
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-6, January 2013

49

Retrieval Number: F1088112612/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Abstract— This paper presents a flexible 2x2 matrix multiplier

architecture. The architecture is based on word-width

decomposition for flexible but high-speed operation. The elements

in the matrices are successively decomposed so that a set of small

multipliers and simple adders are used to generate partial results,

which are combined to generate the final results. Balanced

word-width decomposition scheme is discussed, which support 2’s

complement inputs, and its overall functionality is verified and

designed with a field-programmable gate array (FPGA). The

architecture can be easily extended to a reconfigurable matrix

multiplier. The objective is to propose a flexible and energy

efficient matrix multiplier, which can be extended to

reconfigurable high speed processing implementation, using word

width decomposition technique. This technique is based on divide

and conquers approach. The Karatsuba multiplication is

proposed in this basic approach. This Karatsuba multiplication is

an efficient procedure for multiplying large numbers, which gives

high speed performance than the booth multiplier.

Keywords— Balanced word-width decomposition.

Field-programmable gate array (FPGA) implementation, matrix

multiplier, Reconfigurable architecture.

I. INTRODUCTION

In many multimedia applications, fast and efficient matrix

multipliers are very critical in overall operations. Matrix

multiplication is an often used core operation in a wide

variety of graphic, image, robotics, and signal processing

applications. Traditional approaches for matrix

multiplications are carried out either by software on fast

processors or by hardware with multiple scalar multipliers.

Software operations of the matrix multiplications can be very

slow and become bottlenecks in overall system operations. On

the other hand, hardware multipliers incorporate high-speed

logic, but may be very costly in terms of complexity and

power consumption. Moreover, these multipliers are usually

designed for a specific word length and often lack flexibility

where the size of scalar multipliers must correspond to the

input of the matrix multiplier. The objective of this paper is to

propose a flexible and energy efficient matrix multiplier,

which can be extended to reconfigurable high speed

processing implementation. A key concept is to apply the

divide-and-conquer approach by decomposition, both at

matrix level and at word level.

Manuscript Received on December 2012.

R.L.Bhargavi, Lecturer’s in Einstein College of Engineering,

Tirunelveli (Tamil Nadu), India.

M.Merlin Moses, Lecturer’s in Einstein College of Engineering,

Tirunelveli (Tamil Nadu), India.

V.Karthikeyan, Lecturer’s in Einstein College of Engineering,

Tirunelveli (Tamil Nadu), India.

C.Karthikeyan, Assistant Professor in Einstein College of Engineering,

(Tamil Nadu), India.

 Many studies have been done on matrix multiplications.

Most notably, [1] introduced an efficient matrix

multiplication algorithm for linear arrays with reconfigurable

pipelined bus systems. This architecture also follows the

divide-and-conquer approach for high-speed parallel

processing. However, their decomposition is limited to the

matrix level. A matrix multiplier for sparse matrices that

reduces the input/output (I/O) and the number of trivial

multiplications is introduced in [2]. This architecture is

focused on the data elements of the matrices. However, the

architecture is highly beneficial only when the matrices are

sparse. In this paper, the proposed architecture also reduces

computation energy by exploiting zeros during actual

computations. Most of the previous implementations of

matrix multiplication on field-programmable gate arrays

(FPGAs) are focused mainly on tradeoff between area and

maximum running frequency [3]–[7]. A bit-serial matrix

multiplier using Booth encoding was implemented on the

FPGA [3]. The multiplier discussed in [4] improved the

design in [3] using modified Booth-encoder multiplication

along with Wallace tree addition, where the running

frequency has been doubled from the design described in [3].

These designs are further improved in terms of area and speed

in [7]. All of their designs consider the input word-width

directly and the size of scalar multipliers can be significantly

large for practical VLSI implementation when the input

word-width increases. Moreover, their designs are mainly

focused on reducing FPGA resources by incorporating static

memory in the implementation. This design is focused on both

computational and energy efficiency, as well as structural

flexibility.

In this paper, high-speed matrix multiplications based on

two-level matrix decomposition is considered. The idea of

decomposition has been applied in many arithmetic

computations to reduce the amount of computation and

latency [8] [10]. The idea of decomposition is further

extended into the word level. Initially, a matrix multiplication

with higher dimension, is decomposed into several 2x2 matrix

multiplications. Then, these decomposed 2x2 matrix

multiplications are further decomposed into several matrix

multiplications where each element in these matrix

multiplications is represented with smaller word-width. Then

a set of simple, but fast operators is used concurrently to

generate partial results. The structure and size of the simple

operators are fixed irrespective of the input element

word-width. The final outputs are generated by combining

(composing) the partial results through accumulation with

adder trees.

