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Abstract— This paper presents a flexible 2x2 matrix multiplier 

architecture. The architecture is based on word-width 

decomposition for flexible but high-speed operation. The elements 

in the matrices are successively decomposed so that a set of small 

multipliers and simple adders are used to generate partial results, 

which are combined to generate the final results. Balanced 

word-width decomposition scheme is discussed, which support 2’s 

complement inputs, and its overall functionality is verified and 

designed with a field-programmable gate array (FPGA). The 

architecture can be easily extended to a reconfigurable matrix 

multiplier. The objective is to propose a flexible and energy 

efficient matrix multiplier, which can be extended to 

reconfigurable high speed processing implementation, using word 

width decomposition technique. This technique is based on divide 

and conquers approach. The Karatsuba multiplication is 

proposed in this basic approach. This Karatsuba multiplication is 

an efficient procedure for multiplying large numbers, which gives 

high speed performance than the booth multiplier.  

Keywords— Balanced word-width decomposition. 

Field-programmable gate array (FPGA) implementation, matrix 

multiplier, Reconfigurable architecture. 

I. INTRODUCTION 

In many multimedia applications, fast and efficient matrix 

multipliers are very critical in overall operations. Matrix 

multiplication is an often  used core operation in a wide 

variety of graphic, image, robotics, and signal processing 

applications. Traditional approaches for matrix 

multiplications are carried out either by software on fast 

processors or by hardware with multiple scalar multipliers. 

Software operations of the matrix multiplications can be very 

slow and become bottlenecks in overall system operations. On 

the other hand, hardware multipliers incorporate high-speed 

logic, but may be very costly in terms of complexity and 

power consumption. Moreover, these multipliers are usually 

designed for a specific word length and often lack flexibility 

where the size of scalar multipliers must correspond to the 

input of the matrix multiplier. The objective of this paper is to 

propose a flexible and energy efficient matrix multiplier, 

which can be extended to reconfigurable high speed 

processing implementation. A key concept is to apply the 

divide-and-conquer approach by decomposition, both at 

matrix level and at word level.  
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 Many studies have been done on matrix multiplications. 

Most notably, [1] introduced an efficient matrix 

multiplication algorithm for linear arrays with reconfigurable 

pipelined bus systems. This architecture also follows the 

divide-and-conquer approach for high-speed parallel 

processing. However, their decomposition is limited to the 

matrix level. A matrix multiplier for sparse matrices that 

reduces the input/output (I/O) and the number of trivial 

multiplications is introduced in [2]. This architecture is 

focused on the data elements of the matrices. However, the 

architecture is highly beneficial only when the matrices are 

sparse. In this paper, the proposed architecture also reduces 

computation energy by exploiting zeros during actual 

computations. Most of the previous implementations of 

matrix multiplication on field-programmable gate arrays 

(FPGAs) are focused mainly on tradeoff between area and 

maximum running frequency [3]–[7]. A bit-serial matrix 

multiplier using Booth encoding was implemented on the 

FPGA [3]. The multiplier discussed in [4] improved the 

design in [3] using modified Booth-encoder multiplication 

along with Wallace tree addition, where the running 

frequency has been doubled from the design described in [3]. 

These designs are further improved in terms of area and speed 

in [7]. All of their designs consider the input word-width 

directly and the size of scalar multipliers can be significantly 

large for practical VLSI implementation when the input 

word-width increases. Moreover, their designs are mainly 

focused on reducing FPGA resources by incorporating static 

memory in the implementation. This design is focused on both 

computational and energy efficiency, as well as structural 

flexibility. 

In this paper, high-speed matrix multiplications based on 

two-level matrix decomposition is considered. The idea of 

decomposition has been applied in many arithmetic 

computations to reduce the amount of computation and 

latency [8] [10]. The idea of decomposition is further 

extended into the word level. Initially, a matrix multiplication 

with higher dimension, is decomposed into several 2x2 matrix 

multiplications. Then, these decomposed 2x2 matrix 

multiplications are further decomposed into several matrix 

multiplications where each element in these matrix 

multiplications is represented with smaller word-width. Then 

a set of simple, but fast operators is used concurrently to 

generate partial results. The structure and size of the simple 

operators are fixed irrespective of the input element 

word-width. The final outputs are generated by combining 

(composing) the partial results through accumulation with 

adder trees.  
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The proposed matrix multiplications support 2’s 

complement input with energy efficient computation. The 

design methodology of the proposed architecture can utilize 

varying numbers of simple operators to support various 

degrees of time multiplexing to reduce complexity with a 

low-latency penalty. This presentation is focused on an 

architecture for a 2x2 matrix multiplier based on word-width 

decomposition, which can be a building block for computing 

larger dimension matrix multiplications. 

