing of caches transfer on network traffic, on user 

demand request with respect to time (t).  

1. Index updating is assumed to incur rebuilding the index 

from scratch. Data updates on caches from network solicitor 

are external factors but that can be controlled by the heuristic 

optimization procedure. In Section 6, we study the effect of 

updates to the dynamic pricing solution. 

Than pay the maintenance cost; if the demand is high, then 

the opposite tactic may be more profitable for the cloud. The 

cloud makes profit by charging the usage of structures in 

selected query plans for a price. Let us assume that the price 

of a structure S at time t is pS(t). Then the profit of the cloud 

at a specific time is 

          m 

r(t) = ∑ δi.( λsi(t)  . psi(t) - csi(t), δi  =  0,1,   …….    2 

           i 

Where δi represents the fact that the structure Si is present in 

the cloud cache. Specifically, a structure may be present or 

not in the cache at any time point in [0, T]. and not present 

before the beginning of optimization time, i.e. 

 

 
 

Based on this, the cost of a structure w.r.t. time becomes 

 

 
 

Where t0  is the start time of cost observation. Structures can 

be built and discarded at any time t Є [0, T] and the total 

profit of the cloud is R (T) =∫0
T r(t) dt. The goal is to 

maximize the total profit in [0, T] by choosing which 

structures to build or discard and which price to assign to 

each built structure at any time.
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max R(t) = =∫0
T r(t) dt                                        (4)                                                                                         

δ,p         

3.1.2 Problem Constraints 

It is necessary to constrain the optimization of the objective 4, 

so that a reasonable and correct solution can be found. Value 

constraints.  

 

 

It is straightforward that both the demand and the price of a 

structure must be positive numbers. Furthermore, it is 

necessary to impose an upper bound on the price. The reason 

is that the optimum solution is to instantaneously raise the 

price of at least one structure to infinity, if this is allowed.2 

these bounds can be formulated as follows:   

    

0 ≤ λi ,  i = 1,……..,m .                                 (5) 

0 ≤ pi ≤ pmax  ,  i = 1,……..,m .                   (6)             

     

Dynamics of the demand. Naturally, the demand and the 

price of a structure are connected variables: intuitively, as the 

price for a structure increases the demand decreases and vice 

versa. In order to solve the optimization problem (4). 

2. Mathematically, the integral of (4) goes to infinity if the 

price for one structure is infinite and the demand for this 

structure is not zero. If the demand is zero, the profit, ∞ * 0 is 

undefined. 

Proposition 1. The demand of a structure S has memory: 

the demand at time t depends on the demand before (t) 

consequently, the relationship between price and demand 

is 

         (7) 

 

Where m ≤ n, to respect the causality principle, as m > n 

would imply that demand could change (due to a change of 

price) before the price has changed. In particular, since there 

is no inertia in setting a price for a structure, m = 0 and (7) 

can be rewritten in its explicit form 

 

 
 

Justification 1. As the cloud cache and its users has inertia, 

which means that the current system behavior depends on 

past and influences future behavior. Two intuitive 

exemplifying reasons for this are: 1) the structure is already 

built and remains available because the building cost is 

already amortized, while the maintenance cost is not very 

high; and 2) the structure.  

 

3. Note that an abrupt drop is expressed by a first order 

differential equation, which is encapsulated in the second 

order one, as the parameter a can be set to 0. 

               We 

constrain f to be an ordinary differential relation between 

price and demand. 

