
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-5, November 2012

281

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E1067102512/2012©BEIESP

Abstract — This paper presents a modified March (8n) test

algorithm to the Built-In Self-Test (BIST) for Single Port

Memory. In this algorithm, test patterns are complemented to

generate state-transitions that are needed for the detection of

frequently occurring as well as newer occurring faults with the

shrinking of channel length. The test pattern will be generated for

the single port memory. The use of 8n pattern to generate state

transition allow to reducing both of time and energy for detection

of faults. As a result, the number of test patterns required is very

less than of the traditional method, while the extra hardware is

negligible.

Keywords—March Algorithm, BIST (Built-In-Self-Test),

Channel Length, Faults, Test-Pattern.

I. INTRODUCTION

Very Large Scale Integration (VLSI) has had a dramatic

impact on the growth of digital technology. VLSI has not only

reduced the size and the cost but also increased the

complexity of the circuits. This has brought significant

improvements in performance. These welcomed

improvements have resulted in significant performance/cost

advantages in VLSI-implemented systems. There are,

however, potential problems which may retard the effective

use and growth of future VLSI technology. Among these is

the problem of circuit testing, which becomes increasingly

difficult as the scale of integration grows. Semiconductor

memories are widely used in modern electronics devices.

Memory is a regular/symmetrical structure which makes them

the most densely packed devices among all types of integrated

circuits (IC). Developments in VLSI technology result in a

continuously increasing density of memory chips, and the

number of components per chip has quadrupled every four

years. The exponential increase in density creates great

challenge for memory testing. As the feature size of

components shrinks, the sensitivity to faults also increases

while the faults become more complex. Furthermore, test time

grows at least linearly as the number of storage elements per

chip increases. However, test cost can not grow at such a

pace since the price per storage element drops dramatically as

the density increases. Recent development in system-on chip

technology makes it possible to incorporate large embedded

memory into a chip; whoever, it also complicate the test

process as usually there is no direct control to the embedded

memory from the outside environment. Built-In Self-Test

(BIST) can solve the above memory testing problems which

increases the predictability (Controllability + Observability).

Manuscript Received on November 2012

Manoj Vishnoi, Department of ECE, SRM University NCR Campus

modinagar India.

Arun Kumar, Department of ECE, SRM University NCR Campus

modinagar India.

Minakshi Sanadhya, Department of ECE, SRM University NCR

Campus modinagar India.

Test patterns generated by a BIST controller can be either

deterministic or pseudorandom. Deterministic algorithms

(e.g., March algorithms) can achieve higher fault coverage

with fewer numbers of test patterns; however, the circuit

implementation is more complicated. On the other hand,

modified March (8n) testing requires less test pattern while

the controller circuits are much simpler. Moreover, for some

complicated fault models, march 8n testing is the only feasible

solution. In this project we present a new testing algorithm

based on March patterns. This method greatly reduces

required number of test patterns while the silicon area

overhead is minimal.

A. Built in Self Test Architecture

The basic BIST architecture is composed of three hardware

modules in addition to the circuit under test (CUT). The

architecture is shown in. The functions of these blocks are as

follows. The test pattern generator generates the test patterns

for the CUT. The response analyzer compresses and analyzes

the test responses to determine correctness of the CUT. The

BIST controller is the central unit to control all the BIST

operations.