In this paper, its performance and complexity with design 

on commercially available FPGA is demonstrated. The 

remainder of this paper has four sections. In Section II, it 

describes the concept of matrix multiplications via two-level 

decomposition. Balanced word-width decomposition scheme 

is discussed, as well as an issue on 2’s complement data 

representation in the proposed architecture. In Section III, a 

set of key units comprising a flexible matrix multiplier 

architecture is described in detail. A key set of design tradeoff 

parameters is also discussed. In Section IV, Proposed 

multiplication is presented. Then Simulation results are 

summarized in Section V. 

II. MATRIX MULTIPLICATION DESIGN 

OVERVIEW 

A. Theory of Operation 

The overall operation is based on two basic assumptions. 1) 

Matrix multiplication is performed on NxN matrices where N 

is a power of two. 2) Each element in the matrices is a fixed 

point integer with word-width of W. In the design, it adopts 

two-level decomposition. Initially, NxN matrix multiplication 

is decomposed into several 2x2 matrix multiplications. This 

process is illustrated with N=4 as 

 

where  are all 2x2 matrices. 

After the initial decomposition, all matrix multiplications are 

2x2 matrix multiplications where word-width of each element 

is W. Then, each matrix multiplication (i.e., eight such matrix 

multiplications for the example above) is decomposed in 

terms of word-width. For example, for the value of p equal to4 

 
Thus, 2x2 matrix multiplication is represented as 

 

 

where 

 
represent decomposed 2x2 matrix multiplications. Two 

matrices, QA1 and QB1, are decomposed further until each 

element in all the decomposed matrices is less than 2^p where 

all elements are represented with p-bit precision. Upon 

completion of the decomposition process, all matrix 

multiplications with p-bit precision are computed in parallel 

with much smaller booth multipliers than W. The outputs 

from this computation are accumulated to generate the final 

outputs for one 2x2 W-bit matrix multiplication. After 

repeating the same process, the outputs for NxN matrix 

multiplications are constructed. Throughout the paper, the 

presentation is focused on word-width decomposition. 

B. Word Width Decomposition 

There are two ways to decompose the matrices. The first 

approach is to divide the width of the original elements 

successively in half. 
 

 
Fig. 1. Illustration of the balanced word-width       

decomposition with W = 16 and p = 4. 
 

This approach, called balanced word-width decomposition, 

is illustrated in Fig. 1. Let a finite number represent the 

decomposed data width. Then, a multiplication by 2^p 

becomes a simple p-bit shift. Initially, the matrix 

multiplication with W–bit input elements is decomposed into 

two sub matrix multiplications with W/2 bit elements. Then, 

the decomposed matrix multiplication is further decomposed 

until the element word length is equal to p. After the 

decomposition, there will be many but smaller sub matrix 

multiplications which can be performed with simple 

arithmetic units. The depth of the decomposition tree depends 

on the word length of the original data element. The 

restriction with this approach is that the size of W must be 

p*2^i , where i is an integer. For example, for p=4, the only 

possible word lengths are W=4,8,16,32……….  

The illustrations shown in Figs.1 may seem to suggest that 

the decomposition process takes multiple stages of 

operations. 
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 Actually, the decomposition of the original matrix 

multiplication results in 16 sub matrix multiplications (i.e., for 

W=16). It will show that the actual decomposition can be 

done directly from the input elements and the decomposition 

processes illustrated above, are handled during the 

composition where shiftings and summations are performed. 

Basically, the decomposition process is merely dividing the 

original values through interconnection distribution.  

C. Composition 

The composition is the reverse operation of the 

decomposition. Consider two matrices A and B W=16 with 

input word-width which are multiplied as 
 

 
 

 Consider the balanced decomposition with W=16 and p=4. 

Then after the decomposition, the matrix multiplication AB is 

represented as 

AB= 

(QQAQQB)2^4p+(QQARQB)2^3p+(RQAQQB)2^3p+(RQ

ARQB)2^2p+(QRAQQB)2^3p+(QRARQB)2^2p)+(RRAQ

QB)2^2p+(RRARQB)2^p+(QQAQRB)2^3p)+ 

(QQARRB)2^2p)+(RQAQQB)2^2p)+(RQARRB)2^P+(Q

RAQRB)2^2p+(QRARRB)2^p)+(RRAQRB)2^p+ 

(RRARRB) 
 

 Note that with the exception of multiplication factors, the 

original matrix multiplication AB consists of many smaller 

booth matrix multiplications, which can be computed with the 

same hardware. The results from these smaller matrix 

multiplications are the partial results for cij where they are 

accumulated by an adder tree to generate the outputs of the 

matrix multiplication. Hence, the adder tree is executed four 

times to generate a complete 2x2 output matrix C.  
 

Figs.2 illustrates composition schemes for the balanced 

decomposition schemes, respectively. Note that each adder in 

the adder tree consists of two inputs where one of the inputs is 

scaled by 2^p, which is equivalent to a p-bit shift operation. 

