
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-6, January 2013

70 Retrieval Number: F1096112612/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication



Abstract— In a heterogeneous parallel computer system, the

computational power of each of the processors differs from one

another. Furthermore, with distributed memory, the capacity of

the memory, which is distributed to each of the processors, differs

from one another. Using queuing system to describe a distributed

memory heterogeneous parallel computer system, each of the

heterogeneous processors will have its own heterogeneous queue.

The variation of waiting time of heterogeneous parallel computer

system with distributed memory needs to be modeled because it

will help designers of parallel computer system to determine the

extent of variation of the waiting time. It will also help users to

know when to realize minimum variation of the waiting time. This

paper models the variation of the waiting time of distributed

memory heterogeneous parallel computer system using recursive

models. It also uses the statistical method of Z-Transform to verify

and validate the recursive model.

Keywords— distributed memory, heterogeneous parallel

computer, parallel computer system, queuing network, recursive

models, variation, waiting time, Z-Transform.

I. INTRODUCTION

 A heterogeneous parallel computer system is one in which

the computational power of each of the processors differs

from one another. With distributed memory, it means that

each of the heterogeneous processors has its own memory.

Describing the system using queuing network, each of the

processors has its own queue. With a round robin scheduling

algorithm, processes can be scheduled to the various parallel

processors, whenever a process needs to perform an I/O

operation, it joins the appropriate I/O queue. Therefore, the

queuing network of a heterogeneous parallel computer system

consists of parallel processors, parallel processor queues, I/O

processors and I/O queues. Suppose there are n different

parallel processor queuing systems and k different I/O

queuing systems. A queuing system in this context is defined

as a processor, together with its own queue.

We assume that the various queues are finite [1], [2], [3],

[4] i.e. there is a limit to the number of jobs that can be

admitted into the queues, and negligible communication

overhead. Suppose X1, X2, X3, …, Xn , Xn+1, Xn+2, Xn+3, …,

Xn+K are the maximum number of processes that can be

admitted into the respective queues. We assume that

processes arrive at the various queues according to Poisson

distribution, and they are serviced according to Exponential

distribution [5], [6]. Figure 1 illustrates a model of the

queuing network of a heterogeneous parallel computer system

Manuscript received on January, 2013.

Oguike, O. E., Department of Computer Science, University of Nigeria,

Nsukka, Enugu State, Nigeria.

Agu, M.N., Department of Computer Science, University of Nigeria,

Nsukka, Enugu State, Nigeria.

Echezona, S.C.., Department of Computer Science, University of

Nigeria, Nsukka, Enugu State, Nigeria.

with distributed memory.

There are different performance metrics of a parallel

computer system that can be modeled, however, for

distributed memory heterogeneous parallel computer system,

variation of waiting time is an important performance metric

that needs to be modeled. This is because the various

computational resources and processes are heterogeneous,

therefore there is need to measure the extent of variation

between the heterogeneous computational resources and

processes.

Figure 1: Queuing network of a heterogeneous parallel

computer system with distributed memory

II. LITERATURE REVIEW AND LIMITATION OF

CURRENT TECHNIQUE

Queuing approach has been used extensively in the

literature to model the performance of computer systems.

However, this has been done in different ways and for

different models of computer systems. In [20], the authors

used a recursive computation approach to solve the steady

state equations, thereby leading to the modeling of the various

performance metrics of a multi-terminal system that is subject

to breakdown. Furthermore, the author in [24] used a rigorous

approach to model the performance of heterogeneous parallel

computer system without introducing any constraint on the

kind of interconnection

between the heterogeneous

nodes. Furthermore, in [24],

Modeling Variation of Waiting Time of

Distributed Memory Heterogeneous Parallel

Computer System using Recursive Models

Oguike, O.E., Agu, M.N., Echezona, S.C.

cpu queue Parallel

Pocessors

cpu queue

cpu queue

cpu queue

I/O queue

I/O queue

I/O queue

I/O processors

Modeling Variation of Waiting Time of Distributed Memory Heterogeneous Parallel Computer System

using Recursive Models

71

Retrieval Number: F1096112612/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

systems with the same interconnection speed were considered

when modeling the performance of heterogeneous parallel

computer system. The authors in [25] looked at alternative

ways of measuring the performance of heterogeneous parallel

computer system, by modeling linear speed and linear

efficiency using simulation-modeling techniques. In [26], the

author showed that Little’s formulae could be universally

applicable, if properly interpreted to take account of

state-varying entrance rates, batch arrivals, and multiple

customer classes. In [27], the author confirmed that Little's

formula could be applied to very general queuing systems (not

just M/M/1), even whole networks! The authors in [28]

