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Abstract— Partial transmit sequence (PTS) is one of the 

attractive techniques to reduce the peak-to-average power ratio 

(PAPR) in orthogonal frequency division multiplexing (OFDM) 

system. As conventional PTS technique requires an exhaustive 

searching over all the combinations of the given phase factors, 

which results in the computational complexity increases 

exponentially with the number of the sub-blocks. In this paper, we 

aim to obtain the desirable PAPR reduction with the low 

computational complexity. Since the process of searching the 

optimal phase factors can be categorized as combinatorial 

optimization with some variables and constraints, we propose a 

novel scheme, which is based on a bacteria foraging optimization, 

to search the optimal combination of phase factors with low 

complexity. To validate the analytical results, extensive 

simulations have been conducted, showing that the proposed 

schemes can achieve significant reduction in computational 

complexity while keeping good PAPR reduction. 

 

Index Terms— Bacteria foraging optimization (BFO), 

orthogonal frequency division multiplexing (OFDM), partial 

transmit sequences (PTS), peak-to-average power ratio (PAPR).  

I. INTRODUCTION 

The limitation of modulation schemes in existing 

communication systems has become an obstruction in further 

increasing the data rate. Hence, next generation mobile 

communication systems need more sophisticated modulation 

scheme and information transmission structure. Orthogonal 

frequency division multiplexing (OFDM) has therefore been 

adopted due to its superior performance. OFDM is a widely 

used communication technique in broadband access 

applications requiring high data rates.  

In an OFDM system, the output is the superposition of 

multiple sub-carriers. In this case, some instantaneous power 

outputs might increase greatly and become far higher than the 

mean power of the system when the phases of these carriers 

are same. This is also defined as large Peak-to-Average 

Power Ratio (PAPR). High PAPR is one of the most serious 

problems in OFDM system. To transmit signals with high 

PAPR, it requires power amplifiers with very high power 

scope. These kinds of amplifiers are very expensive and have 

low efficiency-cost. If the peak power is too high, it could be 

out of the scope of the linear power amplifier. This gives rise 

to non-linear distortion which changes the superposition of 

the signal spectrum resulting in performance degradation. If 

there are no measures to reduce the high PAPR, OFDM 

system could face serious restriction for practical 

applications [1]–[3].  

To combat high PAPR, one intuitive solution is to adopt 

amplifiers to have larger trade-off range. However, these 

types of amplifiers are generally expensive and have low 

efficiency-cost, and therefore are of no practical use. On the 
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other side, certain algorithms were introduced and been 

proved to have a good performance of high PAPR reduction. 

Recently, various solutions have been proposed to alleviate 

the high PAPR problem, such as selective mapping (SLM) 

[5], [6], partial transmit sequence (PTS) [7], [8], [9], 

companding transform [10], [11], and active constellation 

extension (ACE) [12], [13]. One of the best techniques to 

reduce PAPR is partial transmit sequence (PTS) in OFDM. 

Hence, in this paper, an optimization technique with the 

existing PTS method is proposed. With all this the need for 

optimizing the solution is a must to ensure a better solution 

and hence better performance [4]. 

The principle of PTS is to divide the input data block into 

several disjoint sub-blocks and transform these sub-blocks 

into partial transmit sequences by inverse fast Fourier 

transform (IFFT). Then, the transmitted sequence with 

minimum PAPR is selected from a set of candidate sequences 

formed by multiplying partial transmit sequences with a set 

of phase factors. Using the PTS technique needs an 

exhaustive search of the possible phase factors to obtain 

optimal PAPR performance. Moreover, the computational 

load becomes impractical while the number of sub-blocks or 

phase factors increased. Although much research has been 

devoted to improve the PAPR performance in OFDM 

systems, much research has been done on reducing the 

computational load of PTS technique [14]–[16]. 

However, the big issue of finding the optimal phase 

combination for PTS sequence is complex and difficult when 

the number of subcarriers and the order of modulation are 

increased. To reduce the computational complexity, many 

extensions of PTS schemes have been proposed recently 

[7]–[12], such as adaptive PTS approach [13]. However, for 

all these searching methods, either the PAPR reduction is 

suboptimal or the complexity is still high. In this paper, we 

propose a novel solution to reduce the complexity while 

keeping the optimal combination of the phase factors to 

reduce the PAPR largely. Specifically, we apply the Bacteria 

foraging optimization (BFO) [28] to search the optimal 

combination of phase factors with largely reduced 

complexity. Numerical results show that the proposed 

scheme can achieve better PAPR reduction with lower 

computational complexity compared to that of the former 

approaches. 