    
          

The parameters α, β, γ are constrained to be constants. This 

means that the price model considers a static relation 

between demand and price. Therefore, it is necessary to 

extend (9) so that it captures correlations of demand and 

prices between pairs of structures. Let us assume that V is a 

(m * m) matrix where the row and the column (i) 

corresponds to the structure (Si i = 1, . . ., m.) Each element 

(vij, i, j = 1, . . ., m )corresponds to the correlation of the price 

of Sj to the demand of Si. We call V the correlation matrix of 

prices and demands. If (˄) and (P) are the (m * 1) matrices of 

demands and prices for the respective structures in S, and A, 

B, Γ are ( m *1 )matrices of parameters, then the constraint 

in (9) becomes 

 

   
 

(10) is actually a set of constraints of the form:  

                  
 

 
Problem definition. The previous discussion leads to the 

following problem formulation for optimal pricing: The 

maximization of the cloud OODBMS profit is achieved with 

the solution of the following optimization problem:  

                                                 

 
Subject to the constraints:  

 

         
3.2 Generalization of Optimization Objective 

From a mathematical point of view, we expect a solution that 

is on the boundaries of the feasible area, meaning a solution 

along the constraints of the problem that satisfies the 

objective. The constraints on the price-demand dependency 

in (10) do not actually constrain the sought solution, but only 

the value of the optimal profit, if the solution is applied; 

therefore, the sought solution is expected to be on the 

boundaries of the allowed price, (6), and demand values, (5), 

meaning maximum price selections as long as the demand 

for structures is above zero, This is called a bang-bang 

solution and the mathematical reason for this expectation is 

that the objective of the problem is linear w.r.t. the control 

variables: the price p and the structure availability δ 

intuitively. 

Proposition  2. The altruistic tend of pricing optimization is 

Expressed as: 1) a guarantee for a low limit on user 

satisfaction, 

Or, 2) an additional maximization objective.  

Justification 2. There are two policies in order to incorporate 

an altruistic tend in pricing optimization. The 

first is to give a much lower priority to user satisfaction than 

cloud profit, which results into a constraint (static or time 

dependent) that passively 

restricts the maximization of 

profit, i.e., expression (4). The 
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second is to handle it as a secondary goal of the pricing 

optimization, which results into a new objective that actively 

restricts profit maximization. “Passive” restriction means 

that the altruistic tend turns down pricing solutions proposed 

by the optimization procedure, 

 If the altruistic tend is expressed as low-limit guarantee on 

user satisfaction, then it can be formulated as an additional 

constraint of the optimization problem of Section 3.1 on the 

demand drop  

 

 where 

λmin is the selected minimum value of demand drop rate. 

              
In this case, the problem can accommodate, either a new 

constraint or a new optimization objective. In the first case, 

the constraint can be 

         
Where (rmin) is the selected minimum value of cloud profit. 

Adding one of the constraints (11) or (12) to the optimization 

problem does not change the objective of the optimization. 

If the altruistic tend is expressed as a new maximization goal, 

the optimization objective is a combination of (4) and (12) 

   
where (w) is a weight that calibrates the influence of the 

Altruistic tend to the optimization procedure. The 

augmented optimization objective (14) leads the 

optimization procedure to seek a trajectory that balances the 

opposite egoistic and altruistic tends.                             

4. MODELING PRICE-DEMAND CORRELATIONS 

The pricing scheme depends on the estimated values of 

price-demand correlations for all structures, which is stored 

in the matrix V (see the constraint (10)). success of the 

scheme depends greatly on the accuracy of the estimation of 

the correlation degree for all candidate structures. We refer to 

the elements, (vij, i, j = i., m) of V, as correlation coefficients, 

defined as follows:  

Definition 2. For any pair of structures Si and Sj we define 

the symmetric correlation coefficient (vij ≡ vji) that 

represents the combined usage of Si and Sj in executed query 

plans.  

4.1 Correlation Requirements 

In order to construct a measure for correlation estimation, we 

define the following requirements.4  

Proposition 3. The correlation coefficient vij should satisfy 

the following requirements: 

R1.  vij is negative if Si can replace Sj and the opposite, 

positive if they collaborate, and zero if they are used 

independent of each other in query plans. 

R2.  vij can be normalized for any pair of Si and Sj. 

R3. vij is easy to compute.  