considered a new performance metric, variation of the

computing power as a unique performance metric that is ideal

for a heterogeneous network of workstations, though an

approach different from queuing approach was used to do

this. In [29], analytic models were used to model the

performance of computer intensive applications of parallel

computers, while [30] used recursive models only to evaluate

the performance of compute intensive application of a parallel

computer system. In [31], recursive models were used to

evaluate various performance metrics of heterogeneous

parallel computer system with distributed memory; however,

variation was not part of the performance metric modeled. In

[33], the authors used recursive model to model the variation

of the average number of processes in the system, though the

developed recursive models were not validated.

Though analytic queuing method has been used in literature

[29], [32] to model the performance metrics of various

computer queuing models, however, one limitation of the

analytic method is its inability to efficiently determine the

exact convergence of some mathematical series that are used

in modeling variation of waiting time of distributed memory,

heterogeneous parallel computer system. Therefore, there is

the need for another modeling approach, rather than analytic

modeling approach. The use of efficient linear recursive

model [9] can efficiently model the variation of waiting time

of a distributed memory, heterogeneous parallel computer

system. Therefore, recursive models can be used to efficiently

determine the exact convergence of any series used in

modeling the variation of waiting time of a distributed

memory parallel computer system.

III. DEVELOPING THE RECURSIVE MODELS

The recursive model was developed for one queuing

system; afterwards, it was generalized to consider all the

queuing systems of the queuing network. As a result, the

following models have been developed for one queuing

system and for all the queuing systems of the queuing

network.

A. Models Based on a Queuing System

The following models have been developed for one

queuing system

1. Recursive Probability Density Function of the Number of

Processes in One Queuing System.

Let Xi denotes the maximum number of processes that can

be in the ith finite queuing system at any time [12], [13], [14].

Suppose the arrival rate, xi when xi processes are in the ith

queuing system of the queuing network be described as:



 


otherwise

Xx iii

ix
,0

1,...3,,2,1,0,
 (1)

Since the various processors are heterogeneous, therefore,

it implies that the departure rate will vary, which can be

described as:



 


otherwise

Xx iii

ix
,0

,...,4,3,2,1,
 (2)

Using the steady state probability as stated in [7], [16] the

probability that xi processes will be in the ith queuing system

is





 


otherwise

XxP
P

ii

x

i

ix

,0

,0
 (3)

The utilization factor for the ith queuing system, i is

defined as:

i

i




. To obtain the value of P0i in equation (3), we

sum all the probabilities for the ith queuing system and equate

it to 1. This implies that:





i

i

X

x

xiP
0

1. (4)

From equations (3) and (4), it implies that:

P0i+iP0i+i
2
P0i + i

3
P0i + i

4
P0i + … + i

X
iP0i = 1. (5)

Factorizing equation (5), it implies that

P0i (1 + i + i
2
 + i

3
 + … + i

X
 i) = 1. (6)

Recursive model can be used to show where the series in (6)

converges. The recursive model is given below as:

 1, X = 0

Sum1(X, ) = (7)

 Term1(X, ) + Sum1(X-1, ), X  0

The recursive algorithm that can be used to implement the

recursive model in equation (7) is given below as:

Double sum1 (int X, double )

1. Request data

1.1 Request X

1.2 Request 

2. Determine Sum1

2.1 Sum1 = 1 if X = 0 else

Sum1=Term1(X, )+Sum1(X-1, )

3. Display Sum1

Term1(X, ) is the recursive model that determines the

xth term of the series in (6), it is given as:

 1, Xi = 0

Term1i(Xi, i) = (8)

 *i Term1i(Xi-1, i), Xi  0

The recursive algorithm that can be used to implement the

recursive model in equation (8) is given below as:

Double Term1(int X,

double )

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-6, January 2013

72 Retrieval Number: F1096112612/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

1. Request data

1.1 Request X

1.2 Request 

2. Determine Term1

2.1 Term1 = 1 if X = 0 else

Term1=  *Term1i(Xi-1, i)

3.Display Term1

Using equation (7) in equation (6), we obtain the following:

Poi Sum1(Xi, i) = 1 (9)

Solving for Poi in equation (9), we obtain the following:

Poi =
) ,Sum1(X

1

i i
 (10)

Using equation (10) in equation (3), we have the following:












Otherwise

Xx
P i

i

x

i

xi

i

i

,0

,
) ,Sum1(X i 



 (11)

Equation (11) is the probability density function that models

the probability that xi processes will be admitted in the ith

queuing system.
2. Average Number of Processes in One Queuing System.