Fig 1: Memory with BIST circuitry

In a BIST system hierarchy, there are BIST controllers at

each level of the circuit hierarchy, such as module, chip,

board, and system levels. Each BIST controller is responsible

for the self test in that particular level, the controls of BIST

operations for the lower level BIST, and the report of the test

results to the upper level. The design of a test generator is

determined by the test strategy being deployed. The test

strategy being selected is determined by the fault coverage,

test hardware overhead, and testing time. The commonly seen

test strategies include the followings

II. MEMORY TESTING AND FAULT TYPES

Memories fail in a number of different ways. The three

main parts, address decode logic, memory cell array, and

read/write logic,

Design of Improved Built-In-Self-Test

Algorithm (8n) for Single Port Memory

Manoj Vishnoi, Arun Kumar, Minakshi Sanadhya

P
at

te
rn

-
g
en

er
at

o
r

Design of Improved Built-In-Self-Test Algorithm (8n) for Single Port Memory

282

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E1067102512/2012©BEIESP

can each have flaws that cause the device to fail. Memory

testing, while similar to random logic testing, focuses on

testing for these memory-specific failures. The basic types of

memory faults include stuck-at, transition, coupling, and

Neighborhood pattern sensitive.

Table 1: Functional model of a RAM

Table 1 shows the functional model of a dynamic random

access memory (DRAM). In this model, the internals of the

memory are partly visible; hence it is also referred to as the

gray box model. This model can also be reused for modeling

faults in synchronous RAM (SRAM), read only memory

(ROM) or electrically programmable ROM (EPROM). This

can be achieved by adjusting some of the blocks shown in the

figure. For example, to model SRAM, one needs to discard

the refresh logic block. One of the main advantages of

functional models is that they have enough details of data

paths and adjacent wires.

 A. Stuck-at Faults

The stuck-at fault (SAF) considers that the logic value of a

cell or line is always 0 (stuck-at 0 or SA0) or always 1

(stuck-at 1 or SA1). To detect and locate all stuck-at faults, a

test must satisfy the following requirement: from each cell, a 0

and a 1 must be read.

Fig 2: Stuck at fault state diagram

B. Transition Faults

The transition fault (TF) is a special case of the SAF. A cell

or line that fails to undergo a 0! 1 transition after a write

operation is said to contain an up transition fault. Similarly, a

down transition fault indicates the failure of making a 1!

0transition. According to van de Goor [8], a test to detect and

locate all the transition faults should satisfy the following

requirement: each cell must undergo a ↑ transition (cell goes

from 0 to 1) and a ↓ transition (cell goes from 1 to 0) and be

read after each transition before undergoing any further

transitions.

Fig.3: Transition fault

C. Coupling Faults

A coupling fault (CF) between two cells causes a transition

in one cell to force the content of another cell to change. The

2-coupling fault model [8], which involves only two cells, is

defined as follows: a write operation that generates a ↑ or ↓

transition in one cell changes the content of the second cell.

The 2-coupling fault is a special case of the k-coupling fault

[8]. A k-coupling fault uses the same two cells as the

2-coupling fault, however it allows the fault to occur only

when another k − 2 cells are in a certain state.

• The inversion coupling fault (CFin) is a special case of the

2-coupling fault. It means that a ↑ or ↓ transition in one cell

inverts the content of the second cell [8].

Fig 4: Inversion coupling Fault Stuck-at Faults

A memory fails if one of its control signals or memory cells

remains stuck at a particular value. Stuck-at faults model this

behavior, where a signal or cell appears to be tied to power

(SA1) or ground (SA0).

The idempotent coupling fault (CFid) is another particular

case of the 2-coupling fault. It means that a ↑ or ↓ transition in

one cell forces a second cell to a certain value, 0 or 1.

Fig 5: Idempotent Coupling Fault

• The dynamic coupling fault (CFdyn) is a more general

case of the CFid. According to its definition a read or

write operation on one cell forces the contents of the

second cell either to 0 or 1 [3].

• The bridging fault (BF) is caused by a short circuit

between two or more cells or lines. It is determined by a

logic level rather than a transition write operation. There

are two kinds of bridging faults: AND bridging fault

(ABF), in which the logic value of the bridge is the AND

of the shorted cells or lines, and OR bridging fault (OBF),

in which the logic value of the bridge is the OR of the

shorted cells/lines.