Justification 3. R1: The sign of the coefficient vij denotes the 

competitive or collaborative behaviour between a Si and 

Example 1. In a workload with only one query = select A 

from T where B = ’b’ and C = ’c’, the columns B and C 

should have positive correlation, while the indexes IA-D = 

T(A,B,C,D) and IA-E = T(A,B,C,D,E) should have negative 

correlation, and an irrelevant to the query index T(E,F) 

should have zero correlation. It is straightforward that the 

pricing scheme requires these properties from the correlation 

coefficients V. 

4. Please note that the correlation requirements that we 

propose are tailored to the problem in hand. These 

requirements may be too strict for other use cases of 

management of data structures. 

R2: The correlation coefficients V determine the price of all 

the structures in the cloud cache (see constraint (10)).  

R3: It is necessary to compute all correlation coefficients V 

before the structures are materialized or even selected by the 

cloud cache.  

4.2 Limitations of the Existing Approaches 

Recently Schnaitter et al. [33] proposed a technique that 

computes the correlation between indexes. Given a set of 

indexes I ⊆ S and two indexes from the set, {Si, Sj}, their 

correlation coefficient vq
ij given a query q is  

 

 
Proposition 4. Measure (16) satisfies the requirements R1 - 

R3. 

Justification 4. R1: We show that R1 is satisfied by proving 

its satisfaction for the extreme cases of structure 

collaboration and competition. 

Case 1: If Si and Sj do not coexist in query plans, then let us 

assume that Si is very beneficial to a query q, hence coq(Xi) 

→0 and Sj has no effect on it, hence coq(Xj) → coq({}). 

Since the cost function is monotonic [33],coq(Xij) =coq(Xi) 

=min{a,b}coq({a,b}) → 0. Hence, vij → 0. 

Case 2: If Si and Sj   collaborate tightly in the extreme case, 

coq(Xi) =  coq(Xj) →  coq({}) , coq(Xij) → 0.Then vij → 1. 

Case 3: If the indexes are the same, then coq(Xi) = coq(Xj) 

=coq(Xij) , implying that vij = -1. 

 R2: Since the cases discussed above are extreme, all 

structure correlation cases fall between them and, therefore 

their value is bounded by [-1, 1]. 

R3: We ensure efficient computation of the correlation 

coefficients by reducing the set of possible query plans. For 

columns, we propose the following measure:  

   
 If two distinct columns appear in the same query, then they 

collaborate, otherwise they do not. Self-correlation or a 

column is set to -1, as a column can replace itself.                                                                            

For a pair of index Sj and column Si, we use the following 

measure:  

    
    We extend the correlation computation for a Workload. 

If  vq 
ij is the correlation of  Si and Sj for query q, then the 

coefficient for an entire workload is 
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Measure (19) normalizes the coefficients by using the 

maximum cost of the query. This allows the “heavy” queries 

to provide more weight to the coefficient, when compared to 

the “lighter” queries. Computing this measure requires 

O(|I|
2
)  

 

 

optimizer calls to determine the index correlation 

coefficients, compared to the exponential number of calls 

proposed by the state-of-the-art method, but it is still 

expensive to make so many  optimizer calls on every query. 

We speed up the correlation computation using the 

observation that, even though the total number of index 

combinations is O (|I|
2
) the set of possible plans is typically 

much smaller. INUM issues hundreds of calls to the 

optimizer to find the internal nodes of the plans that can be 

reused. Given access to the optimizer, the overhead can be 

drastically reduced to just two calls per query by using the 

internal optimizer structures [6]. 

5 SOLVING THE OPTIMAL PRICING PROBLEM 

The problem of optimal pricing is an optimal control 

problem [11] with a finite horizon, i.e., the maximum time of 

optimization T is a given finite value. The free variables are 

the prices of the cache structures, pis, called the control 

variables, and the dependent variables, called state variables, 

is the demand for the structures, λis and the availability of the 

structures δis. The problem is augmented with bounds on the 

values of both the control and the state variables and by a 

constraint on the dependency type of the state on the control 

variables. 

