
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-5, November 2012

206

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: E1043102512/2012©BEIESP

Abstract — The paper presented here deals with image

encryption using the well-known algorithm of discrete Fourier

transform (DFT). The DFT of real values has a special property

called the conjugate symmetry property X (N-m) = X*(m) | m = 0,

1,..N-1 which is the basis for this paper. The grayscale pixel values

of the image to be encrypted are read into a matrix. Using this

property we need to find the 1D -DFT for only the first ⌈N/2⌉
terms. Then we make two images of size N/2*N which are termed

as ‘real image’ and ’imaginary image’ using suitable

modifications. The two images are appended after encrypting their

pixel values using two key values which serve as the shared secret

between two parties. On the receiver side the two images are

separately read and their pixel values are retrieved and decrypted

and the image can be regenerated by finding the inverse 1D-DFT

of the obtained pixel values.

Index Terms — Complex conjugate symmetry, DFT, Grayscale

images, IDFT, Image encryption.

I. INTRODUCTION

Image encryption has found its use at many places where

security of the graphical images is an issue. The popular use

has been stenography where unlike cryptography the

message in any form is not at all visible to the eavesdropper.

Here in this paper we have exploited a very interesting

property of discrete Fourier transform (DFT) which is known

as complex conjugate symmetry property. This property

allows us to calculate only ⌈N/2⌉ terms of the DFT while rest

can be computed using the equations as X (N-m) = X* (m).

To send an encrypted image we first compute the grayscale

pixel values of the image and store it as a huge matrix

(512x512, preferably some power of 2). Next we compute the

DFT of the grayscale values and obtain the N/2*N terms.

This gives us the DFT elements as complex numbers. We

then make two images of size N/2xN which we call as real

image and imaginary image. The two images are appended

and transmitted to the intended user. The receiver would scan

the two images as per the described algorithm and then

decrypts and reconstructs the image to obtain the original

image. We have used 1-D DFT because many other parts of

the algorithm would require the input data to be linear rather

than in 2-D matrix.

II. CONJUGATE SYMMETRY PROPERTY OF DFT

DFT is a mathematical transform used in Fourier analysis.

The motive is to convert a given time-domain discrete signal

into a signal in frequency domain. This is necessary because

of several reasons like efficient processing, mathematical

simplicity and computational relevance. The DFT of a

discrete time signal x(n) is given by the equation.

Manuscript Received on November, 2012.

Pankesh Bamotra, SCSE, VIT University, Vellore, Tamil Nadu, India..

Prashant Dwivedi, SCSE, VIT University, Vellore, Tamil Nadu, India.

Where k = 0, 1… N-1, N is size of the sample.

Now if the input signal x(n) is a real-valued discrete time

signal then as the complex conjugate symmetry property of

DFT says,

 Where X* denotes the complex conjugate of X(k).

III. METHODOLOGY

To begin with we first scan the input grayscale image in

horizontal direction while retracing to next scan line after

scanning till the width. We store these pixel values into a file.

After this step we will have a file containing a NxN sized

matrix form of the pixel values ranging from 0-255. Next we

find the DFT of the grayscale values obtained line by line

while restricting the DFT computation upto first ⌈N/2⌉
values. This gives us a DFT of grayscale image with total

N/2xN terms which are complex numbers. Next we form two

arrays arr [] and brr [] each having real and imaginary part of

the complex term respectively. Now since these two arrays

may have both positive and negative terms we have to

convert each term into a positive quantity. This is achieved by

adding absolute value of the minimum value (Rm and Im) of

each array to each term in the array. These terms are used as

the key between the communicating parties to encrypt and

decrypt the graphic information. After normalizing the terms

into positive quantities we now represent the two arrays as

combination of two images. To achieve this we first

converted the values in each array to hexadecimal values

followed by appending required number of 0s to convert it

into a legitimate RGB hex code which is then displayed as an

image of blue dots. The two images then obtained are

appended to each other. This process has been shown in Fig.