 Subset of functional memory faults

 Functional Fault Functional Fault

A Cell Stuck i Address line Stuck

B Driver Stuck j Open in address line

C Read/Write line Stuck k Shorts between address

lines

D Chip- select line stuck l Open decoder wrong

address

E Data line stuck m wrong address

F Open in data line n Multiple Access

G Short between data

lines

o Cell can be only set to either

0 or 1

H Crosstalk between

data lines

p Pattern sensitive interaction

between cells

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-5, November 2012

283

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E1067102512/2012©BEIESP

• In the state coupling fault (SCF) a coupled cell or line is

forced to a certain value (0 or 1) only if the coupling cell

is in a given state. It is also determined by a logic level.

D. Retention Faults (RF)

A cell fails to retain its logic value after some time. This

fault is caused by a broken pull-up resistor [12].

E. Neighborhood Pattern Sensitive Faults

A pattern sensitive fault (PSF) causes the content of a cell

(or the ability to change the content) to be influenced by the

contents of other memory cells, which may be either a pattern

of 0s and 1s or transitions in memory contents.[8].

Fig 6: Neighborhood Pattern Sensitive Fault

F. Address Decoder Faults

Address decoder faults (AFs) represent faults in the

combinational logic of the address decoder. Two assumptions

are generally accepted: the faults do not introduce sequential

behavior in the address decoder and the faults will manifest

identically during read and write operations. To simplify the

problem, we first consider bit-oriented memories, in which

only one bit data is stored in each memory location. The

functional faults within the address decoder can be classified

into four AFs [9].

Fig 7: Address Decoder Fault

Fig8: Combinations of Address Decoder Faults

• Fault 1: For a certain address, no cell will be accessed.

• Fault 2: A certain cell can never be accessed by any

address.

• Fault 3: For a certain address, multiple cells are accessed

simultaneously.

• Fault 4: A certain cell can be accessed by multiple

addresses.

For bit-oriented memories, because each cell is linked to a

dedicated address, none of the faults listed above can stand

alone. For example, when fault 1 occurs, then either fault 2 or

fault 3 will occur as well.

G. Linked Faults

LFs describe an interesting type of faulty behavior that

takes place when more than one FP is sensitized in a defective

memory. The definition of an LF is as follows:

LF1 = FP1 FP2

This means that linked fault 1 consists of FP1 linked to FP2

(i.e., FP1and FP2 are the linking FPs).

Fig. 9: Linked Faults

III. ALGORITHM

Based on the used memory fault models, memory test

algorithms can be divided into four categories [8] as

described below:

1. Traditional tests including Zero-One, Check board,

GALPAT and Walking 1/0, sliding diagonally and

Butterfly. They are not based on any particular

functional fault models and over time have been

replaced by improved test algorithms, which result in

higher fault coverage and equal or shorter test time.

2. Tests for stuck-at, transition, and coupling faults that are

based on the reduced functional fault model and are

called March test algorithms

3. Tests for neighborhood pattern sensitive faults.

4. Other memory tests: any tests which are not based on the

functional fault model are grouped in this category.

As mentioned in Section 2.1, March test algorithms can

efficiently test embedded memories and, therefore, the rest of

this section provides more details about them.

A. March Test Algorithms

 A March test consists of a finite sequence of March

elements [8]. A March element is a finite sequence of

operations or primitives applied to every memory cell before

proceeding to next cell [8]. For example ↓ (r1, w0) is a March

element and r0 is a March primitive. The address order in a

March element can be increasing (↑) decreasing (↓) or either

increasing or decreasing (↕). An operation can be either

writing a 0 or 1 into a cell (w0 or w1), or reading a 0 or 1 from

a cell (r0 or r1). In summary, the notation of March test is

described as follows:

 ↕ Addressing order can be either increasing or decreasing;

 ↑ Increasing memory addressing order;

 ↓ Decreasing memory addressing order

March algorithms are very easy to implement in either

software or hardware. Table 2.4 [8] shows several relevant

March algorithms reported in the literature.