Furthermore, the average number of processes in the ith
queuing system (i.e the queue and the processor) can be

described statistically as expectation of ix , where ix is the

random variable that denotes the number of processes in the
ith queuing system. This can be written as

E(ix) = 


i

i

i

X

x
xii Px

0

. (12)

Using equation (11) in equation (12), we obtain the following:
















) ,Sum1(X
)(

i1 i

x

ii

X

x

i

ii

i

x
xE




 (13)

Equation (13) can be simplified as:

 132

i

...4321
) ,Sum1(X

1
)(













 iX

iiiiii

i

i XxE 


(14)

A recursive model has been used in [30], [31] to determine

the convergence of the series in equation (14). The recursive

model is called Sum2i(Xi, i), and it is given as:

1, Xi = 1

 (15)

Term2i(Xi)*term1i(Xi-1,
i) + Sum2i(Xi-1, i), Xi  1

The recursive algorithm that can be used to implement the

recursive model in equation (15) is given below as:

Double Sum2(int X, double )

1. Request data

1.1 Request X

1.2 Request 

2. Determine Sum2

2.1 Sum2 = 1 if X = 1 else

Sum2= Term2i(Xi)*term1i(Xi-1,
i) +

Sum2i(Xi-1, i)

3. Display Sum2

Term2i(Xi) is given as:

1, Xi = 1

Term2i(Xi) =

(16)

1 + term2i(Xi-1), Xi  1

The recursive algorithm that can be used to implement the

recursive model in equation (16) is given below as:

Double Term2(int X)

1. Request data

1.1 Request X

2. Determine Term2

2.1 Term2 = 1 if X = 1 else

Term2= 1 + term2i(Xi-1)

3. Display Term2

term1i(Xi, i) is the recursive model in equation (8).

Therefore, using equation (15) in equation (14), we obtain:













),(1

),(2
)(

iii

iii

i
XSum

XSum
xE




 (17)

B. Models Based on The Whole Queuing Network.

Having developed the models for the performance metrics

of one queuing system, these models can be extended to the

whole queuing systems of the queuing network of a

heterogeneous parallel computer system. It is necessary to

define ii as the probability that a process will join the ith

queue after each cpu burst, and 0 as the probability that the

execution of a process has been completed. Arrival of

processes into the various parallel processor queues can come

from the outside world or from the various I/O queues or from

the particular parallel processor, at the expiration of the time

quantum for that process. Let i be the rate of arrival of

processes into the ith queuing system, and  , the rate of

arrival of processes from the outside world.. Under the steady

state, when we consider the queuing network, the overall

utilization factor has been defined in [31] as:

)18(,...,3,2,1,
0

kni
i

i
i 






1. Variation of Average Waiting Time in all the Queuing

Systems of the Queuing Network

Suppose ix is the random variable that denotes the number

of processes in the ith queuing system. Therefore, the average

or mean processes in all the queuing systems of the queuing

network can be defined as

kn

x

Y

kn

i

i






1

 (19)
Little’s formula can be used to related equation (19) to the

average waiting time in all the queuing systems of the queuing

network. Therefore, using the

constant of proportionality of

Little’s formulae [7], we can

Modeling Variation of Waiting Time of Distributed Memory Heterogeneous Parallel Computer System

using Recursive Models

73

Retrieval Number: F1096112612/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

establish a relationship between the average number of

processes in all the queuing systems and the average waiting

time in all the queuing systems of the queuing network., as

shown in equation (20).

ffe

kn

i

i

kn

x

Ws


11


























 (20)

The constant of proportionality,

kn

kn

i
ffe

ffe

i






1



 (21)

Using equation (20), we can take the variance of the

average waiting time as:













































ffe

kn

i

i

kn

x

VARWsVAR


1
)(1 (22)

Using one of probability theory laws in [23], we obtain:

 





kn

i

i

ffe

xVAR
kn

WsVAR
1

22)(

1
)(


 (23)

From [23], the variance can be defined statistically as:

22
))(()()(iii xExExVAR  (24)

Simplifying equation (24) further, we obtain:

 
ixiii PxxE

22
)((25)

Using equation (11) in equation (25), we obtain:
















