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Abstract — This paper presents a modified March (8n) test 

algorithm to the Built-In Self-Test (BIST) for Single Port 

Memory.  In this algorithm, test patterns are complemented to 

generate state-transitions that are needed for the detection of 

frequently occurring as well as newer occurring faults with the 

shrinking of channel length. The test pattern will be generated for 

the single port memory. The use of 8n pattern to generate state 

transition allow to reducing both of time and energy for detection 

of faults. As a result, the number of test patterns required is very 

less than of the traditional method, while the extra hardware is 

negligible. 

 

Keywords—March Algorithm, BIST (Built-In-Self-Test), 

Channel Length, Faults, Test-Pattern. 

I. INTRODUCTION 

Very Large Scale Integration (VLSI) has had a dramatic 

impact on the growth of digital technology. VLSI has not only 

reduced the size and the cost but also increased the 

complexity of the circuits. This has brought significant 

improvements in performance. These welcomed 

improvements have resulted in significant performance/cost 

advantages in VLSI-implemented systems. There are, 

however, potential problems which may retard the effective 

use and growth of future VLSI technology. Among these is 

the problem of circuit testing, which becomes increasingly 

difficult as the scale of integration grows. Semiconductor 

memories are widely used in modern electronics devices. 

Memory is a regular/symmetrical structure which makes them 

the most densely packed devices among all types of integrated 

circuits (IC). Developments in VLSI technology result in a 

continuously increasing density of memory chips, and the 

number of components per chip has quadrupled every four 

years. The exponential increase in density creates great 

challenge for memory testing. As the feature size of 

components shrinks, the sensitivity to faults also increases 

while the faults become more complex. Furthermore, test time 

grows at least linearly as the number of storage elements per 

chip increases.   However, test cost can not grow at such a 

pace since the price per storage element drops dramatically as 

the density increases. Recent development in system-on chip 

technology makes it possible to incorporate large embedded 

memory into a chip; whoever, it also complicate the test 

process as usually there is no direct control to the embedded 

memory from the outside environment. Built-In Self-Test 

(BIST) can solve the above memory testing problems which 

increases the predictability (Controllability + Observability). 
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Test patterns generated by a BIST controller can be either 

deterministic or pseudorandom. Deterministic algorithms 

(e.g., March algorithms) can achieve higher fault coverage 

with fewer numbers of test patterns; however, the circuit 

implementation is more complicated. On the other hand, 

modified March (8n) testing requires less test pattern while 

the controller circuits are much simpler. Moreover, for some 

complicated fault models, march 8n testing is the only feasible 

solution. In this project we present a new testing algorithm 

based on March patterns. This method greatly reduces 

required number of test patterns while the silicon area 

overhead is minimal.  

A. Built in Self Test Architecture 

The basic BIST architecture is composed of three hardware 

modules in addition to the circuit under test (CUT). The 

architecture is shown in. The functions of these blocks are as 

follows. The test pattern generator generates the test patterns 

for the CUT. The response analyzer compresses and analyzes 

the test responses to determine correctness of the CUT. The 

BIST controller is the central unit to control all the BIST 

operations.  

 
Fig 1: Memory with BIST circuitry 

In a BIST system hierarchy, there are BIST controllers at 

each level of the circuit hierarchy, such as module, chip, 

board, and system levels. Each BIST controller is responsible 

for the self test in that particular level, the controls of BIST 

operations for the lower level BIST, and the report of the test 

results to the upper level. The design of a test generator is 

determined by the test strategy being deployed. The test 

strategy being selected is determined by the fault coverage, 

test hardware overhead, and testing time. The commonly seen 

test strategies include the followings 

II. MEMORY TESTING AND FAULT TYPES 

Memories fail in a number of different ways. The three 

main parts, address decode logic, memory cell array, and 

read/write logic,  

 

Design of Improved Built-In-Self-Test 

Algorithm (8n) for Single Port Memory 

Manoj Vishnoi, Arun Kumar, Minakshi Sanadhya 

P
at

te
rn

- 
g
en

er
at

o
r 



 

Design of Improved Built-In-Self-Test Algorithm (8n) for Single Port Memory 

282 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: E1067102512/2012©BEIESP 

can each have flaws that cause the device to fail. Memory 

testing, while similar to random logic testing, focuses on 

testing for these memory-specific failures. The basic types of 

memory faults include stuck-at, transition, coupling, and 

Neighborhood pattern sensitive. 