 Table 2: Irredundant March Test Algorithms
Name Algorithm

MATS {↕(w0);↕(r0,w1);↕(r1)}

MATS+ {↕(w0);↑ (r0,w1);↓(r1,w0)}

MATS++ { ↕ (w0);↑ (r0,w1); ↓ (r1,w0, r0)}

Design of Improved Built-In-Self-Test Algorithm (8n) for Single Port Memory

284

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E1067102512/2012©BEIESP

MARCH

X

{ ↕ (w0);↑ (r0,w1); ↓ (r1,w0);↕(r0)}

MARCH

C-

{ ↕(w0); ↑ (r0,w1);↑ (r1,w0); ↓ (r0,w1); ↓ (r1,w0);(↕

r0)}

MARCH

A

{ ↕ (w0); ↑(r0,w1,w0,w1); ↑(r1

,w0,w1);↕(r1,w0,w1,w0); ↑ (r0,w1,w0)}

MARCH

Y

{ ↕ (w0); ↑ (r0,w1, r1); ↓ (r1,w0, r0);↕(r0)}

MARCH

B

{ ↕ (w0);↑ (r0,w1, r1,w0, r0,w1); ↑ (r1,w0,w1); ↓

(r1,w0,w1,w0);↓ (r0,w1,w0)}

w0 - Write 0 to a memory location;

w1 - Write 1 to a memory location;

r0 - Read 0 from a memory location;

r1 - Read 1 from a memory location;

B. Proposed Algorithm

This Algorithm is developed by modification in March

Yalgorithm. The modified algorithm is able to detect Stuck at

fault, Transition fault, coupling faults and also able to detect

most Neighborhood pattern sensitive faults.

 (↑wa↑ra) (↑wb↑rb) (↓wa↓ra)((↓wb ↓rb)

This type of the Data pattern will help to find out of all type

of the fault such as Stuck-at fault, Transition fault, Coupling

fault, Address decoder fault, Address decoder open fault,

Retention fault, most Neighborhood pattern sensitive fault,

linked faults and others fault occurring in deep submicron

technology.

1.1 for (i = 0; i <= n-1; i = i+1)

 A [i] = ? ; // Write Random Pattern

1.2 for (i = 0; i <= n-1; i = i+1)

 A [i] = ? ; // Read the Pattern

2.1 for (i = 0; i <= n-1; i = i+1)

 A [i] = A [i]' // Write Random Pattern

2.2 for (i = 0; i <= n-1; i = i+1)

 A [i] = ? ; // Read the Pattern

3.1 for (j =n-1; i >= 0; j = i-1)

 A [j] = A [i]’; // Write Random Pattern

3.2 for (j =n-1; i >= 0; j = i-1)

 A [i] = ? ; // Read the Pattern

4.1 for (j =n-1; i >= 0; j = i-1)

 A [j] = A [i], // Write Random Pattern

4.2 for (j =n-1; i >= 0; j = i-1)

 A [j] = ? ; // Read the Pattern

All types of the faults like Transition faults, address write

and read faults, Oscillation faults, Linked fault Delay Faults

with abrupt data change, structural faults to be detected by the

proposed algorithm.

IV. SIMULATION RESULT

A. BIST with Memory Architecture

 The design of the BIST with 64x32 memory is synthesized

using the Leonardo Spectrum in 50 nm technology is shown in

the following fig.

Fig.10: Design of BIST with 64x32 memory

B. MBIST in testing Mode

 When the test_h signal is high then the MBIST is in test

mode. The fail signal give the result related to the memory

failure, if fail signal is high it means the memory affected by

fault. A fail 0 tells about the memory correctness.

Fig. 11. Simulation result

V. CONCLUSION

Memory testing is very important but challenging. Memory

BIST is considered the best solution due to various

engineering and economic reasons. March tests are the most

popular algorithms currently implemented in BIST hardware.

Various implementation schemes for memory BISTs are

presented and their trade-offs are discussed: A

Hardwired-based BIST is fast and compact, whereas a

Processor-based BIST cost near zero hardware overhead and

very flexible. Different proposed innovations are also

surveyed. Using Fault Coverage as our measure for test

quality is revolutionary. Integrating diagnostic capabilities

into BIST improves overall system robustness and chip yield.