),(1
)(

2

1

2

iii

x

ii

X

x

i
XSum

x
xE

ii

i



 (26)

Simplifying equation (25), we obtain:

 iX

iiiiii

iii

i X
XSum

xE 


242322222
...4321

),(1

1
)(















(27)

Simplifying equation (27) further, we obtain:

 iX

iiiiii

iii

i X
XSum

xE 


24322
...16941

),(1

1
)(












 (28)

Factorising equation (28), we obtain:

 12322
...16941

),(1

1
)(













 iX

iiiiii

iii

i X
XSum

xE 


 (29)

The convergence of the series may not be efficiently

determined analytically; therefore we seek for its convergence

using recursive models. The same approach used earlier can

be used to determine the convergence of the series,

 1232
...16941


 iX

iiiii X  . The series can be

considered as two sequences, which are: sequence1 = 1, 4, 9,

16, …, X
2
, while the other sequence is: sequence2 =

 132
,...,,,,1

iX

iiii  . The recursive model that can

be used to determine the xth terms of sequence1 can be

obtained by adding 2X-1, which is the common difference

between the xth term and the (x-1)th term, to the (x-1)th term

of the sequence. The recursive model can be represented as

shown below in equation (30), as:

 1, Xi = 1

Term3i(Xi) = (30)

(2*Xi-1) + Term3i(Xi-1), Xi  1

The recursive algorithm that can be used to implement the

recursive model in equation (29) is given below as:

Double Term3(int X)

1. Request data

1.1 Request X

2. Determine Term3

2.1 Term3 = 1 if X = 1 else

Term3= (2*Xi-1) + Term3i(Xi-1)

3. Display Term3

The recursive model that determines the xth terms of

sequence2 has been developed in equation (8). Therefore,

combining equation (30) and equation (8), the series in

equation (29) converges to this recursive model, called

Sum3i(Xi, i), which is shown below as:

 1, Xi = 1

 (31)

Term1i(Xi-1, i)*Term3i(Xi) + Sum3i(Xi-1, i) ,Xi  1

The recursive algorithm that can be used to implement the

recursive model in equation (31) is given below as:

Double Sum3(int X; Double i)

1. Request data

1.1 Request X

1.2 Request 

2. Determine Sum3

2.1 Sum3 = 1 if X = 1 else

Sum3= Term1i(Xi-1, i)*Term3i(Xi) +

Sum3i(Xi-1, i)

3. Display Sum3

Therefore, using equation (31) in equation (29), we obtain:













),(1

),(3
)(

2

ii

iii
i

XSum

XSum
xE




 (32)

Using equations (17) and (32) in equation (24), we

obtain:
2

),(1

),(2

),(1

),(3
)(






















iii

iii

iii

iii

i
XSum

XSum

XSum

XSum
xVAR









(33)

Therefore, using equation (33) in equation (23), we obtain:

























































 





kn

i iii

iii

iii

iii

ffe
XSum

XSum

XSum

XSum

kn
WsVAR

1

2

22),(1

),(2

),(1

),(3

)(

1
)(











 (34)

Equation (34) models the variation of the average waiting

time in all the queuing systems of the queuing network.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-6, January 2013

74 Retrieval Number: F1096112612/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

IV. VERIFYING AND VALIDATING THE MODELS

USING Z-TRANSFORM

Model verification and model validation are essential parts

of model development that will help to assess the quality of

the developed models. If a model is not verified and validated

it cannot be assured of quality, therefore, it can be sent back to

the drawing board. Model verification is done in order to

ensure that the simulation algorithm i.e. algorithms used to

implement the models on the computer are correct and the

simulation programs i.e. model implementation programs are

correctly programmed. Model verification eliminates every

error that may occur when implementing the models on the

computer. On the other hand, model validation aims at

making the model address the right problem, address accurate

information about the system being modeled. Model

validation compares the results of the simulated models with

the results of a real system. Therefore, model validation tries

to establish if the model is an accurate representation of the

real system. However, due to one reason or the other, it may

not be easy sometime to obtain results of the real system, in

such a situation, expert knowledge can be used to determine if

the qualitative data from the simulated model is valid or

invalid [35]. The authors in [34] argued that though

quantitative comparison will provide the basis for validation,

however, it can miss the qualitative discrepancies or

agreements that human are capable of detecting. One of the

ways they suggested that can be used to detect such

discrepancies or agreements is through visualization.

