
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-4, September 2012

198

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: D0940082412/2012©BEIESP



Abstract— Max-min algorithm is based on comprehensive

study of the impact of RASA algorithm in scheduling tasks and the

atom concept of Max-min strategy. An Improved unique version

of Max-min algorithm is proposed to outperform scheduling map

at least similar to RASA map in total complete time for submitted

jobs. Improved Max-min is based on the expected execution time

instead of complete time as a selection basis. We employ Petri nets

which are well suited for modeling the concurrent behavior of

distributed systems. Experimental results show availability of load

balance in small cloud computing environment and total small

makespan in large-scale distributed system; cloud computing. In

turn scheduling tasks within cloud computing using Improved

Max-min demonstrates achieving schedules with comparable

lower makespan rather than RASA and original Max-min.

 Index Terms— Distributed System, Job Dispatching

Algorithms and Cloud Computing.

Petri net, Load Balance, Quality of Service, Meta Task

Scheduling, Max-min Algorithm, Min-min Algorithm

I. INTRODUCTION

Cloud computing is known as a provider of dynamic

services using very large scalable and virtualized resources

over the Internet. Cloud computing can be defined as a

collection of computing and communication resources

located over distributed datacenters; that is shared by many

different users [1]. As shown before, cloud computing is

considered as internet based computing service provided by

various infrastructure providers on an on-demand basis, so

that cloud is subject to Quality of Service (QoS), Load

Balance (LB) and other constraints which have direct effect

on user consumption of resources controlled by cloud

infrastructure. Cloud Computing is considered nowadays to

be a very popular because of the many advantages provided

by the Cloud infrastructure. Hardware, software and other

services are available to users as a utility under an on-demand

basis that is charged proportionally to the amount of

resources consumed by them. In some cases, Cloud providers

use a portion of their datacenter infrastructure for private

purposes and provide the rest unused capacity as a cloud

service to public clients.

Such setting enables cloud to increase the complexity of its

resources efficiently and makes providers earn money from

such deployments. On the other side of service providing, the

users become more comfortable and make them not worry

about the infrastructure required and its troubles shooting for

their services [1], [2]. To make a set of cloud services an

effective provider infrastructure, one of its requirements is an

effective task scheduling algorithm. Task scheduling

algorithm is responsible for mapping jobs submitted to cloud

environment onto available resources in such a way that the

Manuscript received September 02, 2012.

El-Sayed T. El-kenawy Dep. of Comp. and Sys. Eng., Faculty of

Engineering, Mansoura University, Egypt.

Ali Ibraheem El-DesokyDep. of Comp. and Sys. Eng., Faculty of
Engineering, Mansoura University, Egypt

Mohamed F. Al-rahamawy Dep. of Computer scienecs, Faculty of

Computer and Info., Mansoura University, Egypt.

total response time, the makespan, is minimized [2]. Many

task scheduling algorithms are applied by resources manager

in distributed computing to optimally allocate resources to

tasks [4], [5], [6], [7], [8], [9], [10], [11]. While some of these

algorithms try to minimize the total completion time. Where

the minimization is not necessarily related to the execution

time of each single task, but the aim is to minimize overall the

completion time of all tasks [5], [11], [13], [14], [15], [16].

There have been many algorithms used to schedule tasks

on their resources, some of these algorithms are used in grid

computing which is large scale distributed system concerned

with resource sharing and coordination for problem solving.

Three well known examples of such algorithms intended to

be applied in cloud computing environment are Max-min,

Min-min and RASA [2], [5], [11], [13], [14], [16]. Each of

these algorithms estimate the completion and execution time

of each submitted task on each available resource. RASA is a

hybrid algorithm of two other ones. In the RASA, an

estimation of the completion time of each task on the

available resources is calculated then Max-min and Min-min

algorithms are applied alternatively to take advantage of both

algorithm and avoids their drawbacks [2].