Automatic generation eases design efforts for test integration

and help satisfying time-to-market requirements.

Self-reparability is the key to fault tolerant and reliable

circuit.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-5, November 2012

285

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E1067102512/2012©BEIESP

In conclusion, the future Memory BIST designs should be

fast, small, efficient, robust, and flexible.

REFERENES

1. M. Abramovici, M. Breuer, and A. Friedman. Digital Systems Testing

and Testable Design. IEEE Press, 1995.

2. S. M. Al-Harbi and S. K. Gupta. An Efficient Methodology for

Generating Optimal and Uniform March Tests. In Proc. IEEE VLSI

Test Symposium, pages 231–237, 2001.

3. M.L.Bushnell and V. D. Agrawal. Essentials of Electronic Testing.

Kluwer Academic Publishers, 2000.

4. International SEMATECH. The International Technology Roadmap

for Semiconductors (ITRS): 2001.

5. P. H. Bardell, W. H. McAnney, and J. Savir. Built-In Test for VLSI:

Pseudorandom Techniques. John Wiley & Sons, Inc., New York, 1987

6. P. Mazumder and K. Chakraborty. Testing and Testable Design of

High-Density Random-Access Memories. Kluwer Academic

Publishers, 1996.

7. J. Saxena, K. M. Butler, V. B. Jayaram, S. Kundu, N. V. Arvind, P.

Sreeprakash, and M. Hachinger. A Case Study of IR-Drop in

Structured At-Speed Testing. In Proc. IEEE International Test

Conference, pages 1098–1104, 2003.

8. A. J. van de Goor. Testing Semiconductor Memories: Theory and

Practice. A.J. van de Goor, 1998.

9. Said Hamdioui: Linked Faults in Random Access Memories: Concept,

Fault Models, Test Algorithms, and Industrial Results

0278-0070/04,IEEE- 2004.

10. I. Schanstra, D. Lukita, A. J. Van de Goor, K. Veelenturf and P. J van

Wijnen, in Proc. International Test Conference (Washington DC, Oct.,

1998), p. 872.

11. K. Zarrineh and S. J. Upadhyaya, Design, Automation and Test in

Europe Conference (Munich, March, 1999), p. 708.

12. Sungju Park, Donkyu Youn, : Microcode-Based Memory BIST

Implementing Modified March Algorithms. Journal of the Korean

Physical Society April 2002

13. R. Rajsuman. Design and Test of Large Embedded Memories: An

Overview. IEEE Design and Test of Computers, 18(3):16–27,

May-June 2001.

14. Po-Chang Tsai, Sying-Jyan Wang and Feng-Ming Chang: FSM-Based

Programmable Memory BIST with Macro Command. IEEE 2005.

15. Sying-Jyan Wang and Chen-Jung Wei: Efficient Built-In Self-Test

Algorithm for Memory. 1081-773510 IEEE 2000.

AUTHORS PROFILE

 Manoj Vishnoi received the M.Tech Degree in VLSI

DESIGN from SRM University Chennai in 2010. He

is working as Assistant professor in Department of

ECE, SRM University NCR Campus modinagar since

July 2010. His Research area is Low power VLSI,

Memory DEvices.

 Arun Kumar received the M.Tech Degree in VLSI

DESIGN from SRM University Chennai in 2010. He

is working as Assistant professor in Department of

ECE, SRM University NCR Campus modinagar since

July 2010. His Research area is Low power VLSI,

Modeling of semiconductor devices, DSP.

Minakshi Sanadhya received the M.Tech Degree in

VLSI DESIGN from SRM University Chennai in

2010. She is working as Assistant professor in

Department of ECE, SRM University NCR Campus

modinagar since July 2010. His Research area is Low

power VLSI, Tunnel FET, DSP.