Design of a High-Speed Matrix Multiplier Based

on Balanced Word-Width Decomposition and

Karatsuba Multiplication

R. L. Bhargavi, M.Merlin Moses, V.Karthikeyan, C.Karthikeyan

Design of a High-Speed Matrix Multiplier Based on Balanced Word-Width Decomposition and Karatsuba

Multiplication

50 Retrieval Number: F1088112612/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

The proposed matrix multiplications support 2’s

complement input with energy efficient computation. The

design methodology of the proposed architecture can utilize

varying numbers of simple operators to support various

degrees of time multiplexing to reduce complexity with a

low-latency penalty. This presentation is focused on an

architecture for a 2x2 matrix multiplier based on word-width

decomposition, which can be a building block for computing

larger dimension matrix multiplications.

In this paper, its performance and complexity with design

on commercially available FPGA is demonstrated. The

remainder of this paper has four sections. In Section II, it

describes the concept of matrix multiplications via two-level

decomposition. Balanced word-width decomposition scheme

is discussed, as well as an issue on 2’s complement data

representation in the proposed architecture. In Section III, a

set of key units comprising a flexible matrix multiplier

architecture is described in detail. A key set of design tradeoff

parameters is also discussed. In Section IV, Proposed

multiplication is presented. Then Simulation results are

summarized in Section V.

II. MATRIX MULTIPLICATION DESIGN

OVERVIEW

A. Theory of Operation

The overall operation is based on two basic assumptions. 1)

Matrix multiplication is performed on NxN matrices where N

is a power of two. 2) Each element in the matrices is a fixed

point integer with word-width of W. In the design, it adopts

two-level decomposition. Initially, NxN matrix multiplication

is decomposed into several 2x2 matrix multiplications. This

process is illustrated with N=4 as

where are all 2x2 matrices.

After the initial decomposition, all matrix multiplications are

2x2 matrix multiplications where word-width of each element

is W. Then, each matrix multiplication (i.e., eight such matrix

multiplications for the example above) is decomposed in

terms of word-width. For example, for the value of p equal to4

Thus, 2x2 matrix multiplication is represented as

where

represent decomposed 2x2 matrix multiplications. Two

matrices, QA1 and QB1, are decomposed further until each

element in all the decomposed matrices is less than 2^p where

all elements are represented with p-bit precision. Upon

completion of the decomposition process, all matrix

multiplications with p-bit precision are computed in parallel

with much smaller booth multipliers than W. The outputs

from this computation are accumulated to generate the final

outputs for one 2x2 W-bit matrix multiplication. After

repeating the same process, the outputs for NxN matrix

multiplications are constructed. Throughout the paper, the

presentation is focused on word-width decomposition.

B. Word Width Decomposition

There are two ways to decompose the matrices. The first

approach is to divide the width of the original elements

successively in half.

Fig. 1. Illustration of the balanced word-width

decomposition with W = 16 and p = 4.

This approach, called balanced word-width decomposition,

is illustrated in Fig. 1. Let a finite number represent the

decomposed data width. Then, a multiplication by 2^p

becomes a simple p-bit shift. Initially, the matrix

multiplication with W–bit input elements is decomposed into

two sub matrix multiplications with W/2 bit elements. Then,

the decomposed matrix multiplication is further decomposed

until the element word length is equal to p. After the

decomposition, there will be many but smaller sub matrix

multiplications which can be performed with simple

arithmetic units. The depth of the decomposition tree depends

on the word length of the original data element. The

restriction with this approach is that the size of W must be

p*2^i , where i is an integer. For example, for p=4, the only

possible word lengths are W=4,8,16,32……….

The illustrations shown in Figs.1 may seem to suggest that

the decomposition process takes multiple stages of

operations.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-6, January 2013

51

Retrieval Number: F1088112612/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

 Actually, the decomposition of the original matrix

multiplication results in 16 sub matrix multiplications (i.e., for

W=16). It will show that the actual decomposition can be

done directly from the input elements and the decomposition

processes illustrated above, are handled during the

composition where shiftings and summations are performed.

Basically, the decomposition process is merely dividing the

original values through interconnection distribution.

C. Composition

The composition is the reverse operation of the

decomposition. Consider two matrices A and B W=16 with

input word-width which are multiplied as

 Consider the balanced decomposition with W=16 and p=4.