5.1 Designing the Optimization Solution 

The objective function of the problem is the maximization of 

an integral, i.e., max∫
T

0(r(t) – w.v(t))dt. The optimality 

scope of the sought solution depends on the convexity of the 

objective function. The latter is bilinear w.r.t. the demand 

and the price (this is the result of factor λs_(t) . ps(t) in (2) 

and ps(t) in (12)). It is not possible to prove that the objective 

function is convex and, therefore, there is no guarantee of 

global optimality of the solution.  

Due to: 1) the nonlinearity of the objective function, 2) the 

presence of both integer inputs (the δis control binary 

variables) and continuous inputs and states (the pis and the 

λis, respectively), and 3) the potentially large scale of the 

system (when m is high), it is almost impossible to find an 

analytical solution to the optimization problem. This calls for 

numerical optimization techniques, such as mixed-integer 

nonlinear programming (MINLP) [11], which present the 

advantage of being implementable online.  

We propose the division of the prediction horizon [0, T] into 

time intervals: let us assume that there are time points tj ε 

[0,T] , j =  0, . . . ,k, such that t0 = 0 and tk = T on which built 

structures can be built or discarded. Therefore, the problem is 

to maximize the total profit in [0,T] by choosing  which 

structures to built or discard on each tj ε [0,T], j=1,..k. and 

which price to assign to each built structure. 

 
 

Fig. 3. The optimization procedure is divided into short 

time intervals and iterates on a sliding time window.   

     

 
Fig. 3 depicts the proposed repeated optimization over a 

sliding time prediction horizon of length T. For simplicity, 

we consider equal time intervals, tj+1 - tj = tj+2 - tj+1, 

0,……,k-2. The optimization is performed repeatedly for k 

prediction horizons beginning at tstart and ending at tend, 

such that: [tstart , tend ], tstart  = 0, t1 . . . T and tend = T,T + t1, 

2T, respectively.  

   

    
 For example, even for linear dependency of price on time: p 

= a * t + b with static a, b, the number of variables in the 

problem is doubled. 

5.2 Estimating the Parameters Structure 

Concerning the constraints on the price-demand dependency 

in (10), it is necessary to estimate the parameters A, B, Γ. For 

this, the nonhomogeneous m order system of second order 

differential equations in (10) has to be solved. One way to do 

is to transform the system into a 2 * m order system of first 

order differential equations, by breaking each second order 

equation into a set of two. The result in both cases is a set of 

equations that show the dependency of demand on price 

involving the parameters  

 

 
Where F is a m * m matrix of functions on time and elements 

of the parameter matrices A, B, Γ. If the m constraints in (10) 

are independent, i.e., if the m differential equations are 

independent.  

Proposition 5. It is always possible to manage the cache 

structures in a way that the constraints in (10) are 

independent differential equations. 

Justification 5. Independency of the constraints in (10) 

means that there are no pair of cache structures for which the 

demand depends in the exact same way from the Prices of all 

the cache structures, assume two structures S1 and S2. If 

these are competitive, each one has a negative dependency on 

its own price and a positive dependency on the price of the 

other; therefore, it is not possible that they create the same 

constraint. If S1 and S2 are collaborative, creating the same 

constraint means that they depend on the exact same way on 

each other’s price and on the price of the rest of the 

structures; this fact implies 

that S1 and S2 are always 

employed together in the 
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cloud; therefore, they can be represented as a set of structures 

with a single price [22]. 

5.3 Optimization Horizon 

An important issue is to estimate the appropriate length of 

the time period, in which we seek to optimize the cloud 

profit. Specifically, we have to determine the value of T 

which represents the optimization horizon of (4).  

Example 2. Assume a structure S with demand λs(t)and an 

optimization procedure of two short phases [0, T small) and [T 

small , T big) or a procedure with one long phase [0, T big). 