The rest of this paper is organized as follows. In Section II, 

a typical OFDM system is given and the PAPR problem is 

formulated and then PTS is explained. Then, BFO is 

proposed to search the optimal combination of phase factors 

for PTS in Section III. In Section IV, the performance of 

OFDM signals are studied and evaluated using the proposed 

scheme to reduce the PAPR through computer simulations, 

followed by conclusions in Section V. 
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II. OFDM SYSTEM WITH PTS TO REDUCE PAPR 

OFDM is one of the many multicarrier modulation 

techniques, which provides high spectral efficiency, low 

implementation complexity, less vulnerability to echoes and 

non linear distortion. Due to these advantages of the OFDM 

system, it is vastly used in various communication systems. 

But the major problem one faces while implementing this 

system is the high peak to average power ratio of this system. 

A large PAPR increases the complexity of the analog to 

digital and digital to analog converter and reduces the 

efficiency of the radio frequency (RF) power amplifier [16]. 

Regulatory and application constraints can be implemented 

to reduce the peak transmitted power which in turn reduces 

the range of multi carrier transmission.  

However, the recent interest in the applications of OFDM 

to wireless networks has resulted in development of methods 

to combat PAPR problem. PAPR reduction techniques are 

therefore of great importance for OFDM systems [17]. 

Coherent addition of N signals of same phase produces a 

peak which is N times the average signal.  

A. PAPR of a multicarrier signal  

Let the data block of length N is represented by a vector. 

Duration of any symbol in the set X(k) is T and represents 

one of the sub carriers set. As the N sub carriers chosen to 

transmit the signal are orthogonal to each other, so we can 

have where and NT is the duration of the OFDM data block 

X(K). The complex data block for the OFDM signal to be 

transmitted is given by the IFFT relation which is 







1N

1K

πkf2j 0eX(k)x(t)             (1) 

    
 

Let  be the input block of N symbols, f0 is the Bandwidth 

of each sub carrier. Then the Peak to average power ratio 

(PAPR) is expressed as  
 

      PAPR = max (0  t  Ts) | x(t)|
2
                 (2) 

         E[|x(t)|
2
]  

Where |x(t)|
2
  represents peak output power, E[|x(t)|

2
] 

means average output power. E denotes the expected value, 

x(t) represents the transmitted OFDM signals which are 

obtained by taking IFFT operation on modulated input 

symbols (k). 

For an OFDM system with N sub-carriers, the peak power 

of received signals is N times the average power when phase 

values are the same. The PAPR of baseband signal will reach 

its theoretical maximum at 𝑃𝐴𝑃𝑅 (𝑑𝐵) =10log 𝑁 [4]. 
PAPR is stochastically measured in terms of CCDF 

(complementary cumulative distribution function) which is 

given as 

     CCDF (PAPR0) = Pr (PAPR > PAPR0)      (3) 

CCDF of PAPR denotes the probability that the PAPR of 

the data exceeds of a given threshold value PAPR0.Using the 

central limit theorem on OFDM signals, when the time 

domain signals follow the Gaussian distribution with zero 

mean, the amplitude of multi carrier signal has a Rayleigh 

distribution and is given by 

                         F (PAPR0) = 1 – exp (PAPR0)       (4)  

B. Principle of Operation 

Fig.1 illustrates the block diagram of PTS scheme. In PTS 

technique the data information in frequency domain Xi is 

separated into M non-overlapping sub-blocks and each 

sub-block vectors has the same size N. 

