
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-4, September 2012

135

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D0916072412/2012©BEIESP



Abstract— Mining data streams for knowledge discovery has

been used in many applications like web click stream mining,

network traffic monitoring, network intrusion detection, and

dynamic tracing of financial transactions. In this paper, by

analyzing characteristics of date stream, we propose an efficient

algorithm weighted frequent pattern (WFP) mining that discovers

more knowledge compared to traditional frequent pattern mining.

The existing algorithms cannot apply for stream of data because

those algorithms require multiple database scans. This technique

uses a single database scan for mining stream of data. Our

technique is efficient for web applications for mining web records

and also discovers valuable knowledge compared to other

techniques.

Index Terms— Data stream, weight, weighted frequent pattern

mining

I. INTRODUCTION

In recent years, data streams mining has been an important

direction in data mining, a data stream is an ordered sequence

of points that must be accessed in order and that can be read

only small number of times or read only once. Unlike mining

static databases, mining data streams poses many new

challenges. First, it is unrealistic to keep the entire stream in

the main memory or even in a secondary storage area, since a

data stream comes continuously and the amount of data is

unbounded. Second, traditional methods of mining on stored

datasets by multiples scans are infeasible, since the streaming

data is passed only once. Third, mining streams requires fast,

real-time processing in order to keep up with the high data

arrival rate and mining results are expected to be available

within short response times[l].

Frequent patterns mining is an important data mining task

with many real-world applications. By considering different

weights of the items, weighted frequent pattern mining can

discover more important knowledge compared to traditional

frequent patterns mining. Take the shopping in supermarket

for example, although the frequency of gold ring is very low

compared to the frequency of pen sold, we would not treat

them with the same criteria, because the gold ring is more

important than pen due to its high weight. There is a great

amount of work that studies mining frequent item-sets on

static databases and many efficient algorithms have been

proposed. Most of the existing weighted frequent pattern

mining algorithms are devised for static databases that are not

suitable for the data streams mining [2] [3] [4]. Motivated by

these real world scenarios, in this paper, we propose a sliding

window based novel technique WFPMDS (Weighted

Frequent Pattern Mining over Data Streams). It can discover

Manuscript received September 02, 2012.

P.Satheesh, Associate Professor, CSE department, MVGR College of

engineering, Chintalavalasa, Vizianagaram, Andhrapradesh, India.

B.Srinivas,CSE department, MVGR College of engineering,

Chintalavalasa, Vizianagaram, Andhrapradesh, India.

A.Satish Kumar, CSE department, MVGR College of engineering,

Chintalavalasa, Vizianagaram, Andhrapradesh, India.

useful recent knowledge from a data stream by using a single

scan. Our technique exploits a pattern growth mining

approach to avoid the level-wise candidate

generation-and-test problem. Besides retail market data, our

technique can be well applied for mining weighted weighted

web path traversal patterns. By considering different

importance values for different websites, our algorithm can

discover very important knowledge about weighted

frequent web path traversals in real time using only one scan

of data stream.

The remainder of this paper is organized as follows. In

Section 2, we develop for weighted frequent pattern mining

over data streams. In Section 3, our experimental results are

presented and analyzed. Finally, in Section 4, conclusions are

drawn.

II. MATHEMATICAL APPROACH

A. Frequent pattern mining

 The support/frequency of a pattern is the number of

transactions containing the pattern in the transaction database.

The problem of frequent pattern mining is to find the

complete set of patterns satisfying a minimum support in

the transaction database. The downward closure property is

used to prune the infrequent patterns. This property tells that

if a pattern is infrequent then all of its super patterns must

be infrequent. The Apriori algorithm is the initial solution

of frequent pattern mining problem. But it suffers from the

level-wise candidate generation-and-test problem and needs

several database scans. The FP-growth algorithm solved this

problem by using FP-tree based solution without any

candidate generation and using only two database scans.

Other research has been done to efficiently mine frequent

patterns. However, this traditional frequent pattern mining

considers equal profit/weight for all items.