Then after the decomposition, the matrix multiplication AB is

represented as

AB=

(QQAQQB)2^4p+(QQARQB)2^3p+(RQAQQB)2^3p+(RQ

ARQB)2^2p+(QRAQQB)2^3p+(QRARQB)2^2p)+(RRAQ

QB)2^2p+(RRARQB)2^p+(QQAQRB)2^3p)+

(QQARRB)2^2p)+(RQAQQB)2^2p)+(RQARRB)2^P+(Q

RAQRB)2^2p+(QRARRB)2^p)+(RRAQRB)2^p+

(RRARRB)

 Note that with the exception of multiplication factors, the

original matrix multiplication AB consists of many smaller

booth matrix multiplications, which can be computed with the

same hardware. The results from these smaller matrix

multiplications are the partial results for cij where they are

accumulated by an adder tree to generate the outputs of the

matrix multiplication. Hence, the adder tree is executed four

times to generate a complete 2x2 output matrix C.

Figs.2 illustrates composition schemes for the balanced

decomposition schemes, respectively. Note that each adder in

the adder tree consists of two inputs where one of the inputs is

scaled by 2^p, which is equivalent to a p-bit shift operation.

Thus, in the adder tree, the output of each adder is

appropriately shifted to reverse the decomposition operations.

Fig. 2. Illustration of 2S-input adder tree structure in

the balanced composition process with W = 16 and p = 4.

III. DEIGN APPROACH

A. Overall Architecture

The proposed overall architecture is shown in Fig. 3. The

architecture consists of decomposition, basic operation, and

composition unit. In this architecture, a small number of p-bit

multipliers is used several times to generate W-bit results.

Both decomposition and composition units are operated at the

same clock frequency, which is equal to the I/O rate.

Fig. 3. Overall architecture with three main units. Figure is

illustrated with the number of basic operators, N , which is

equal to 4.

B. Decomposition Unit

 In the decomposition unit, a direct decomposition of W-bit

elements is accomplished. The inputs enter the decomposition

unit in a pair of elements of matrix A and B as

(a11,b11),(a12,b12),(a21,b2

1), and (a22,b22).

Design of a High-Speed Matrix Multiplier Based on Balanced Word-Width Decomposition and Karatsuba

Multiplication

52 Retrieval Number: F1088112612/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

The decomposition unit is responsible for two main tasks.

The first task is to segment W-bit elements into several p-bit

elements and make conversion to support 2’s complement

number representation.

The second task is basically ordering the data so that output

elements are generated at the same rate with the input rate

with low overall latency. Once the data are properly ordered

by the decomposition unit, all basic operators can start the

processing as early as possible without any stoppage. The

decomposition unit is designed to take a continuous stream of

2x2 matrices.

C.Radix- Basic Operator

 In a basic operator, each operation takes four inputs. The

outputs from the booth multipliers are added for the final

output. (p+2)-bit elements (one bit for sign extension and the

other bit for zero flag) of the working submatrix are loaded in

order into registers. Once ordered, the data will propagate

through a chain of registers. This ordering is established to

produce four elements corresponding to c11,c12,c21, and

c22. For example, for word-width W of 16 and p of 4, there

will be total of 16 concurrent submatrix multiplications. With

four basic operators executing in parallel, each output is

generated in 4 iterations.

D. Composition Unit: 0-mp Adder Tree

Figs.4 illustrates the composition adder tree. The

composition unit consists of registers and an adder tree with

0-mp adders. (i.e.,zero bits at the low significant bits of one

input and extended sign bits at the high significant bits of the

other).

Fig. 4. Illustration of the ripple carry adder tree by

merging 0-mp adders for the balanced composition. W =

16 and p = 4 for the illustration.

Hence, the worst case delay is less than a normal adder with

the same width. In the implementation, the adders are

constructed with carry-select adders where each segment of

adder is designed with a p–bit ripple carry adder [12].

 For 4-bit ripple carry adder we use 12-bit adder,16-bit

adder,24-bit adder and 32-bit adder in the composition unit.

At the end of adder tree, the output word-width is 2W-bits.

IV. KARATSUBA MULTIPLICATION

The Karatsuba multiplication is an efficient procedure for

multiplying large numbers which gives high speed

performance than the booth multiplier. The Karatsuba

algorithm is a notable example of divide and conquers

method, specifically for binary splitting.