 
Table 1:  Functional model of a RAM 

Table 1  shows the functional model of a dynamic random 

access memory (DRAM). In this model, the internals of the 

memory are partly visible; hence it is also referred to as the 

gray box model. This model can also be reused for modeling 

faults in synchronous RAM (SRAM), read only memory 

(ROM) or electrically programmable ROM (EPROM). This 

can be achieved by adjusting some of the blocks shown in the 

figure. For example, to model SRAM, one needs to discard 

the refresh logic block. One of the main advantages of 

functional models is that they have enough details of data 

paths and adjacent wires. 

 A. Stuck-at Faults 

The stuck-at fault (SAF) considers that the logic value of a 

cell or line is always 0 (stuck-at 0 or SA0) or always 1 

(stuck-at 1 or SA1). To detect and locate all stuck-at faults, a 

test must satisfy the following requirement: from each cell, a 0 

and a 1 must be read. 

 
Fig 2:  Stuck at fault state diagram 

B. Transition Faults 

The transition fault (TF) is a special case of the SAF. A cell 

or line that fails to undergo a 0! 1 transition after a write 

operation is said to contain an up transition fault. Similarly, a 

down transition fault indicates the failure of making a 1! 

0transition. According to van de Goor [8], a test to detect and 

locate all the transition faults should satisfy the following 

requirement: each cell must undergo a ↑ transition (cell goes 

from 0 to 1) and a ↓ transition (cell goes from 1 to 0) and be 

read after each transition before undergoing any further 

transitions. 

 
Fig.3: Transition fault 

C. Coupling Faults 

A coupling fault (CF) between two cells causes a transition 

in one cell to force the content of another cell to change. The 

2-coupling fault model [8], which involves only two cells, is 

defined as follows: a write operation that generates a ↑ or ↓ 

transition in one cell changes the content of the second cell. 

The 2-coupling fault is a special case of the k-coupling fault 

[8]. A k-coupling fault uses the same two cells as the 

2-coupling fault, however it allows the fault to occur only 

when another k − 2 cells are in a certain state. 

• The inversion coupling fault (CFin) is a special case of the 

2-coupling fault. It means that a ↑ or ↓ transition in one cell 

inverts the content of the second cell [8]. 

 
Fig 4: Inversion coupling Fault Stuck-at Faults 

A memory fails if one of its control signals or memory cells 

remains stuck at a particular value. Stuck-at faults model this 

behavior, where a signal or cell appears to be tied to power 

(SA1) or ground (SA0).  

The idempotent coupling fault (CFid) is another particular 

case of the 2-coupling fault. It means that a ↑ or ↓ transition in 

one cell forces a second cell to a certain value, 0 or 1.  

 
Fig 5: Idempotent Coupling Fault 

•  The dynamic coupling fault (CFdyn) is a more general 

case of the CFid. According to its definition a read or 

write operation on one cell forces the contents of the 

second cell either to 0 or 1 [3]. 

•  The bridging fault (BF) is caused by a short circuit 

between two or more cells or lines. It is determined by a 

logic level rather than a transition write operation. There 

are two kinds of bridging faults: AND bridging fault 

(ABF), in which the logic value of the bridge is the AND 

of the shorted cells or lines, and OR bridging fault (OBF), 

in which the logic value of the bridge is the OR of the 

shorted cells/lines. 

 

 

 

           Subset of functional memory faults 

 Functional Fault  Functional Fault 

A Cell Stuck i Address line Stuck 

B Driver Stuck j Open in address line 

C Read/Write line Stuck k Shorts between address 

lines 

D Chip- select line stuck l Open decoder wrong 

address 

E Data line stuck m wrong address 

F Open in data line n Multiple Access 

G Short between data 

lines 

o Cell can be only set to either 

0 or 1 

H Crosstalk between  

data lines 

p Pattern sensitive interaction 

between cells 
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•  In the state coupling fault (SCF) a coupled cell or line is 

forced to a certain value (0 or 1) only if the coupling cell 

is in a given state. It is also determined by a logic level. 