 

 For simplicity, the demand is a step function i.e. λ s(t) = λ2,t 

ε [0 , Tsmall] corresponding to price p1 and λ s(t) = λ2,t ε 

[Tsmall , Tbig ) corresponding to price p2 (for simplicity we 

ignore structure correlations). Assume that the building cost 

of S is BS and the maintenance cost is MS(t) =  a *  t and S is 

built once at time t = 0. The cloud profit in [0, T small) is rsmall 

= λ1 * p1 - BS -MS (T small). If r small < 0, the cloud decides to 

discard S and the second optimization phase starts with S not 

available. Since the demand is significant in (T small , T big), 

the cloud may decide to build S again, at t ≥ Tsmall, resulting 

in profit rbig-smal l ≤ λ2 * p2 - BS - MS(T big _ T small). For the 

long-term optimization the profit is: r big = λ1 * p1 + λ2 * p2 

- BS - MS(T big). Obviously, r big   > r small + r big - small. 

Therefore, the result of the two-phase short-term 

optimization procedure is not as optimal as that of the 

one-phase long-term procedure.   

 

5.4 Discussion on the Model Simplicity  

Yet, it is possible that in a real system the dependency of 

demand on the prices changes with time, because of any 

reasons. This means that the parameters, A, B, Γ should be 

time varying. Hence the problem falls in the scope of 

optimization of uncertain systems (potentially subject to 

model mismatch or Parametric uncertainty or disturbances), 

which is an active research domain [12], [34]. In these 

situations using tendency models (i.e., models that capture 

the main trends of a process) and measurements is generally 

sufficient to improve the process performances up to such a 

level that the costly efforts for identifying a more accurate 

process model are not justified by the loss of optimality [28].  

Finally, as the optimization proceeds, new data are collected 

and this data can clearly be used to re-identify the 

price/demand model periodically. 

6 EXPERIMENTAL EVALUATIONS 

We present the simulation study for a cloud cache system 

That uses the proposed pricing model. 

6.1 Experimental Setup and Methodology 

The cloud cache is set up with one back-end database. The 

cache is operated under a TPC-H-based workload, which 

consists of seven TPC-H query templates and simulates the 

query evolution of 1 million SDSS [20] queries against a 

2.5TB back-end database. The SDSS workload consists of 

phases that show locality in data access that repeats. In each 

phase the query execution cost may fall in three categories, 

low, medium, and high. Queries arrive at 10 second 

intervals. We copy the setup in [24], the distribution of the 

query templates in one phase consisting of 10,000 queries. 

We select this workload, as it is portable across different 

OODBMS, allows for the employment of techniques to 

improve the runtime of correlation estimations, and the 

queries are tunable by using the query generation mechanism 

of the TPC-H Benchmark. The building and the maintenance 

costs are determined using Amazon’s pricing model and are 

based on statistics for the cost of executing the SDSS queries. 

As an indication, while varying the price from the building 

cost (cost) to pmax = 10 * cost, the demand varies from 0 up to 

8,000 queries, with many values around 4,000. Set A 

contains two structures that collaborate, one more expensive 

than the other, and one   that is competitive; set B is similar, 

but two expensive structures are highly competitive to a third 

that is cheap; set C contains two structures that are necessary 

to many queries and not correlated to others; set D contains 

two collaborative structures of comparable cost. The pricing 

optimization problem is implemented and run in Matlab 

7.8.0 using the tool Tomlab [16]. 

Methodology. The initial demand for all structures is set to a 

very low value in order 1) to avoid high cloud profit by solely 

exploiting high demand values λis and 2) force the pricing 

scheme to fluctuate λis in order to maximize the profit. The 

price variable for each structure ranges from 0 to 100 % of 

the respective building cost, i.e. 0 ≤ pi ≤ BSi * 100. The 

experiments measure 1) the average cloud profit per time 

point, 2) the average user loss per time point, and 3) the 

execution time. Cloud profit is defined in (2) and user loss is 

the user satisfaction as defined in (12). The dynamic pricing 

scheme is compared with a static pricing scheme that fixes 

the cloud profit to a specific percentage of the building cost. 

 

6.2. Experimental Results View 

This section summarizes the experimental results. 