One of the features of the Max-min strategy is that chooses

large tasks to be executed firstly, which in turn small task

delays for long time. On the other hand, Min-min is perfect in

executing smaller tasks then large ones that is the reverse of

Max-min. So that, in RASA, alternating between small and

large is reason for executing small tasks before large and

avoids delays of executing large tasks, also support

concurrency in execution of large and small tasks. Max-min

strategy resolves the difficulty of Min-min, by giving priority

to large tasks. The Max-min algorithm selects the task with

the maximum completion time and assigns it to the resource

on which achieve minimum execution time. It is clear the

Max-min seems better choice whenever the number of small

tasks is much more than large ones. But in other cases, early

executing large tasks leads for increasing in total completion

time of submitted tasks so Min-min is better choice and

visa-verse [2].

This paper, as RASA, offers an improved task scheduling

algorithm based on Max-min to resolve the mentioned above

problems with both Max-min and Min-min. The basic idea of

an improved version of Max-min assign task with maximum

execution time to resource produces minimum complete time

rather than original Max-min assign task with maximum

completion time to resource with minimum execution time.

The remaining parts of this paper are organized as follows:

Section 2 presents some related works. Next, Section 3

describes the methodologies such as Petri net and the concept

of Task scheduling algorithm in distributed environment

using Max-min strategy which is modified in Section 4. Then

in 4, our improved modified version of Max-min schema is

proposed and illustrated using pseudo code and flowchart.

Extended Max-Min Scheduling using Petri Net

and Load Balancing
El-Sayed T. El-kenawy, Ali Ibraheem El-Desoky, Mohamed F. Al-rahamawy

Extended Max-Min Scheduling Using Petri Net and Load Balancing

199

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: D0940082412/2012©BEIESP

In Section 5, compare the scheduling algorithms in typical

environment and present the result of comparison using

illustrative simple example. Finally, Section 6 concludes the

paper and presents future work.

II. RELATED WORKS

Due to novelty of cloud computing field, there is no many

standard task scheduling algorithm used in cloud

environment. Especially that in cloud, there is high

communication costs that prevents well known task

schedulers to be applied in large scale distributed

environment [5], [9], [10]. Today, researchers attempt to

build job scheduling algorithms that are compatible and

applicable in Cloud Computing environment.

L. Mohammed Khanli et al. have proposed QoS tasks

scheduling algorithm as an aggregation formula in a specific

architecture called Grid-JQA [6], [7]. Such formula is a

combination of parameters and weighting factors to evaluate

QoS. Khanli's scheduling algorithm is not practical as it

hasn't a practical mathematical solution [2], [7].

X. He et al. have proposed an algorithm depends on the

original Min-min algorithm [5]. It is called QoS guided

Min-min, and it assigns tasks with high bandwidth before

others. QoS acts similar to Min-min when available tasks

have the same bandwidth so it preferred to use QoS guided

Min-min whenever submitted tasks have large bandwidth. At

that moment, QoS guided Min-min produces better results.

Similar to QoS guided Min-min, new algorithm called QoS

priority grouping scheduling that is proposed by F. Dong et al

[14]. QoS priority grouping scheduling algorithm considers

deadline and acceptation rate of the tasks and makespan of

the whole system as major factors for task scheduling. It

achieves better acceptance rate and completion time for

submitted tasks compared with Min-min and QoS guided

Min-min.

QoS Sufferage is new task scheduling algorithm presented

by E. Ullah Munir [15]. This algorithm considers network

bandwidth and assigns tasks based on their bandwidth

requirement as the QoS guided Min-min does. It achieves

smaller makespan compared to Max-min, Min-min; QoS

guided Min-min and QoS priority grouping algorithms.

K. Etminani et al. provided a new algorithm, that uses

Max-min and Min-min algorithms to select one of these two

algorithms depending on standard deviation of the expected

completion times of the tasks on each of the resources [16].