 
Fig.1 Block diagram of PTS algorithm [3] 

  

Hence, for every sub-block, it contains N/M nonzero 

elements and set the rest part to zero. Assume that these 

sub-blocks have the same size and no gap between each 

other, the sub-block vector is given by 

             (5) 

where M1,2......,iπ0,2eb i

j

i
i  and

is a weighting 

factor been used for phase rotation . where bi are the phase 

factors expressed as 

         1W......0,1.......w,eb W

πw2j

i                       (6)
 

 

and W is the allowed number of phase angles The signal in 

time domain is obtained by applying IFFT operation on 𝑋i, 

that is 





M

1i
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M

1i

i x.b)IFFT(Xb)X̂IFFT(x̂

                  (7)

 

Select one suitable factor combination b = [𝑏1,2,…,𝑏i] 

which makes the result achieve optimum. The combination 

can be given by  





M

i

iiNnbbb xbbibbb
i
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2

1).......,(21 )|.|(maxminarg],........,[
21

    (8)

 

Where argmin (·) is the judgment condition that output the 

minimum value of function. In this approach the best b is 

found so as to optimize the PAPR performance. The 

additional cost that have to pay is the extra V-1 times IFFTs 

operation [3]. In conventional PTS approach, it requires the 

PAPR value to be calculated at each step of the optimization 

algorithm, which will introduce tremendous trials to achieve 

the optimum value [17], [18]. Furthermore, in order to enable 

the receiver to identify different phases, phase factor b is 

required to send to the receiver as sideband information 

(usually the first sub-block 𝑏1, is set to 1). So the redundancy 

bits account for (M−1)log2 𝑊, in which M represents the 

number of sub-block, W indicates possible variations of the 

phase. This causes a huge burden for OFDM system, so 

studying on how to reduce the computational complexity of 

PTS has drawn more attentions, nowadays. 

OFDM Signal 


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M
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III.  PROPOSED PAPR REDUCTION APPROACH 

To tackle complex search problems of the real world, 

scientists have been drawing inspiration from nature and 

natural creatures for years. Optimization is at the heart of 

many natural processes like Darwinian evolution, group 

behavior of social insects, and the foraging strategy of other 

microbial creatures. Natural selection tends to eliminate 

species with poor foraging strategies and favor the 

propagation of genes of species with successful foraging 

behavior since they are more likely to enjoy reproductive 

success. Since a foraging organism or animal takes necessary 

action to maximize the energy intake per unit time spent for 

foraging, considering all the constraints presented by its own 

physiology such as sensing and cognitive capabilities, 

environment (e.g., density of prey, risks from predators, 

physical characteristics of the search space), the natural 

foraging strategy can lead to optimization and essentially this 

idea can be applied to solve real-world optimization 

problems [28]. Based on this concept, Passino proposed an 

optimization technique known as the bacterial foraging 

optimization algorithm (BFOA). To date, BFOA has 

successfully been applied to real-world problems such as 

optimal controller design [31], harmonic estimation [34], 

transmission loss reduction, active power filter synthesis, and 

learning of artificial neural networks [37]. One major step in 

BFOA is the simulated chemotactic movement. Chemotaxis 

is a foraging strategy that implements a type of local 

optimization, where the bacteria try to climb up the nutrient 

concentration to avoid noxious substance and search for ways 

out of neutral media. 

    Recently BFO algorithm has been successfully applied in 

different applications and shown that it is giving better 

performance compared to different constrained PSO and GA. 

Due to multimodal, nonlinear, and high-dimensional nature 

of the parameter space, the problem seems to be a good 

application area for BFO. BFO has a better chance to attain 

the global optimum and BFO is less sensitive to initialization, 

however, a good initial guess speeds up the computation. All 

these features make BFO more attractive for direction finding 

applications [33], [35].  

A.  The Bacteria Foraging Optimization Algorithm 

    During foraging of the real bacteria, locomotion is 

achieved by a set of tensile flagella. Flagella help an E.coli 

bacterium to tumble or swim, which are two basic operations 

performed by a bacterium at the time of foraging [28]. When 

they rotate the flagella in the clockwise direction, each 

flagellum pulls on the cell. That results in the moving of 

flagella independently and finally the bacterium tumbles with 

lesser number of tumbling whereas in a harmful place it 

tumbles frequently to find a nutrient gradient. Moving the 

flagella in the counterclockwise direction helps the bacterium 

to swim at a very fast rate. In BFO algorithm the bacteria 

undergoes chemotaxis, where they like to move towards a 

nutrient gradient and avoid noxious environment. Generally 

the bacteria move for a longer distance in a friendly 

environment. Fig.2 depicts how clockwise and counter 

clockwise movement of a bacterium take place in a nutrient 

solution. 