B. Weighted frequent pattern mining

For example I = {i1
,i2

…….i j
) be a set of j items. A

sequence is an ordered list of items from I denoted by < s1
,

s2
…. sk

>. A sequence ordered list if items S =

< a1
, a2

….. a p
> is a subsequence of a sequence S ' =

<b1
,b2

,….bq
> if there exist integers like i1

< i2
< ... <

i p
such that the ordered list of sequence items will be

followed as a1
 = bi1

, a2
 = bi2

, .. , a p
= bip

. A

sequence s contains another sequence s' if s' is a subsequence

of s.

Generation of Frequent Patterns with Weights

Over Continuous Flow of Data Efficiently

P. Satheesh, B. Srinivas, A. Satish Kumar

Generation of Frequent Patterns With Weights Over Continuous Flow Of Data Efficiently

136

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D0916072412/2012©BEIESP

The count of a sequence S , denoted by count(s), is defined

as the number of sequences that contain s. The support of a

sequence s, denoted by support(s), is defined as count(s)

divided by the total number of sequences seen. If support(s)

≥.  , where ( is a user-supplied minimum support

threshold) then we say that S is a frequent patterns.

Example 1: Suppose the length of our data stream is only 3

sequences:SI=(a,b,c),S2=(a,c), and S3=(b,c). Let us assume

we are given that ( =0.5. The set of sequential patterns and

their corresponding counts are as follows: (a):2 , (b) :2, (c):3

,(a,c): 2, and (b,c):2. The weight of an item is a

non-negative real number which is assigned to reflect the

importance of each item in the transaction database [3, 5].

For a set of items, I = {i1,i2,i3…..In},the weight of a

pattern, F{x 1, x2,x m}, is given as follows

 Weight(F)=
)(

)(
)(

1

Flength

xWeight
Flength

q q 
 (1)

A weighted support/frequency of a pattern is defined as

the value that results from multiplying the pattern's support

with the weight of the pattern [3, 5]. So, the weighted support

of a frequent pattern F, is given as follows

Wsupport (F) = Weight (F F) (2)

A pattern is called a weighted frequent pattern if the

weighted support of the pattern is greater than or equal to the

minimum threshold.

Example 2: take the example 1 for example, suppose that

the weight of a, b, c is 0.5, 0.3, and 0.2, respectively, then

Wsupport (< a, c>) is calculated based on equation

(1) and (2) as follows:

 Wsupport (a, c) =
2

0.2 0.5
x 2 = 0.7

So, we can say that sequential patter < a, c> is a weighted

frequent pattern. The existing weighted frequent pattern

mining methods need at least two database scans and

therefore not suitable for stream data mining. Moreover, they

cannot find important knowledge from the recent data. Hence,

we propose a sliding window based novel technique for

single-pass weighted frequent pattern mining over data

streams.

C. Our Proposed Technique

 A data stream may have infinite number of transactions. A

batch of transactions contains a nonempty set of transactions.

Figure 1 shows an example of transaction data stream which

has divided into four batches with equal length. A window can

be composed of 0xed number of non-overlapping batches. In

our example data stream, we consider that one window

contains three batches of transactions. Therefore, window1

contains batch1, batch2 and batch3. Similarly window2

contains batch2, batch3 and batch4. The weighted support

of a pattern P can be calculated over a window W by

multiplying its support in W with its weight. Therefore,

pattern P is weighted frequent in W if its weighted

support is greater than or equal to the minimum

threshold. For example, if minimum weighted threshold

is 2.0, “ab” is a weighted frequent pattern in window2.

Its frequency in batch2, batch3 and batch4 are 1, 2, and

1 respectively. Accordingly, it has total frequency of

4 in window2. Its weighted support in window2 is

4×0.55 = 2.2, which is greater than the minimum

weighted threshold.

1) Tree

construction

Figure 1. Example of transaction data stream and weight table

In this section, we describe the construction process of

our tree structure to capture stream data using a single

pass rotation. The header table is maintained to keep an

item order in our tree structure. Each entry in a header

table explicitly maintains item-id, frequency and weight

information for each item. However, each node in a tree

only maintains item-id and frequency information for

each batch. To facilitate the tree traversals adjacent

links are also maintained (not shown in the figures for

simplicity) in our tree structure.