Saeed Parsa et al. proposed a new task scheduling

algorithm called RASA [2]. It takes advantage of both

Max-min and Min-min algorithm. RASA uses the Min-min

strategy to execute small tasks before large ones and applies

the Max-min strategy to avoid delays in the execution of the

large tasks and to support concurrency in the execution of

large and small tasks.

III. METHODOLOGY

A. TASK SCHEDULING ALGORITHMS

Task scheduling process is an allocation of one or more

time intervals to one or more resources [18]. In cloud

computing, the scheduling is a problem of scheduling a set of

submitted tasks from different users on a set of computing

resources to minimize the completion time of a specific task

or the makespan of a system. There are many other

parameters can be mentioned as factor of scheduling problem

to be considered such as load balancing, system throughput,

service reliability, service cost, system utilization and so

forth. Through comprehensive study of scheduling, Task

scheduling algorithm is a decision making process about

assigning and finding the best match between tasks and

resources. So scheduling is NP-complete problem [5], [13],

[18].

For producing a schedule, assume that we have m Resources

Rj (R1, R2, .., Rm) and we process n tasks Ti (T1, T2, .., Tn)

to be mapped on these resources. Also expected execution

time Eij of task Ti on resource Rj is defined as required time

of resource Rj to finish task Ti provided that Rj has no load

when assignment occurs. On the other side, expected

completion time Cij of task Ti on resource Rj is defined as the

overall time consumption till finishing any assigned task

previously assigned. Assume ri denote the beginning of

execution task Ti. From previous mentions, it can be

concluded that Cij = ri + Eij. The makespan of complete

schedule is defined as Max (Ci) where Ci is the completion

time for a task Ti [2].

Makespan is defined as a measure of the throughput of the

heterogeneous computing system; like the Cloud Computing

environment [11], [13]. Scheduling algorithms can be

categorized according to many polices as immediate and

batch scheduling, preemptive and non-preemptive

scheduling, static and dynamic scheduling, etc [20]. In

Immediate mode, tasks are scheduled as soon as arrive the

computing environment, while in the batch mode, tasks are

grouped into a batch; that is a set of meta-tasks would be

allocated at times called mapping events [21]. For example,

in the Minimum Execution Time (MET) algorithm

estimating the execution time of the submitted tasks on

available resources is calculated, choosing each task to a

resource would produce the minimum execution time for that

task [5], [11], [13], [16].

In contrast, the Max-min, Min-min and RASA algorithms

estimate the execution time and the completion time of each

task in meta-tasks; then assign the tasks on suitable resource;

each based on its decision rule. The Max-min algorithm is

commonly used in distributed environment which begins

with a set of unscheduled tasks. Then calculate the expected

execution matrix and expected completion time of each task

on the available resources. Next, choose the task with overall

maximum expected completion time and assign it to the

resource with minimum overall execution time. Finally

recently scheduled task is removed from the meta-tasks set,

update all calculated times, then repeat until meta-tasks set

become empty [11].

In the Max-min algorithm, shown in Fig 1, rj represents the

ready time of resource Rj to execute a task, while Cij and Eij

represent the expected completion time and Execution time

respectively. As shown, task Tk with maximum expected

completion time is chosen to be assigned for corresponding

resource Rj that gives minimum execution time.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-4, September 2012

200

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: D0940082412/2012©BEIESP

Fig 1: The Max-Min Algorithm

Each of Max-min, Min-min and RASA algorithms have

running time complexity of Ο(mn2), where m is the number

of resources currently in the system and n is the number of

submitted tasks which should be scheduled [2].

B. PETRI NETS

A Petri net [22] consists of places, transitions, and arcs.

Arcs run from a place to a transition or vice versa, never

between places or between transitions. The places from

which an arc runs to a transition are called the input places of

the transition; the places to which arcs run from a transition

are called the output places of the transition. Petri nets are

state-transition systems that extend a class of nets called

elementary nets, with nondeterministic execution.

