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Abstract— Wireless sensor networks (WSN) have attracted 

significant attention recently. The distributed estimation problem 

is an important research topic in WSNs. In the distributed 

estimation problem, the fusion center estimates an unknown 

parameter based on information gathered from sensors. Usually, 

it is assumed that sensors have identical gains. However, this may 

not be true due to manufacture errors or environmental influence. 

In this paper, we assume sensor gains follow normal distribution 

and present a maximum likelihood estimation (MLE) approach 

for distributed estimation in WSNs with normally distributed 

sensor gains. Moreover, the Cramer-Rao lower bound (CRLB) 

corresponding to this MLE approach is also derived. Simulation 

results showed that the root square mean (RMS) estimation errors 

given by this MLE approach were close to the CRLB if the 

variance of the sensor gains is small. If the variance of the sensor 

gains was large, the RMS estimation errors were not close to the 

CRLB.  
 

Keywords— Distributed estimation, maximum likelihood 

estimation, Gaussian distribution, wireless sensor networks.  

I. INTRODUCTION 

Due to a vast number of applications, wireless sensor 

networks (WSNs) have gained significant attention [1]-[13]. 

Usually, a WSN consists of many sensors which will send  

gathered informaiton to a fusion center [14]. After acquiring 

information from sensors, the fusion center can perform many 

tasks such as tracking, detection and distributed estimation 

[14]. Distributed estimation is of particular interests because 

it serves as a cornerstone for many other tasks.  

In the distributed estimation problem, the fusion center 

tries to estimate unknown parameters based on information 

from sensors. To estimate one unknown parameter, a 

maximum likelihood estimation (MLE) approach was 

presented in [15][16]. Then, the MLE approach was extended 

to consider imperfect communication channels in [17]. 

However, in [15]-[17], the sensor gains were assumed to be 

identical while in many applications, sensor gains are not 

identical due to manufacture errors or environmental 

influences.  

In this paper, we assume that sensor gains follow a 

Gaussian distribution. This assumption is valid when the 

sensor gains are determined by a sum of many factors. If this 

is true, the sensor gains will follow a Gaussian distribution 

[18]. Then, the distribution information of sensor gains is 

incorporated into the MLE framework to address 

heterogeneous sensor gains. 

The main contribution of this paper is a MLE approach for 

distributed estimation in WSNs with normally distributed 

sensor gains. Moreover, the Cramer-Rao lower bound 

(CRLB) corresponding to this MLE approach is also derived. 

Simulation results showed that when the variance of the 
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Gaussian distribution is small, root square mean (RMS) 

estimation errors were close to the CRLB. When the variance 

of the Gaussian distribution was large, RMS estimation errors 

deviated from the CRLB. 

This paper is organized in the following way. Section II 

presented the MLE approach for distributed estimation in 

WSNs with normally distributed sensor gains. Section III 

presents the CRLB, followed by simulation setup in Section 

IV. Section V provides results and analysis. Finally, Section 

VI delivers concluding remarks.  

II. DISTRIBUTED ESTIMATION METHOD IN 

WIRELESS SENSOR NETWORKS WITH 

NORMALLY DISTRIBUTED SENSOR GAINS 

A WSN consists of a fusion center and many sensors 

(Figure 1). After sensors measure the parameter  , sensors 

will quantize the measurement according to a set of 

pre-determined thresholds 
i . Sending quantized data 

instead of analogy data to the fusion center can save 

communication bandwidth and sensor energy [14]. The fusion 

center can use a MLE approach to estimate the unknown 

parameter   based on information from sensors. Now, this 

MLE approach is discussed in details.  
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Figure 1: Distributed estimation system diagram 

 

Following the setup in [11][14]-[16], we use N  sensors to 

estimate the unknown parameter  . However, sensor gains 

are not identical and follow the normal distribution. The gain 

of the sensor i  is 
iG , and 

iG  follows Normal distribution 

with mean u and  variance 2
1  
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The thi sensor receives the signal from   and this signal 

can be denoted as 
ia , which is defined as 

i ia = G .                                   (2) 

Because of the presence of noises, the signal arrives at the 

thi sensor is 
is , which can 

be defined as 
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i i is = a +w .                                (3) 

The noise iw  in (3) is a Gaussian noise with zero mean and 

variance 2
2σ .  