Consider the example data stream of Figure 1(a). At first

we create the header table and keep all the items in

weight ascending order. After that, we scan the

transactions one by one, sort the items in a transaction

according to header table sort order and then insert into

the tree. The first transaction T1 has the items “a”, “b”,

“c”, “d”, “g”, “h”. After sorting, we get the new

order is “ c”, “ d”, “ h”, “g”, “ b” , “a”.

Item W F

c 0.2 1

f 0.3 1

d 0.3

5

1

h 0.3

8

1

g 0.4 1

e 0.5 1

b 0.5 1

a 0.6 2

(a) After inserting Batch-1

Items W

a 0.6

b 0.5

c 0.2

d 0.35

e 0.5

f 0.3

g 0.4

h 0.38

TI
D

Transaction
s

T1 a,b,c,d,g,h

 T2 a,e,f

T3 b.e.f.g.h

T4 a,b,d,g

T5 a,b,d,e

T6 a,b,c,d,g

T7 a,b,g

T8 a,c Window1

(B1:B3)

Window2

(B2:B4)

Batch-1

Batch-4

Batch-2

Batch-3

(a) Transaction stream (b) Weight table

c: 1

d: 1

h: 1

g: 1

b: 1

a: 1

f: 1

e: 1

a: 1

Header- Table

(a) After inserting Batch-2

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-4, September 2012

137

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D0916072412/2012©BEIESP

Item W F

c 0.2 1

f 0.3 2

d 0.3

5

2

h 0.3

8

2

g 0.4 3

e 0.5 2

b 0.5 3

a 0.6 3

Item W F

c 0.2 2

f 0.3 2

d 0.35 4

h 0.38 2

g 0.4 4

e 0.5 3

b 0.5 5

a 0.6 5

Figure 2. Tree construction for window1

Figure 2(a) shows the tree after inserting batch1. Figure

2(b) shows the tree after inserting batch2. In the same way

batch3 is inserted into the tree. Figure 2(c) shows the final tree

for window1.

When the data stream moves to batch4, it is necessary

to delete the information of batch1 because window2 does

not contain it. Therefore, information of batch1 is actually

garbage information for window2. We delete the information.

of batch1. Some nodes do not have any information for

batch2 and batch3. As a result, they are deleted from the tree.

Other nodes' frequency counters are shifted one bit left in

order to remove the frequency information of batch1 and

represent the last frequency information for batch4. As a

consequence, now the three frequency information of any

node represents batch2, batch3 and batch4. Figure 3(b) shows

the tree after inserting batch4.

Figure 3. Tree construction for window2

2) Mining process

In this section, we describe the mining process of our

proposed WFPMDS technique. As discussed in Section 2,

the main challenge in this area is, the weighted frequency of

an itemset does not have the downward closure property and

to utilize this property we have to use the global maximum

weight. The global maximum weight, denoted by GMAXW,

is the maximum weight of all the items in the current

window. For example, in Figure 1(b), the item “a” has the

global maximum weight 0.6 for window1 and window2.

 Header- Table

Item W F

d
0.3

5

3

g 0.4 3

b 0.5 4

 (a). Conditional tree for item ‘a’

g:2

 g:1 d:3

b:1

b:1

b:2

c: 1,0

d: 1,0

h: 1,0

g: 1,0

b: 1,0

a: 1,0

d: 0, 1

g: 0, 1

h: 0, 1

a: 0,1

f: 1,1

e: 1,0

a: 1,0

h:0,1

g:0,1

e: 0,1

b: 0, 1

Header- Table

c: 1,0,1

d: 1,0,1

h: 1,0,0

g: 1,0,0

b: 1,0,0

a: 1,0,0

d: 0, 1,1

e: 0,0,1

b: 0,0,1

a: 0,0,1

g: 0, 1,0

h: 0, 1, 0

a: 0,1,0

f: 1,1,0

e: 1,0,0

a: 1,0,0

h:0,1,0

g:0,1,

0

e: 0,1,0

b: 0, 1,0

g:0,0,1

b: 0,0,1

a: 0, 0,1

(b) After inserting Batch-3

Header- Table

Generation of Frequent Patterns With Weights Over Continuous Flow Of Data Efficiently

138

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D0916072412/2012©BEIESP

 Header- Table

Item W F

d
0.3

5

3

g 0.4 3

(b). Conditional tree for item ‘ab’

 Header- Table

Item W F

g 0.4 4

(c). Conditional tree for item ‘b’

Figure 4. Mining process

The local maximum weight, denoted by LMAXW, is

needed when we are doing the mining operation for a

particular item. As the tree is sorted in weight ascending

order, we get advantage in the bottom up mining operation.