Graphically, places in a Petri net may contain a discrete

number of marks called tokens. Any distribution of tokens

over the places will represent a configuration of the net called

a marking. In an abstract sense relating to a Petri net diagram,

a transition of a Petri net may fire whenever there are

sufficient tokens at the start of all input arcs; when it fires, it

consumes these tokens, and places tokens at the end of all

output arcs. A firing is atomic step.

Definition 1. A net is a triple N = (P, T, F) where:

1. P is a set of states, called places.

2. T is a set of transitions.

3. F where F ⊂ (P × T) ∪ (T × P) is a set of flow relations

called "arcs" between places and transitions (and

between transitions and places). A net is a bipartite

graph, where P is one partition and T is the other.

Moreover, for every t in T there exist p and q in P so that

(p, t) and (t, q) are in F and for every p and q in P, if (p, t)

and (t, q) are in F then p ≠ q.

The set P ∪ T are the net elements. The set of places define

the local states of a net, however, the global state of a net can

be defined by place subsets.

Definition 2. Given a net N = (P, T, F), a configuration is a

set C so that C ⊆ P.

Definition 3. An elementary net is a net of the form EN =

(N, C) where:

1. N = (P, T, F) is a net.

2. C is such that C ⊆ P is a configuration.

Definition 4. A Petri net is a net of the form PN = (N, M,

W), which extends the elementary net so that:

1. N = (P, T, F) is a net.

2. M so that M : P → Z is a place multiset, where Z is a

countable set. M extends the concept of configuration

and is commonly described with reference to Petri net

diagrams as a marking.

3. W so that W : F → Z is an arc multiset, so that the count

for each arc is a measure arc multiplicity.

a) before

b) after

Fig 2 Petri net before and after the transition fires

If a Petri net is equivalent to an elementary net, then Z can

be the countable set {0,1} and those elements in P that map to

1 under M form a configuration. Similarly, if a Petri net is not

an elementary net, then the multiset M can be interpreted as

representing a non-singleton set of configurations. In this

respect, M extends the concept of configuration for

elementary nets to Petri nets.

IV. PROPOSED ALGORITHM

Max-min algorithm allocates task Ti on the resource

Rj where large tasks have highest priority rather than

smaller tasks. For example, if we have one long task,

the Max-min could execute many short tasks

concurrently while executing large one. The total

makespan, in this case is determined by the execution

of long task. But if meta-tasks contains tasks have

relatively different completion time and execution

time, the makespan is not determined by one of

submitted tasks. It would be similar to the Min-min

makespan. For these cases, original Max-min

algorithm losses some of its major advantages as load

balance between available resources in small

distributed system configuration and small total

completion time for all submitted tasks in large scale

distributed environment. We can't use the Max-min

and wait submitted tasks to decide what would be the

allocation map, makespan, load balance, etc. We try to

minimize waiting time of short jobs through assigning

large tasks to be executed by

slower resources.

Extended Max-Min Scheduling Using Petri Net and Load Balancing

201

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: D0940082412/2012©BEIESP

On the other hand execute small tasks concurrently on

fastest resource to finish large number of tasks during

finalizing at least one large task on slower resource. Based on

these cases, where meta-tasks contains homogeneous tasks of

their completion and execution time, we proposed a

substantial improvement of Max-min algorithm that leads to

increase of Max-min efficiency.

The algorithm calculates the expected completion time of

the submitted tasks on each resource. Then the task with the

overall maximum expected execution time is assigned to a

resource that has the minimum overall completion time.