6.2.1Pricing with Dynamic Structure Availability 

Assuming that all structures are constantly available (i.e., 

fixed caching but changeable with permission of cloud), and, 

therefore built once in the cache at   the beginning of pricing 

and maintained ever since, i.e., δi = 1, i = 1,…, m always. As 

the optimization horizon is extended the profit drops because 

structures are maintained in the cache even though their 

demand drops; naturally the bigger the weight w, the smaller 

the profit and the user loss. Yet, for long horizons, the 

maintenance of non-profitable structures makes it impossible 

to satisfy the combined optimization objective in (14) for big 

values of weight, i.e., w = 30, 40, resulting in zero profit and 

user loss. Assuming that we have complete knowledge of the 

workload, we select the best structures to build at the 

beginning of time. The best structures are selected after 

observation of the matrix V (we spotted groups of 

collaborative and competitive structures and we 

experimented in order to find the subset that increases profit; 

the combinations to examine were few). Experimentation 

with various fixed prices of these structures resulted in 

maximum possible profit equal to about $400 and user loss 

equal to about $30. The results of this experiment are in 

accordance with the results of the works in [37]. 

6.2.2 Pricing with Choice on Structure Availability 

This section presents results on the dynamic pricing scheme 

assuming that structures are initially built in the cache, but 

during optimization they can be discarded and rebuilt. 

Contrary to pricing with fixed because optimization 

procedure takes advantage of 

long-term predictions in order 

to schedule the structure 
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availability in a more optimal way. 

6.2.3 Sensitivity of the Optimization Schedule 

The profit increases as the number of intervals increases 

(and, therefore their length decreases), because the procedure 

is allowed to change the structure availability more often, in 

order to achieve optimality.  

6.2.4 Performance Comparison with Analysis  

We compare the performance of the optimization procedure 

employing first and second order differential equations for 

the pricing model. Models using first order equations are 

faster to solve, hence preferred over second order differential 

equations if the real-world constraint can be modeled using 

them. First order differential equation makes the procedure 

slightly faster than using a second order differential 

equation. The second order formulation, however, is more 

generic and we use it as default. The δ variable makes the 

solver an order of magnitude faster than the problem with δ 

variables on average. Therefore, the solver spends most of the 

time in the branch and bound method that seeks the optimal 

integer values [16].  

6.2.5 Correlation Binding of Structures 

This section presents the index correlations achieved using 

(16) and compares the proposed measure for correlation 

coefficients (19) with the state-of-the-art measure (15) [33]. 

Furthermore, it is also bounded by the range [-1, 1].  

6.2.6 Predicting the Price Demand for Structures 

The demand for these structures shows qualitative 

differences: the demand for A reacts smoothly to price 

change after some weak inertia to the workload; the demand 

for B shows similar inertia but after that it drops abruptly; the 

demand for C shows great inertia to the workload. 

6.2.7 Optimization in Presence of Updates 

The optimization procedure works under the assumption that 

data structures do not have to be evicted and rebuilt due to 

data updates. Even though updates cannot be controlled by 

the optimization procedure, if they can be predicted, they can 

be used as new constraints on the optimization problem. 

Specifically, an update of structure S at time t incurs a reset of 

the respective δ parameter from 1 to 0 at that time. The cloud 

profit is bigger if updates are predicted. Yet, as the number of 

updates increases, the profit drops and is closer to profit in 

the case of no update prediction. User loss is bigger (w = 0 for 

these experiments) in case of update prediction, since the 

optimization sets higher prices for the structures. 

 

7 CONCLUSIONS 

 

This work proposes a novel pricing demand scheme designed 

for a cloud cache that offers querying services and aims at the 

maximization of the cloud profit with predictive demand 

price solution on economic way of user profit. The proposed 

solution allows: on one hand, long-term profit maximization 

with price minimization on request of same demand, and, on 

the other, dynamic calibration to the actual behaviour of the 

cloud application, while the optimization process is in 

progress. 
 

 
           

Fig. 4. Optimization using or not predictions for updates for 1-5 

updates on average per structure. 

The viability of the pricing solution is ensured with the proposal of 

a method that estimates the correlations of the cache services in an 

time-efficient manner.       
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