1. This amalgamated image is transmitted to the receiver end

who first scans the image as in a specific pattern as shown in

Fig. 2. The result is again two arrays arr [] and brr [] which

are then decrypted back to the original terms using the key

value pair (Rm and Im). After this the inverse DFT is

calculated using both the array values giving N/2xN terms

which are extrapolated using the conjugate symmetry

property giving a total of NxN terms. The inverse DFT gives

the values of the original grayscale pixel values which are

then converted to give the original image. In section V we

discuss some comparison measures between the original

image and the image obtained after performing inverse DFT.

Secure Transmission of Grayscale Images using

Discrete Fourier Transform

Pankesh Bamotra, Prashant Dwivedi

Secure Transmission Of Grayscale Images Using Discrete Fourier Transform

207

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: E1043102512/2012©BEIESP

Fig. 1 Combination of real and imaginary image

Fig. 2 Scanning pattern

IV. IMPLEMENTATION IN PYTHON

from cmath import exp, pi

import csv

from Tkinter import *

import pygame

import re

#DFT/ FFT function

def fft(x):

 N = len(x)

 if N <= 1: return x

 even = fft(x[0::2])

 odd = fft(x[1::2])

 return [even[k] + exp(-2j*pi*k/N)*odd[k] for k in

xrange(N/2)] + \

 [even[k] - exp(-2j*pi*k/N)*odd[k] for k in

xrange(N/2)]

#Inverse DFT/ FFT function

def ifft(x):

 N = len(x)

 if N <= 1: return x

 even = ifft(x[0::2])

 odd = ifft(x[1::2])

 return ([even[k] + exp(2j*pi*k/N)*odd[k] for k in

xrange(N/2)] + \

 [even[k] - exp(2j*pi*k/N)*odd[k] for k in

xrange(N/2)])

def app(n):

 n=n.replace("0x","")

 difference = 6-len(n);

 append=["0","00","000","0000","00000","000000"];

 n=append[difference-1]+n;

 return n

def dep(n):

 n=re.sub(r'^0{1,4}',"",n)

 return n

#Pixels.txt has the grayscale values of the image

file = open("pixels.txt","r")

f = open("fft.csv","w")

for line in file.readlines():

 arr=[]

 for x in line.split():

 arr.append(int(x))

 wr = csv.writer(f, quoting=csv.QUOTE_ALL)

 wr.writerow(fft(arr))

f.close()

i=0+0j

fx=open("final","w")

f = open("fft.csv","r")

count =0

count1 =0

for row in f.readlines():

 count=0

 for element in row.split(","):

 element= str(element).replace("(","")

 element= str(element).replace(")","")

 element= str(element).replace(" ","")

 fx.write(element)

 if count<511:fx.write("\n")

 count=count+1

fx.close()

arr_real=[]

arr_imag=[]

c=0

fx=open("final","r")

for x in fx.readlines():

 x=x.replace("\n","")

 x=x.replace("\"","")

 if(x.replace("\s+","")==""):continue

 arr_real.append (int(complex(x).real))

 arr_imag.append (int(complex(x).imag))

 c=c+1

i=0

#add and bdd serves as the keys (Rm and Im)

add=abs(min(arr_real))

bdd=abs(min(arr_imag))

while i<len(arr_real):

 arr_real[i]+=add

 i=i+1

i=0

while i<len(arr_real):

 arr_imag[i]+=bdd

 i=i+1

fo=open("afile","w")

i=0

j=0

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-5, November 2012

208

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: E1043102512/2012©BEIESP

ar=[]

index=0

for X in xrange(512):

 ar.append([])

 for Y in xrange(512):

 ar[X].append(app(str(hex(arr_real[index]))))

 index=index+1

for X in xrange(512):

 fo.write(str(ar[X])+"\n")

fo.close()

foo=open("bfile","w")

br=[]

index=0

for X in xrange(512):

 br.append([])

 for Y in xrange(512):

 br[X].append(app(str(hex(arr_imag[index]))))

 index=index+1

for X in xrange(512):

 foo.write(str(br[X])+"\n")

foo.close()

screen = pygame.display.set_mode((512,512))

clock = pygame.time.Clock()

while 1:

 clock.tick(60)

 for event in pygame.event.get():

 if event.type == pygame.QUIT:system.exit()

 for x in xrange(256):

 for y in xrange(512):