Finally, this scheduled task is removed from meta-tasks and

all calculated times are updated and the processing is

repeated until all submitted tasks are executed. The algorithm

focuses on minimizing the total makespan which is the total

complete time in large distributed environment, for example,

cloud computing environment also, executing tasks

concurrently on available resources achieving load balance in

small distributed system. The proposed algorithm produces

mapping schema similar to RASA in such concurrency

executing tasks and minimization of total completion time

required to finish all tasks. Selecting task with maximum

execution time leads to choose largest task should be

executed. While selecting resource consuming minimum

completion time means choosing slowest resource in the

available resources. So allocation of the slowest resource to

longest task allows availability of high speed resources for

finishing other small tasks concurrently. Also, we achieve

shortest makespan of submitted tasks on available resources

beside concurrently. Not as original Max-min which

recommended to be used if and only if submitted tasks is

heterogeneous in their completion time and execution time,

by means, there are clearly large tasks and small tasks.

Improved Max-min pseudo code is represented in Fig 3.

We denotes the expected completion time matrix as Cij that is

defined as rj, which represents ready time of resource Rj and

Eij, that is Execution Time of task Ti on resource Rj. Fig 3 is

a flowchart of proposed algorithm.

Fig 3: The Improved Max-Min Algorithm

Our algorithm derived from Max-min so that it has the

same time complexity Ο(mn
2
), similar to original Max-min,

Min-min and RASA where m is the number of resources and

n is the number of tasks. Next section explains simple

example to expose results.Step zero is responsible for

generating PetriNet based on Gantt Charts. A similar process

is achieved in generating the resource allocation graphs,

which is commonly done in database systems especially for

handling concurrency issues such as deadlock and

inconsistency [12].

V. IMPLEMENTATION AND EXPERIMENTS

A. Illustrative Example

In order to illustrate our algorithm, assume we have four

tasks T1, T2, T3 and T4 are in meta-tasks and scheduling

manager has two resources R1 and R2 as problem set 2. Table

1, represents processing speed and bandwidth of

communication links of each resource while Table 2,

represents the volume of instructions and data in tasks T1 to

T4. Using data given in Table 1 and Table 2, to calculate the

expected completion time and execution time of the tasks on

each of the resources.

Table 1. Resources Specification

Resourc

e

Processing

Speed (MIPS)

Bandwidth

(MBBS)

R1 150 300

R2 300 15

Table 2. Meta-Tasks Specification

Task
Instruction Vol.

(MI)
Data Vol. (MB)

T1 256 88

T2 35 31

T3 327 96

T4 210 590

Table 3 demonstrates calculated complete time of the tasks

and execution time at the same time. On next step of the

algorithm iteration, data in table 3 will be updated until all

tasks are allocated. Fig 4 includes Gantt Charts representing

the results of using original Max-min strategy on meta-tasks

while Fig 5 includes two Gantt Charts representing the results

of applying RASA and Improved Max-min, respectively. In

Fig 4, the original Max-min achieves total makespan 9

seconds and uses only one resource R1. For next Fig, 5.a,

RASA algorithm achieves total makespan 9 seconds, choose

alternatively between large tasks and small tasks respectively

because of number of resources is even [2] and uses just only

one resource. Fig 5.b, describes Gantts Charts of our

proposed scheduling algorithm which achieves makespan 8

seconds, introduces load balance between R1 and R2 and

concurrency execution of tasks. Although the orders of the

tasks scheduled in RASA and Improved Max-min is

different, the makespan of each is at least equally if not

smaller due to Improved Max-min. Based on experimental

results, Improved Max-min algorithm produces mapping

schema with better total makespan.

Table 3. Completion time of the tasks on each of the

resources

Task /

Resource
R1 R2

T1 2.0 6.0

T2 1.0 3.0

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-4, September 2012

202

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: D0940082412/2012©BEIESP

T3 3.0 8.0

T4 3.0 40.0

Fig 4: Gantt Charts of Max-min algorithm

 a. RASA b. Imp. Max-min

Fig 5: Gantt Charts of Improved Max-min and RASA.