The propbality density function (PDF) of the sum of two 

Normally distributed random variables also follows Normal 

distribution  [18]. Therefore, we can have  
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After a sensor acquires the measurement, the sensor 

quantizes the measurement into a decision 
im according to a 

set of pre-determined thresholds 
i   

          [ ]i i0 i1 iL= , ,...,    .                         (5)
 

The quantization process can be expressed by 
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For a specific  , the probability that 
im  is equal to l  is  
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In (7), ( )R x is defined as 

( ) i i
x

R x f(s )ds


                                (8)

 
Then, sensors will send the decision vector  

  
1 2 1[ , , , ]N Nm m m mM                     (9) 

to the fusion center, and the fusion center estimates  by 

finding  the  value to maximize 

  ln ( ) ( )ln ( )
N L-1

ii il

i=1 l=0

p θ = δ m - l p ,θ 
 M          (10) 

where 

1, x = 0
δ(x)=

0, x = 0





.                             (11) 

The maximum likelihood estimator can be expressed as  

    
 ˆ max ln .

θ
θ p θ M

     
                    (12) 

If an unbiased estimate of  exists, the CRLB can be 

calculated by 
  

 ln .TE p θ 
     J M                 (13) 

III. PERFORMANCE EVALUATION-CRAMER-RAO 

LOWER BOUND 

If the estimation result of (12) is unbiased, the J  matrix 

can be derived by an approach similar to that in [6][11][14], 

which is  
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We can use  ( ) ( , )ii ilE m l p     to simplify (14) . Then, 

(14) can be expressed as  
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In (14), ( , )iilp    can be expressed as  
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The derivative of ( , )iilp    can be calculated by  
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Then, we can have  
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We can calculate other elements of J  similarly.  

IV. SIMULATION SETUP 

In this paper, to simplify simulations, we used binary 

decisions (0s and 1s). Our MLE approach  for distributed 

estimation can be validated by comparing the normalized 

estimation error squared (NEES) values given by our MLE 

approach with the confidence interval. To generate NEES 

values, we set 
2 0.2  , 0.1u  , 5  , 5   and varied 

the
1  value. The NEES values were averaged over 100 runs. 

Table 1 shows the results of NEES. It is obvious that 
1  

values can affect RMS estimation errors and CRLB. To see 

the effect, we set 
2 0.2  , 0.1u  , 5  , 5  and  varied 

the 
1  value. Figure 2 shows the RMS errors and the CRLB. 

Similarly,   values can affect the RMS estimation errors and 

CRLB. To see the effect, we set
1 1  ,

2 0.2  , 0.1u  , 

5  ,  and  varied the   value. Figure 3 shows the RMS 

errors and CRLB.  

V. RESULTS AND ANALYSIS 

The 95% confidence interval for our MLE approach 

corresponding to 100 runs is [0.7422 1.2956] [11]. Therefore, 

we can see that NEES values given by the MLE approach 

using 
1 1  , 

1 2   and 
1 3   were within the confidence 

interval (Table I). Moreover, the MLE approach using 
1 4   

and 
1 5  were outside the confidence interval.  
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As for the effect of the 
1  value on RMS estimation errors 

and the CRLB, we can see that when 
1  value was small, 

RMS estimation errors and the CRLB were low, and the RMS 

estimation errors were close to the CRLB (Figure 1). When 

1  value was large, RMS estimation errors and CRLB were 

also large, and the RMS estimation errors were not close to 

the CRLB. The reason is that if the variance of sensor gains is 

too large, which means sensor gains vary dramatically from 

one to another, the MLE approach cannot accommodate so 

different sensor gains and estimation performance will suffer.  

As for the effect of   on RMS estimation errors and 

CRLB, we can see that when    was from 10 to 13, the RMS 

estimation errors were close to the CRLB. When  was 

greater than 13, RMS errors deviated from the CRLB (Figure 

3). This highlights the importance of the  value. The reason 

is that if large  value is used, not enough sensors will send 1s 

to the fusion center, the estimation performance will suffer. If 

low  value is used, too many sensors will send 1s to the 

fusion center, estimation performance will also suffer.  
 

Table 1: NEES values for different 
1  values (

2 0.2  , 

0.1u  , 5  , 5   and 100 runs) 

1  1 2 3 4 5 

NEES 0.9654 0.9879 0.9994 1.4028 2.7526 
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Figure 2: RMS estimation errors compared to the CRLB 

(
2 0.2  , 0.1u  , 5  , 5  , 100 runs and different 

1  

value) 
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Figure 3: RMS estimation errors compared to the CRLB 

(
1 1  ,

2 0.2  , 0.1u  , 5  , 100 runs and different   

values) 

VI. CONCLUSION 

In this paper, a MLE approach for distributed estimation in 

WSNs with normally distributed sensor gains was presented. 

This approach can alleviate performance degradation cause 

by heterogeneous sensor gains, which follow the Gaussian 

distribution. Simulation results showed that the RMS errors 

given by this MLE approach were close to the CRLB if the 

variance of the sensor gain was small. In many applications, 

the sensor gains are influenced by many variables and the 

overall effect of these variables is the sum of these variables. 

If the sensor gains will follow the Gaussian distribution, our 

MLE approach can be used to alleviate performance 

degradation.  
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