 
Fig.2 Swim and tumble of a bacterium [28] 

    When they get food in sufficient, they are increased in 

length and in presence of suitable temperature they break in 

the middle to from an exact replica of itself. This 

phenomenon inspired Passino to introduce an event of 

reproduction in BFOA [30]. Due to the occurrence of sudden 

environmental changes or attack, the chemotactic progress 

may be destroyed and a group of bacteria may move to some 

other places or some other may be introduced in the swarm of 

concern. This constitutes the event of elimination-dispersal in 

the real bacterial population, where all the bacteria in a region 

are killed or a group is dispersed into a new part of the 

environment. 

The information processing strategy of the algorithm is to 

allow cells to stochastically and collectively swarm toward 

optima. This is achieved through a series of three processes 

on a population of simulated cells:  

1)  'Chemotaxis' where the cost of cells is derated by the 

proximity to other cells and cells move along the 

manipulated cost surface one at a time (the majority of 

the work of the algorithm),  

2)  'Reproduction' where only those cells that performed 

well over their lifetime may contribute to the next 

generation, and  

3)  'Elimination-dispersal' where cells are discarded and 

new random samples is inserted with a low probability. 

B.  Flowchart of BFOA Algorithm 

  The different steps used in BFOA are shown in Fig.3. 

C.  Formulation of BFO Algorithm in PTS 

 As stated in above section, Bacteria perceive the direction to 

food based on the gradients of chemicals in their 

environment. Similarly, bacteria secrete attracting and 

repelling chemicals into the environment and can perceive 

each other in a similar way. Using locomotion mechanisms 

(such as flagella) bacteria can move around in their 

environment, sometimes moving chaotically (tumbling and 

spinning), and other times moving in a directed manner that 

may be referred to as swimming. Bacterial cells are treated 

like agents in an environment, using their perception of food 

and other cells as motivation to move, and stochastic 

tumbling and swimming like movement to re-locate. 

Depending on the cell-cell interactions, cells may swarm a 

food source, and/or may aggressively repel or ignore each 

other.  
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Fig.3 Flowchart of BFO 

Now suppose that the ultimate goal is to find the minimum 

of J(q). To solve this non-gradient optimization problem, 

BFOA mimics the four principal mechanisms observed in a 

real bacterial system: 

 chemotaxis,  

 swarming,  

 reproduction, and  

 elimination-dispersal  

A virtual bacterium is actually one trial solution (may be 

called a search-agent) that moves on the functional surface to 

locate the global optimum. A chemotactic step can be defined 

as a tumble followed by a tumble or a tumble followed by a 

run. 

Let j be the index for the chemotactic step. Let k be the 

index for the reproduction step. Let l be the index of the 

elimination-dispersal event. Also, the following parameters 

are set before initializing the loops. 

p: Dimension of the search space, 2 

S: Total number of bacteria in the population 

Nc : The number of chemotactic steps, S 

Ns: The swimming length, gen 

Sr:  The number of bacteria reproduced per gen, S/2 

Nre : The number of reproduction steps, gen 

Ned : The number of elimination-dispersal events, gen/2 

Ped : Elimination-dispersal probability, 0.5 

C (i): The size of the step taken in the random direction 

specified by the tumble, unit vector. 

Let P( j, k, l) { ( j, k, l) | i 1,2,..., S}i = q = represent the 

position of each member in the population of the S bacteria at 

the j-th chemotactic step, k-th reproduction step, and l-th 

elimination-dispersal event. Here, let J (i, j, k, l) denote the 

cost at the location of the i-th bacterium.  

The brief description of prime steps in BFOA is given 

below. 

i) Chemotaxis: This process simulates the movement of an 

E.coli cell through swimming and tumbling via flagella. 

Biologically an E.coli bacterium can move in two different 

ways. It can swim for a period of time in the same direction or 

it may tumble, and alternate between these two modes of 

operation for the entire lifetime. Suppose (j, k, l)i q represents 

i-th bacterium at jth chemotactic, k-th reproductive and l-th 

elimination-dispersal step. C(i) is the size of the step taken in 

the random direction specified by the tumble (run length 

unit). Then in computational chemotaxis the movement of the 

bacterium may be represented by 

  
Δ(i)(i)Δ

Δ(i)
C(i)l)k,(j,θl)k,1,(jθ

T

ii 

             (9)

 

Where Δ indicates a vector in the random direction whose 

elements lie in [-1, 1]. 