D. Retention Faults (RF) 

A cell fails to retain its logic value after some time. This 

fault is caused by a broken pull-up resistor [12]. 

E.  Neighborhood Pattern Sensitive Faults 

A pattern sensitive fault (PSF) causes the content of a cell 

(or the ability to change the content) to be influenced by the 

contents of other memory cells, which may be either a pattern 

of 0s and 1s or transitions in memory contents.[8]. 

 
Fig 6: Neighborhood Pattern Sensitive Fault 

F. Address Decoder Faults 

Address decoder faults (AFs) represent faults in the 

combinational logic of the address decoder. Two assumptions 

are generally accepted: the faults do not introduce sequential 

behavior in the address decoder and the faults will manifest 

identically during read and write operations. To simplify the 

problem, we first consider bit-oriented memories, in which 

only one bit data is stored in each memory location. The 

functional faults within the address decoder can be classified 

into four AFs [9]. 

 
Fig 7: Address Decoder Fault 

 
Fig8: Combinations of Address Decoder Faults 

 

•  Fault 1: For a certain address, no cell will be  accessed. 

•  Fault 2: A certain cell can never be accessed by any 

address. 

•  Fault 3: For a certain address, multiple cells are accessed 

simultaneously. 

•  Fault 4: A certain cell can be accessed by multiple  

addresses. 

For bit-oriented memories, because each cell is linked to a 

dedicated address, none of the faults listed above can stand 

alone. For example, when fault 1 occurs, then either fault 2 or 

fault 3 will occur as well.  

G. Linked Faults 

LFs describe an interesting type of faulty behavior that 

takes place when more than one FP is sensitized in a defective 

memory. The definition of an LF is as follows: 

LF1 = FP1         FP2 

This means that linked fault 1 consists of FP1 linked to FP2 

(i.e., FP1and FP2 are the linking FPs).  
 

 
Fig. 9: Linked Faults 

III. ALGORITHM 

Based on the used memory fault models, memory test 

algorithms can be divided into four categories [8] as 

described below: 

1.  Traditional tests including Zero-One, Check board, 

GALPAT and Walking 1/0, sliding diagonally and 

Butterfly. They are not based on any particular 

functional fault models and over time have been 

replaced by improved test algorithms, which result in 

higher fault coverage and equal or shorter test time. 

2.  Tests for stuck-at, transition, and coupling faults that are 

based on the reduced functional fault model and are 

called March test algorithms  

3.  Tests for neighborhood pattern sensitive faults. 

4.  Other memory tests: any tests which are not based on the 

functional fault model are grouped in this category.  

As mentioned in Section 2.1, March test algorithms can 

efficiently test embedded memories and, therefore, the rest of 

this section provides more details about them. 

A. March Test Algorithms 

 A March test consists of a finite sequence of March 

elements [8]. A March element is a finite sequence of 

operations or primitives applied to every memory cell before 

proceeding to next cell [8]. For example ↓ (r1, w0) is a March 

element and r0 is a March primitive. The address order in a 

March element can be increasing (↑) decreasing (↓) or either 

increasing or decreasing (↕).  An operation can be either 

writing a 0 or 1 into a cell (w0 or w1), or reading a 0 or 1 from 

a cell (r0 or r1). In summary, the notation of March test is 

described as follows: 

  ↕   Addressing order can be either increasing or decreasing; 

  ↑  Increasing memory addressing order; 

  ↓  Decreasing memory addressing order 

March algorithms are very easy to implement in either 

software or hardware. Table 2.4 [8] shows several relevant 

March algorithms reported in the literature.  