The basic step of Karatsuba algorithm is a formula that

allows us to compute the product of two large numbers x and y

using three multiplications of smaller numbers, each with

about half as many digits as x or y, plus some additions and

digit shifts. Karatsuba observed that we can compute xy in

only three multiplications, at the cost of a few extra additions:

Let z2 = x1y1

Let z0 = x0y0

Let z1 = (x1 + x0)(y1 + y0) - z2 - z0

since

z1 = (x1y1 + x1y0 + x0y1 + x0y0) - x1y1 - x0y0 = x1y0 + x0y1

V. SIMULATION RESULTS

Simulation is performed by using Xilinx ISE 9.1

development tool for the design. The speed of the designs is

verified through synthesis-Report from post-synthesis

simulation and all the results depend on given input. The

simulation results are shown for booth multiplier and

karatsuba multiplier. The simulation results are shown in

figures 5(a),5(b),6(a).

Fig.5(a).simulation output for matrix multiplications

Fig.5(b).synthesis Report for booth multiplier

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-6, January 2013

53

Retrieval Number: F1088112612/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Fig.6(a).synthesis Report for karatsuba multiplier

V. CONCLUSION

In this paper, a design methodology is proposed for a

flexible 2x2 matrix multiplier architecture. In this particular

architecture, a set of small but fast multipliers are used. The

balanced word width decomposition is used for flexibility

with high-speed operation. In this decomposition technique,

the booth multiplier is used for multiplication unit. But this

booth multiplier results high latency. This can be overcome

by the Karatsuba multiplication, which is an efficient

procedure for multiplying large numbers, for giving high

speed performance. Also by this methodology larger matrix

multiplications can be computed.

REFERENCES

1. K.Li,Y.Pan,and S.Q.Zheng,“Fast and processor efficient parallel matrix

multiplication algorithms on a linear array with a reconfigurable

pipelined bus system,”IEEE Trans.Parallel Distrib.Syst.,vol.9,no.

8,pp.705–720,Aug.1998.

2. C.I.Brown and R.B.Yates,“VLSI architecture for sparse matrix

mul-tiplication,” Electron.Lett.,vol.32,no.10,pp.891–893,May 1996.

3. O.Mencer,M.Morf,and M.Flynn,“PAM-Blox: High performance FPGA

design for adaptive computing,”in Proc.IEEE Symp.FPGAs Custom

Computing Machines,1998,pp.167–174.

4. A.Amira,A.Bouridane,and P.Milligan,“Accelerating matrix product on

reconfigurable hardware for signal processing,”in Proc.11th Int.

Conf.Field-Programmable Logic Appl.(FPL),2001,pp.101–111.

5. J.Jang,S.Choi, and V.K.Prasanna, “Energy-efficient

matrixmulti-plication on FPGAs,”in Proc.Int.Conf.Field Programmable

Logic Appl.,2002,pp.534–544.

6. V.K.Prasanna and Y.Tsai,“On synthesizing optimal family of linear

systolic arrays for matrix multiplication,”IEEE Trans.Comput.,vol.

40,no.6,pp.770–774,Jun.1991.

7. J.-W.Jang,S.Choi,and V.K.Prasanna,“Area and time efficient

im-plementations of matrix multiplication on FPGAs,”in Proc.IEEE Int.

Conf.Field Programmable Technol.,2002,pp.93–100.

8. R.Lin,“Bit-matrix decomposition and dynamic

reconfiguration:Uni-fied arithmetic processor architecture,design,and

test,”in Proc.Re-configurable Arch.Workshop (RAW),2002,p.83.

9. R.Lin,“Bit-matrix decomposition and dynamic reconfiguration:

Uni-fied arithmetic processor architecture,design,and test,”in Proc.Re-

configurableArch.Workshop (RAW),2002,p.83.

10. R.Lin,“Reconfigurable parallel inner product processor architectures,”

IEEE Trans. Very Large Scale Integr.(VLSI)Syst.,vol.9,no.2,pp.

261–272,Apr.2001.

11. S.Choi,R.Scrofano, V.K.Prasanna, and J.-W.Jang,“Energy-effi-cient

signal processing using FPGAs,”in Proc.ACM/SIGDA Int.Symp.

Field-Programmable Gate Arrays, 2003, pp.225–234.

12. J.M.Rabaey, A.Chandrakasan and B.Nikolic ´,Digital Integrated

Cir-cuits: A Design Persepective, 2nd ed.Englewood Cliffs,NJ:

Pren-tice- Hall,2003.

13. C.R.Baugh and B.A.Wooley,“A t wo’s complement parallel array

multiplication algorithm, ”IEEE Trans.Comput., vol.C-22,no. 1–2,

pp.1045–1047,Jan.193.