ii) Swarming: An interesting group behavior has been 

observed for several motile species of bacteria including 

E.coli and S. typhimurium, where intricate and stable 

spatio-temporal patterns (swarms) are formed in semisolid 

nutrient medium. A group of E.coli cells arrange themselves 

in a traveling ring by moving up the nutrient gradient when 

placed amidst a semisolid matrix with a single nutrient 

chemo-effecter. The cells when stimulated by a high level of 

succinate, release an attractant aspertate, which helps them to 

aggregate into groups and thus move as concentric patterns of 

swarms with high bacterial density. Determination of nutrient 

function [Jhealth] is done and accordingly positions of bacteria 

are sorted. 

iii) Reproduction: The least healthy bacteria eventually die 

while each of the healthier bacteria (those yielding lower 

value of the objective function) asexually split into two 

bacteria, which are then placed in the same location. This 

keeps the swarm size constant. The Sr bacteria with the 

highest Jhealth values die and the remaining Sr bacteria with 

the best values split (this process is performed by the copies 

that are made are placed at the same location as their parent). 

iv) Elimination and Dispersal: Gradual or sudden changes 

in the local environment where a bacterium population lives 

may occur due to various reasons e.g. a significant local rise 

of temperature may kill a group of bacteria that are currently 

in a region with a high concentration of nutrient gradients. 

Events can take place in such a fashion that all the bacteria in 

a region are killed or a group is dispersed into a new location. 

To simulate this phenomenon in BFOA some bacteria are 

liquidated at random with a very small probability while the 

new replacements are randomly initialized over the search 

space. 

IV. SIMULATION RESULTS AND DISCUSSIONS 

To evaluate and to compare the performance of the 

suboptimal PTS, numerous computer simulations have been 

conducted to determine the PAPR improvements. QPSK 

modulation is employed with N =128, 256 sub-carriers. The 

phase weighting factors W= 2, 4 have been used. In order to 

generate the Complementary Cumulative Distribution 

Function (CCDF) [13] of the PAPR, 10,000 random OFDM 

frames have been generated. The sampling rates for an 

accurate PAPR need to be increased by 4 times.  

In fig.4, for number of sub-blocks, V=16 and N=128, the 

effect of change in number of generations [1, 5, 10, 20, 30, 

40] is seen. The number of bacteria selected is 30 and the 

reduction is 5.65dB is noticed at 10
-3

 with g=40. 
The same effect is seen for N=256 in fig.5. It is noticed that 

at g=1 to g=10, the reduction is of 0.7dB at 10
-3

. Also for 

further increase is in number of chemotactic steps does not 

lead to much reduction. 
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Fig.4 CCDF performance at different number of 

generations at N=256, W=4, V=16, S=30. 
 

   In table I, for various number of generations, PAPR 

performance at 10-3 for N=128 and 256 is seen. For every 

increase in generations from 1 to 10, there is noticeable 

reduction of PAPR. For further increase in generations, the 

reduction is almost the same. So, for this approach the 

number of generation selected is 10.  

Table I- Comparison of performance at different number 

of generations 
Number of 

generations, 

gen 

Performance 

(PAPR at 0.001) at 

N=128 

Performance 

(PAPR at 0.001) at 

N=256 

1 6.56 dB 7 dB 

5 6 dB 6.5 dB 

10 5.78 dB 6.3 dB 

20 5.75 dB 6.295 dB 

30 5.73 dB 6.29 dB 

40 5.7 dB 6.287 dB 
 

   Comparing with PSO, by taking same parameters [N=256, 

V=16, W=4], at number of generations 10 this approach 

gives 6.54dB reduction in PAPR at 10
-4

 and at gen=20 the 

reduction is 6.5dB where as in PSO it gives 7dB reduction. In 

table II, it is cleared that BFO gives better reduction than PSO 

with reduced number of generations. 
 

Table II- Comparison of performance at different 

number of generations in PSO and BFO 
 

Method  Generation, gen Performance 

(PAPR at 0.001) 

PSO[5] 30 dB 7 dB 

BFO 10 dB 6.54 dB 

BFO 20 dB 6.5 dB 
 

Fig.5 shows the simulated results of the BFO assisted PTS 

technique, in comparison against normal OFDM for number 

of sub-blocks V. V is one of value in the set [2, 4, 8, 16, 32]. 