 PO=ar[x][y]

 red = int(PO[0:2],16)

 green = int(PO[2:4],16)

 blue = int(PO[4:6],16)

 screen.set_at((x, y), (red, green, blue))

 x_dir=0

 y_dir=0

 for x in xrange(257,512):

 for y in xrange(512):

 PO=br[x_dir][y_dir]

 red = int(PO[0:2],16)

 green = int(PO[2:4],16)

 blue = int(PO[4:6],16)

 y_dir=y_dir+1

 screen.set_at((x, y), (red, green, blue))

 x_dir=x_dir+1

 y_dir=0

 pygame.display.flip()

ibr = []

ind = 0

#inverse DFT is performed here

results = open("result.txt","w")

for X in xrange(512):

 ibr.append([])

 for Y in xrange(512):

 IMAG=int(dep(br[X][Y]),16)-bdd

 REAL=int(dep(ar[X][Y]),16)-add

 CMP = complex(REAL,IMAG)

 ibr[X].append(CMP)

 IDFT = ifft(ibr[X])

 for ilu in xrange(len(IDFT)):

 results.write(str(int(IDFT[ilu].real/512))+" ")

 results.write("\n")

results.close()

V. RESULTS

In our case, we took a 512x512 image (lena.bmp) Fig 3.

Next we read the grayscale values into a file named pixels.txt

containing values ranging from 0-255. After this we

performed the DFT using FFT algorithm to obtain the

combined images i.e. real and imaginary image using the key

values Rm and Im. Then we decrypted the image values after

scanning it in zigzag pattern (see Fig. 5). At last inverse DFT

was performed to obtain the original image pixel values.

Fig. 3 Lena.bmp (Original)

Fig. 4 Reconstructed image PSNR = 52.7203

The steps of the process can be summarized in the

following diagram:-

Fig. 5 Procedure flow

Secure Transmission Of Grayscale Images Using Discrete Fourier Transform

209

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: E1043102512/2012©BEIESP

VI. CONCLUSION

The complex conjugate symmetry property of the DFT was

successfully used to encrypt a grayscale image. Initially we

calculate DFT only for half of the terms while rest can be

extrapolated using the property. The results of the simulation

were very impressive and gave a PSNR (Peak Signal to Noise

Ratio) of 52.7203 which is considered to be very good. The

algorithm employed here can be used for various purposes

wherever there is a need for encrypting the images to prevent

being seen by the eavesdropper. This is obviously taken care

of, by using the key values which can encrypt and decrypt the

original image.

REFERENCES

1. Vilardy, J.M.., “Digital image phase encryption using fractional

Fourier transform”, Electronics, Robotics and Automotive Mechanics

Conference, 2006.

2. John A. Stuller, „Introduction to signals and systems‟, Cengage
learning, 2010

3. Cornell University library archives, http://arxiv.org/list/cs/recent.

AUTHORS PROFILE

Pankesh Bamotra, is a student of B.Tech in computer
science and engineering studying in final year at VIT

University, Vellore, Tamil Nadu. He has keen interest in
network security and other areas interest include concurrent

and distributed systems. He is an active member of

Computer Society of India.

Prashant Dwivedi, is a student of B.Tech in computer

science engineering studying in final year at VIT

University, Vellore, Tamil Nadu. His interests include Data

mining, network security and machine learning. He has
co-authored paper with Pankesh Bamotra. He is an active

member of Computer Society of India.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4019694
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4019694
http://arxiv.org/list/cs/recent