B. Evaluation of Experiments

The Improved algorithm is simulated using JAVA 6

Technology. Table 4 demonstrates different available

resources of problem samples used for evaluation. Table 5

represents different submitted tasks in meta-tasks for each

problem samples. We use data in table 4 and 5 to calculate

makespan of each problem sample using different scheduling

algorithms. Fig 6 is used to describe the problem samples and

total time for completion; makespan using considered

algorithms Max-min and Improved Max-min. While Fig 7

compares makespan of Min-min, Max-min, RASA and

Improved Max-min as whole. We use data in Table 5 to

construct Fig 6 and 7. It is obviously that the proposed

algorithm schedules tasks with same makespan or less. Based

on results, our proposed Improved Max–min produces the

same total completion time or smaller than RASA and always

smaller than original Max-min. Also, Improved Max-min

scheduling presents concurrency execution of tasks using

available resources and load balance in small distributed

environment, cloud computing.

Table 4. Problem Samples Resources Specification

Problem

Sample
Resource MIPS MBBS

P 1
R1 50 100

R2 100 5

P 2
R1 150 300

R2 300 15

P 3
R1 300 300

R2 30 15

Table 5. Problem Samples Meta-Tasks Specification

Problem

Sample
Task MI MB

P 1

T1 128 44

T2 69 62

T3 218 94

T4 21 59

P 2

T1 256 88

T2 35 31

T3 327 96

T4 210 590

P 3

T1 20 88

T2 350 31

T3 207 100

T4 21 50

Table 6. Makespan of Problem Samples using algorithms

Problem

Sample

Min-

min

Max-

min

RAS

A

Imp.

Max-Min

P 1 11 11 10 10

P 2 9 9 9 8

P 3 5 5 5 4

Fig 6: Comparison of makespan

Fig 7: Comparison of makespan

0

2

4

6

8

10

12

p1 p2 p3

m
ak

e
sp

an

problem sets

Max-min

Imp. Max-Min

0

5

10

15

p 1 p 2 p 3

M
ak

e
sp

an

problem set

Min-min

Max-min

RASA

Imp. Max-min

Extended Max-Min Scheduling Using Petri Net and Load Balancing

203

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: D0940082412/2012©BEIESP

VI. CONCLUSIONS AND FUTURE WORKS

Min-Min and Max-Min algorithms are common applicable

in small scale distributed systems [21]. When the number of

small tasks is more than number of the large tasks in a

meta-task, the Max-min algorithm schedules tasks, in which

the makespan of the system relatively depends on how many,

executing small tasks concurrently with large one. If can't

execute tasks concurrently, makespan become large. To

overcome such limitations of Max-Min algorithm, a new

modification is applied for Max-min scheduling algorithm. It

uses the advantages of Max-Min and covers its

disadvantages. We employ Petri nets which are well suited

for modeling the concurrent behavior of distributed systems.

This study is only concerned with the number of the

resources and the tasks. The study can be further extended by

applying the proposed algorithm on actual cloud computing

environment and considering many other factors.

 REFERENCES

1. Salim Bitam, "Bees life algorithms for job scheduling in cloud

computing", International Conference on Computing and Information
Technology, 2012.

2. Saeed Parsa and Reza Entezari-Maleki , "RASA: A New Grid Task

Scheduling Algorithm", International Journal of Digital Content
Technology and its Applications,Vol. 3, pp. 91-99, 2009.

3. I. Foster, and C. Kesselman, The Grid 2: Blueprint for a New

Computing Infrastructure, Second Edition, Elsevier and Morgan
Kaufmann Press, 2004.

4. L. Chunlin, et al, "QoS based resource scheduling by computational

economy in computational grid," Journal of Information Processing
Letters, Vol. 98, pp. 119-126, 2006.

5. X. He, X-He Sun, and G. V. Laszewski, "QoS Guided Min-min

Heuristic for Grid Task Scheduling," Journal of Computer Sci. &
Technology, Vol. 18, pp. 442-451, 2003.

6. L. Mohammad Khanli, and M. Analoui, "Resource Scheduling in

Desktop Grid by Grid-JQA," The 3rd International Conference on Grid
and Pervasive Computing, IEEE, 2008.