        Table 2: Irredundant March Test Algorithms 
Name Algorithm 

MATS {↕(w0);↕(r0,w1);↕(r1)} 

MATS+ {↕(w0);↑ (r0,w1);↓(r1,w0)} 

MATS++ {  ↕  (w0);↑  (r0,w1); ↓  (r1,w0, r0)} 
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MARCH 

X 

{  ↕ (w0);↑ (r0,w1); ↓ (r1,w0);↕(r0)} 

MARCH 

C- 

{ ↕(w0); ↑ (r0,w1);↑ (r1,w0); ↓ (r0,w1); ↓ (r1,w0);(↕ 

r0)} 

MARCH 

A 

{   ↕   (w0); ↑(r0,w1,w0,w1); ↑( r1 

,w0,w1);↕(r1,w0,w1,w0); ↑ (r0,w1,w0)} 

MARCH 

Y 

{ ↕ (w0); ↑ (r0,w1, r1); ↓ (r1,w0, r0);↕(r0)} 

MARCH 

B 

{ ↕ (w0);↑ (r0,w1, r1,w0, r0,w1); ↑ (r1,w0,w1); ↓ 

(r1,w0,w1,w0);↓ (r0,w1,w0)} 

 

w0 - Write 0 to a memory location; 

w1 - Write 1 to a memory location; 

r0 - Read 0 from a memory location; 

r1 - Read 1 from a memory location; 

B. Proposed Algorithm 

This Algorithm is developed by modification in March 

Yalgorithm. The modified algorithm is able to detect Stuck at 

fault, Transition fault, coupling faults and also able to detect 

most Neighborhood pattern sensitive faults. 

  (↑wa↑ra) (↑wb↑rb) (↓wa↓ra)( (↓wb ↓rb) 

This type of the Data pattern will help to find out of all type 

of the fault such as Stuck-at fault, Transition fault, Coupling 

fault, Address decoder fault, Address decoder open fault, 

Retention fault, most Neighborhood pattern sensitive fault, 

linked faults and others fault occurring in deep submicron 

technology. 

1.1     for (i = 0; i <= n-1; i = i+1)  

         A [i] = ? ;              // Write Random Pattern 

1.2     for (i = 0; i <= n-1; i = i+1)  

          A [i] = ? ;              // Read the Pattern 

2.1     for (i = 0; i <= n-1; i = i+1)  

         A [i] = A [i]'           // Write Random Pattern 

2.2     for (i = 0; i <= n-1; i = i+1)  

          A [i] = ? ;               // Read the Pattern 

3.1     for (j =n-1; i >= 0; j = i-1)  

          A [j] = A [i]’;              // Write Random Pattern 

3.2     for (j =n-1; i >= 0; j = i-1)  

          A [i] = ? ;                 // Read the Pattern 

4.1     for (j =n-1; i >= 0; j = i-1)  

          A [j] = A [i],            // Write Random Pattern 

4.2     for (j =n-1; i >= 0; j = i-1)  

          A [j] = ? ;               // Read the Pattern 

All types of the faults like Transition faults, address write 

and read faults, Oscillation faults, Linked fault Delay Faults 

with abrupt data change, structural faults to be detected by the 

proposed algorithm. 

IV. SIMULATION RESULT 

A. BIST with Memory Architecture 

 The design of the BIST with 64x32 memory is synthesized 

using the Leonardo Spectrum in 50 nm technology is shown in 

the following fig. 

 

Fig.10: Design of BIST with 64x32 memory 

B. MBIST in testing Mode 

 When the test_h signal is high then the MBIST is in test 

mode. The fail signal give the result related to the memory 

failure, if fail signal is high it means the memory affected by 

fault. A fail 0 tells about the memory correctness.  

 

Fig. 11. Simulation result 

V.  CONCLUSION 

Memory testing is very important but challenging. Memory 

BIST is considered the best solution due to various 

engineering and economic reasons. March tests are the most 

popular algorithms currently implemented in BIST hardware. 

Various implementation schemes for memory BISTs are 

presented and their trade-offs are discussed: A 

Hardwired-based BIST is fast and compact, whereas a 

Processor-based BIST cost near zero hardware overhead and 

very flexible. Different proposed innovations are also 

surveyed. Using Fault Coverage as our measure for test 

quality is revolutionary. Integrating diagnostic capabilities 

into BIST improves overall system robustness and chip yield. 

Automatic generation eases design efforts for test integration 

and help satisfying time-to-market requirements. 

Self-reparability is the key to fault tolerant and reliable 

circuit.  
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In conclusion, the future Memory BIST designs should be 

fast, small, efficient, robust, and flexible. 
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