Thus, in the adder tree, the output of each adder is 

appropriately shifted to reverse the decomposition operations. 
 

 
Fig. 2. Illustration of 2S-input adder tree structure in 

the balanced composition process with W = 16 and p = 4. 

III. DEIGN APPROACH 

A. Overall Architecture 

The proposed overall architecture is shown in Fig. 3. The 

architecture consists of decomposition, basic operation, and 

composition unit. In this architecture, a small number of p-bit 

multipliers is used several times to generate W-bit results. 

Both decomposition and composition units are operated at the 

same clock frequency, which is equal to the I/O rate. 
 

 
Fig. 3. Overall architecture with three main units. Figure is 

illustrated with the number of basic operators, N , which is 

equal to 4. 

B. Decomposition Unit 

 In the decomposition unit, a direct decomposition of W-bit 

elements is accomplished. The inputs enter the decomposition 

unit in a pair of elements of matrix A and B as 

(a11,b11),(a12,b12),(a21,b2

1), and (a22,b22).  
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The decomposition unit is responsible for two main tasks. 

The first task is to segment W-bit elements into several p-bit 

elements and make conversion to support 2’s complement 

number representation. 

The second task is basically ordering the data so that output 

elements are generated at the same rate with the input rate 

with low overall latency. Once the data are properly ordered 

by the decomposition unit, all basic operators can start the 

processing as early as possible without any stoppage. The 

decomposition unit is designed to take a continuous stream of 

2x2 matrices. 

C.Radix- Basic Operator 

 In a basic operator, each operation takes four inputs. The 

outputs from the booth multipliers are added for the final 

output. (p+2)-bit elements (one bit for sign extension and the 

other bit for zero flag) of the working submatrix are loaded in 

order into registers. Once ordered, the data will propagate 

through a chain of registers. This ordering is established to 

produce four elements corresponding to c11,c12,c21, and 

c22. For example, for word-width W of 16 and p of 4, there 

will be total of 16 concurrent submatrix multiplications. With 

four basic operators executing in parallel, each output is 

generated in 4 iterations. 

D. Composition Unit: 0-mp Adder Tree 

Figs.4 illustrates the composition adder tree. The 

composition unit consists of registers and an adder tree with 

0-mp adders. (i.e.,zero bits at the low significant bits of one 

input and extended sign bits at the high significant bits of the 

other).  

 
Fig. 4. Illustration of the ripple carry adder tree by 

merging 0-mp adders for the balanced composition. W = 

16 and p = 4 for the illustration. 
 

Hence, the worst case delay is less than a normal adder with 

the same width. In the implementation, the adders are 

constructed with carry-select adders where each segment of 

adder is designed with a p–bit ripple carry adder [12]. 

 For 4-bit ripple carry adder we use 12-bit adder,16-bit 

adder,24-bit adder and 32-bit adder in the composition unit. 

At the end of adder tree, the output word-width is 2W-bits. 

IV. KARATSUBA MULTIPLICATION 

The Karatsuba multiplication is an efficient procedure for 

multiplying large numbers which gives high speed 

performance than the booth multiplier. The Karatsuba 

algorithm is a notable example of divide and conquers 

method, specifically for binary splitting. 

The basic step of Karatsuba algorithm is a formula that 

allows us to compute the product of two large numbers x and y 

using three multiplications of smaller numbers, each with 

about half as many digits as x or y, plus some additions and 

digit shifts. Karatsuba observed that we can compute xy in 

only three multiplications, at the cost of a few extra additions: 

Let z2 = x1y1  

Let z0 = x0y0  

Let z1 = (x1 + x0)(y1 + y0) - z2 - z0  

since 

z1 = (x1y1 + x1y0 + x0y1 + x0y0) - x1y1 - x0y0 = x1y0 + x0y1  

V. SIMULATION RESULTS 

Simulation is performed by using Xilinx ISE 9.1 

development tool for the design. The speed of the designs is 

verified through synthesis-Report from post-synthesis 

simulation and all the results depend on given input. The 

simulation results are shown for booth multiplier and 

karatsuba multiplier. The simulation results are shown in 

figures 5(a),5(b),6(a). 

 

Fig.5(a).simulation output for matrix multiplications 

 

 
 

Fig.5(b).synthesis Report for booth multiplier 
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Fig.6(a).synthesis Report for karatsuba multiplier  

V. CONCLUSION 

In this paper, a design methodology is proposed for a 

flexible 2x2 matrix multiplier architecture. In this particular 

architecture, a set of small but fast multipliers are used. The 

balanced word width decomposition is used for flexibility 

with high-speed operation. In this decomposition technique, 

the booth multiplier is used for multiplication unit. But this 

booth multiplier results high latency. This can be overcome 

by the Karatsuba multiplication, which is an efficient 

procedure for multiplying large numbers, for giving high 

speed performance. Also by this methodology larger matrix 

multiplications can be computed.  
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