7. L. Mohammad Khanli, and M. Analoui, "Grid_JQA: A QoS Guided

Scheduling Algorithm for Grid Computing," The Sixth International
Symposium on Parallel and Distributed Computing (ISPDC’07), IEEE,

2007.

8. E. Elmroth, et al, "Grid resource brokering algorithms enabling
advance reservations and resource selection based on performance

predictions," J. of Future Generation Computer Systems, Vol. 24,

pp.585-593, 2008.
9. B.T. Benjamin Khoo, B. Veeravalli, T. Hung, and C.W. Simon See, "A

multi-dimensional scheduling scheme in a Grid computing

environment," Journal of Parallel and Distributed Computing, Vol. 67,
pp. 659-673, 2007.

10. B. Yagoubi, and Y. Slimani, "Task Load Balancing Strategy for Grid

Computing," Journal of Computer Science, Vol. 3, No. 3, pp. 186-194,
2007.

11. M. Maheswaran, Sh. Ali, H. Jay Siegel, D. Hensgen, and R. F. Freund,

"Dynamic Mapping of a Class of Independent Tasks onto

Heterogeneous Computing Systems, Journal of Parallel and

Distributed Computing, Vol. 59, pp. 107-131, 1999.

12. William Stallings, Operating Systems, 6th Ed. Chapter 6 -
Concurrency: Deadlock and Starvation, Pearson Education

International, 2008

13. T. D. Braun, H. Jay Siegel, N. Beck, L. L. Boloni, M.Maheswaran, A.
I. Reuther, J. P. Robertson, M. D.Theys, and B. Yao, "A Comparison of

Eleven Static Heuristics for Mapping a Class of Independent Tasks
onto Heterogeneous Distributed Computing Systems, "Journal of

Parallel and Distributed Computing, Vol. 61, pp. 810-837, 2001.

14. F. Dong, J. Luo, L. Gao, and L. Ge, "A Grid Task Scheduling
Algorithm Based on QoS Priority Grouping," In the Proceedings of

the Fifth International Conference on Grid and Cooperative Computing

(GCC’06), IEEE, 2006.
15. E. Ullah Munir, J. Li, and Sh. Shi, 2007. QoS Sufferage Heuristic for

Independent Task Scheduling in Grid. Information Technology

Journal, 6 (8): 1166-1170.

16. K. Etminani, and M. Naghibzadeh, "A Min-min Max-min Selective

Algorithm for Grid Task Scheduling,"The Third IEEE/IFIP

International Conference on Internet, Uzbekistan, 2007.
17. A. Afzal, A. Stephen McGough, and J. Darlington, "Capacity planning

and scheduling in Grid computing environment," Journal of Future

Generation Computer Systems, Vol. 24, pp. 404-414, 2008.
18. P. Brucker, Scheduling Algorithms, Fifth Edition, Springer Press,

2007.

19. R. Buyya, and M. Murshed, "GridSim: A toolkit for the modeling and
simulation of distributed resource management and scheduling for grid

computing," Journal of Concurrency and Computation Practice and

Experience, pp 1175–1220, 2002.
20. D.I. George Amalarethinam and P. Muthulakshmi, "An Overview of

the scheduling policies and algorithms in Grid Computing ",

International Journal of Research and Reviews in Computer Science,
Vol. 2, No. 2, pp. 280-294, 2011.

21. T. Kokilavani and Dr. D.I. George Amalarethinam, "Load Balanced

Min-Min Algorithm for Static Meta-Task Scheduling in Grid
Computing", International Journal of Computer Applications, Vol. 20,

No. 2, pp. 43-49, 2011.

22. G. Rozenburg, J. Engelfriet, Elementary Net Systems, in: W. Reisig,
G. Rozenberg (Eds.), Lectures on Petri Nets I: Basic Models -

Advances in Petri Nets, volume 1491 of Lecture Notes in Computer

Science, Springer,1998, pp. 12-121