For example, after mining the weighted frequent patterns

prefixing the item “a”, when we go for mining operation

prefixing the item “b”, then the item “a” will never come in

any conditional trees. As a result, now we can easily assume

that the item “b” has the maximum weight. This type of

maximum weight in mining process is known as LMAXW. As

LMAXW is reducing from bottom to top, the probability of a

pattern to be a candidate is also reduced.

Suppose we want to mine the recent weighted frequent

patterns in the data stream presented at Figure 1. It means that

we have to find out all the weighted frequent patterns in

window2. Consider the minimum threshold = 1.8. Here the

GMAXW = 0.6 and after multiplying the frequency of each

item with GMAXW, the weighted frequency list is <c:1.2,

f:0.6, d:1.8, h:0.6, g:2.4, e:1.2, b:3.0, a:3.0>. As a result,

the candidate items are “d”, “g”, “b” and “a”. Now we

construct the conditional trees for these items in a bottom up

fashion and mine the weighted frequent patterns. At first the

conditional tree of the bottom-most item “a” (shown in Figure

4(a)) is created by taking all the branches prefixing the item

“a” and deleting the nodes containing an item which cannot be

a candidate pattern with the item “a”. For item “a”,

LMAXW =0.6 and we can get the weighted frequency list for

item “a” by multiplying the other item’s frequency with

LMAXW. Obviously this weighted frequency is the

maximum possible weighted frequency of an itemset

prefixing item “a”. Hence, we have to take all the patterns

as a candidate having maximum weighted frequency

greater than or equal to minimum threshold. Accordingly,

the weighted frequency list for the item “a” is <d: 1.8,

g: 1.8 b: 2.4> (we should not consider the global

non-candidate items “c”, “f”, “h” and “e”.) and candidate

patterns “ad”, “ag", "ab" and “a” are generated here. In the

similar fashion, conditional tree for the pattern “ab" is

created in Figure 4(b) and candidate frequent patterns

“abd ” and “abg ” are generated from the figure.

For item “ b”, the LMAXW= 0.5 as item “ a” will not

come out here. The weighted frequency list is <d:

1.5, g: 2.0 >. The key point is that, the maximum

weighted frequency of item “d” with item “b” is

, as LMAXW reduces from 0.6 to 0.5.

Now, without further calculation we can prune “d”. But

if LMAXW is 0.6 at this place, the weighted frequency

1.8 and as a result it becomes

a candidate. This is one of the strength available in our

tree structure. The conditional tree of item “ b” contains

only one conditional tree of item set “ g” (shown in

Figure 4(c)) and the candidate pattern “bg” is

generated. For item set “g” the LMAXW= 0.4 and the

weighted frequency list are <d: 0.8 >. As a result, we

do not have to create any conditional tree for the item set “g”.

We have to test all the candidate patterns with their

actual weights and the weighted frequency and mine

the actual weighted frequent patterns. The actual

weighted frequent patterns in window2 are <a: 3.0,

b: 2.5, ab: 2.2, bg: 1.8 >.

III. RESULTS & DISCUSSION

To evaluate the performance of our proposed technique, we

have performed several experiments on real-life kosarak

dataset. Table shows the characteristics of these datasets.

These datasets do not provide the weight values of each item.

As like the performance evaluation of the previous weight

based frequent pattern mining we have generated random

numbers for the weight values of the items, ranging from 0.1

to 0.9. our programs written in Microsoft visual c++ 6.0 and

run with the windows XP operating system the a Pentium dual

core 2.13GHz cpu with 1Gb memory.

Table 1. Dataset characteristics

Dataset Size(MB) No.of

trans

No.of

distinct

items

Avg.trans

length

Kosarak 30.5 990,002 41,270 8.1

The kosarak dataset contains web click-stream of a

Hungarian on-line news portal. It is a big dataset containing

almost one million transactions and 41,270 distinct items.