In particular, the PAPR of an OFDM signal exceeds 10.7 dB 

for 10
-3

 of the possible transmitted OFDM blocks. However, 

by introducing PTS approach with V=16 clusters partition 

with phase factors limited to W=2, the 10
-3

 PAPR reduces to 

4.7 dB. In short, new approach can achieve a reduction of 

PAPR by approximately 5 dB at the10
-3

 PAPR. Thus, the 

performance of the techniques is better for larger V since 

larger numbers of vectors are searched for larger V in every 

update of the phase weighting factors. Moreover, it can be 

observed that probability of very high peak power has been 

increased significantly if PTS techniques are not used. As the 

number of sub-blocks and the set of phase weighting factor 

are increased, the performance of the PAPR reduction 

becomes better. However, the processing time gets longer 

because of much iteration. From fig.5, as expected, the 

improvement increases as number of clusters increases.  

 
Fig.5 PAPR reduction performance for BFO algorithm, 

W=2, N=128, gen=10, S=30 

The effect of increasing phase factors is also studied which 

is shown in fig.6.in this simulation, W is increased to 4 [1, -1, 

1j, -1j]. By increasing number of phase factors the reduction 

is increased. The PAPR is reduced to 5.6 dB at 10
-3

, so the 

reduction of 5 dB is achieved from the default OFDM signal. 

 

Fig.6 PAPR reduction performance for BFO algorithm 

N=128, S=30 

    In table III, the PAPR performance is analyzed at various 

sub-blocks and phase factors for population size 30. It is 

noticed that the performance at 10
-3

 is minimum at W=4, 

V=32 ie.5.4 dB and at W=2, V=32 i.e.5.2 dB. Thus, using the 

BFO technique, better results are obtained than the previous 

published work. 

   In table IV, the fair comparison of BFO assisted PTS 

scheme is done with other stochastic approaches by selecting 

N =128,V=8,W=4,and gen=10,S=30.The exhaustive search 

algorithm (ESA) [7], simulated annealing (SA) [6], Genetic 

algorithm (GA) [3] , Particle swarm optimization (PSO) [5], 

Electromagnetism (EM ) [7] searching method to compare 

the performance of PAPR reduction with that of the BFO 

method. In the ESA, the selection of the phase factors is 

limited to a set of finite number of elements. The 

performance is analyzed at 10-3 and it is seen that with BFO 

the reduction is more than the other methods. 
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Table III- PAPR performance of proposed method at 

different sub-blocks 

Number 

of sub- 
Number 

of Phase 

factors,W 

Performance 

(PAPR 

0.001) of 

other 

methods 

Performance 

(PAPR 

0.001) of 

proposed 

BFO 

method 

blocks,V 

8 2 
PSO[5] – 

6.5 dB 
6.6 dB 

16 2 
PSO[5] - 

6.1dB 
6 dB 

4 4 
GA[3] – 7 

dB 
6.8 dB 

8 4 

SA[6]- 6.7 

dB 

6.08 dB 

PSO[5]- 

6.4dB 

GA[3]-6.49 

dB 

EM[7]-6.3 

dB 

 
 

Table IV-Comparison of PAPR performance of BFO 

assisted PTS technique with the published work at N=128 

Number of 

sub-blocks, V 

Phase 

factors, W 

Performance (PAPR 

0.001) at S=30 

2 4 8.8 dB 

4 4 6.8 dB 

8 4 6.08dB 

16 4 5.56 dB 

32 4 5.4 dB 

8 2 6.5 dB 

16 2 6 dB 

32 2 5.7 dB 

 

In table V, the amount complexity is analyzed and in BFO 

there are 4 steps applied on each bacteria and it is given as    

Complexity=4*s*gen. 

With reduced complexity of 1200 and 1600, the BFO 

approach shows reduced PAPR of 6.08 dB and 6.02 dB 

respectively than other published work. Therefore, the 

proposed BFO method can offer better PAPR reduction while 

keeping a low complexity. 
 

Table V- Comparison of amount complexity and 

performance of BFO assisted PTS technique with the 

published work 

V. CONCLUSION 

The implementation of the proposed BFO algorithm also 

showed considerable decrease in PAPR value with the 

increase in the accuracy of OFDM system as compared with 

the already published work. The amount complexity when 

was compared and validated against the ordinary PTS 

approach was found to be less. Hence, BFO proves to be 

computationally efficient than ordinary PTS approach. 
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