Here we have used the following parameters of size= 100k,

150k and 200k and window size= 3 batches and minimum

threshold is from 2% to 6%.

0

200

400

600

800

1000

1200

1400

1600

2 3 4 5 6

W=3B,
B=200K

W=3B,
B=150K

W=3B,
B=100K

Figure 5. Performance on Kosarak dataset

d: 3 g:1

g:2

g: 4

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-4, September 2012

139

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D0916072412/2012©BEIESP

500

700

900

1100

1300

1500

1700

1900

2 3 4 5 6

WFIM

WFPMDS

Figure 6. Run time comparison Kosarak dataset

 We show the comparison of our technique with existing

WFIM algorithm in Kosarak dataset. The existing WFIM

algorithm is not suitable for stream data mining due to

scanning a database at least twice. In the first scan, it finds all

single-element candidate patterns and in the second scan it

performs the tree creation and mining operation. Moreover, it

cannot keep batch by batch information in the tree for sliding

window-based stream data mining. The figure shows that
WFPMDS out performs WFIM significantly with respect to

execution time.

IV. CONCLUSION

In this paper, we propose a sliding window based novel

technique for weighted frequent pattern mining over data

streams. Our main goal is to mine recent weighted frequent

patterns from stream data. By using an efficient tree structure,

our proposed technique WFPMDS can capture the recent data

form a data stream. WFPMDS requires only a single-pass of

data stream for tree construction and mining operations.

Therefore, it is quite suitable to apply in real time data

processing to discover valuable recent knowledge. Moreover,

the tree structure used by our technique is easy to construct

and handle. The performance analyses show that our

technique is more efficient for weighted frequent pattern

mining over continuous flow of data.

REFERENCES

1. James Cheng, Yiping Ke, and Wilfred Ng, "A Survey on algorithms for

mining frequent itemsets over data streams,"

2. C.Raissi, P.Poncelet, and M.Teisseire, "Towards a new approach for

mining frequent itemsets on data stream," Journal of Intelligent

Information Systems, vol. 28, pp.23-36, 2007.

3. A.MetwaIly, D.Agrawal, and A.E.Abbadi, "An integrated efficient

solution for computing frequent and top-k elements in data streams,"

ACM Transactions on database systems, vol. 31, pp.l 095-1133, 2006.

4. N.Jiang, L.Gruenwald, "Research issues in data stream association

rule mining," SIGMOD Record, vol 35, pp. 14-19, 2006.

5. C.K.-S.Leung, Q.I.Khan, "DSTree: A tree structure for the mining of

frequent sets from data streams," Proc.Sixth IEEE Int'l Conf. on Data

Mining, pp.928-932, 2006.

6. U.Yun, J.J.Leggett, "WFIM: weighted frequent itemset mining with a

weight range and a minimum weight," Proc.Fifth SIAM Int. Conf. on

Data Mining, pp.630-640, 2005.

7. U.Yun, "Efficient mining of weighted interesting patterns with a

strong weight and/or support affinity," Information Sciences, vol. 177,

pp.3477-3499, 2007.

8. R.Agrawal, A. Swami, "Fast algorithm for mining association rules,"

In Proc. Of the 20th IntI. Conf. on Very Large Data Bases, September

1994.

9. Chowdhury Farhan Ahmed, Syed Khairuzzaman Tanbeer, and Byeong

Soo Jeong, "Efficient mining of weighted frequent patterns over data

streams," 2009 11th IEEE International Conference on High

Performance Computing and Communications.

AUTHORS PROFILE

P.Satheesh received M.Tech in computer Science and

Technology in 2006 from Andhra University; he has ten

years of teaching experience. He is currently employedas

a an Associate professor in CSE department, MVGR

College of Engineering. He has more than ten papers in

journals.

B.Srinivas received M.Tech in computer Science and

engineering in 2008 from Acharya Nagarjuna University;

he has two and half years of industry and four years of

teaching experience. he is currently employed as a an

assistant professor in CSE department, MVGR College of

Engineering. He has more than eight papers in journals.

A.Satish Kumar currently pursuing M.Tech in Computer

Science Engineering from JNTU, Kakinada.