Visualization, according to them helps to map numerical data

into graphical structure that human can more readily

understand. This graphical display of the results of the

simulated model or the system behavior will help us to

determine if the model is valid or invalid. Furthermore, [34]

pointed out that quantitative comparison is needed to make

finer distinctions between behaviors that agree in their basic

form, but qualitative comparison can help to eliminate models

that are not in the right ballpark [34]. Sometimes, a validated

model can be used to validate another model by comparing

qualitative and quantitative data of the two models.

The statistical method of Z-transform can be used to

validate the recursive models. The Z-transform for the ith

queuing system, using the statistical generating function is

given as:

GXi(z) = E(z x) (35)

Therefore, using equation (35), the variance of the ith

queuing system can be expressed in terms of the z-transform

as in [25]:

VAR(X i) = 2

2

)(

)(

z

zGXi




 z = 1 + 









)(

)(

z

zGXi




 z = 1 -

2

)(

)(









z

zGXi




 z = 1 (36)

Simplifying equation (36) further, using the analytic model

for the probability density function for 1i , as stated in

[33], we obtain the following:




 


















i

i

i

i

i

X

x
X

i

i

x

ix

Xi zzG
0

1
1

)1(
)(





 (37)

Simplifying further, we obtain the following:




 


















i

i

ii

i

X

x

x

i

x

X

i

i
Xi zzG

0
1

1

)1(
)(





 (38)

Simplifying further, we obtain the following:




 


















i

i

i

i

X

x

x

iX

i

i
Xi zzG

0
1

)(
1

)1(
)(





 (39)

Simplifying further, we obtain the following:

 







































))(1(

)(1

1

)1(
)(

1

1

i

X

i

X

i

i
Xi

z

z
zG

i

i 







 (40)

Therefore, taking the first derivative of equation (40), with

respect to z, and initializing z to 1, we obtain the following:





































 2

1

1)1(

)1(1

1

)1()(











 XX

z

zG XX

X

i

iXi

i

 (41)

Simplifying further, equation (41) reduces to:

































)1(

)1(1

1

)(1

1 









 XX

z

zG XX

X

i

Xi

i

(42)

Furthermore, taking the second derivative of equation (40),

with respect to z and initializing z to 1, we obtain the

following:
































 412

2

)1(1

)1(

)(

)(







 vu

z

zG
iX

i

iXi
 (43)

Simplifying further, u and v are given as:

   1122
)1(1 2 

 iii X

ii

X

ii

X

iiii XXXXu  (44)

  i

X

i

X

ii

X

iii
iii XXv  
 112

12 (45)

Therefore, using equations (44) and (45) in equation (43),

and using equations (43) and (42) in equation (36), we obtain

the z-transform model for the variation of waiting time in the

ith queuing system. Furthermore, the z-transform can be used

to obtain variation of the average waiting time in all the

queuing systems of the queuing network, as shown in equation

(46) below.











 





kn

i

X

ffe

i
VAR

kn
WsVAR

1
22

)(
)(

1
)(



 (46)

However, the z-transform cannot be used to effectively

validate the recursive model for the isolated case when

1i .

V. METHODOLOGY

This paper has used recursive models to model the

variation of waiting time of distributed memory,

heterogeneous parallel computer system. A queuing

approach, with finite queues has been used to achieve the

above aim, with parallel processors depicting parallel servers.

The statistical method of probability density function and

other probability theory concepts have used [15], [23]. A

novel method of deriving the recursive model that determines

the xth terms and the convergence of important mathematical

series have been used to

develop the recursive

models.

Modeling Variation of Waiting Time of Distributed Memory Heterogeneous Parallel Computer System

using Recursive Models

75

Retrieval Number: F1096112612/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

The simulation of the models on the computer has been

done using Java programming language and the statistical

regression/trend line analysis has been used to analyze the

results of the simulation [11]. The simulated recursive

models have been validated using statistical method of

Z-Transform.

VI. RESULTS OF THE SIMULATION

The results of the simulation have been analyzed to

determine how variation of the waiting time changes as a

particular parameter varies, while other parameters remain

constant [10]. Table 1 and figure 2 show the result of the

simulation, suppose the probability of a process leaving the

system is known to be 0.2 and the probabilities that a process

will join the first and second queues are 0.775 and 0.025,

respectively. Suppose the first processor is a high-speed

processor with high departure rate of 30, while the second

processor is a low speed processor with a low departure rate

of 10. Suppose the maximum number of processes to be

allowed into first queue is 20, while maximum number of

processes to be allowed into the second queue is 5. The

experimental trials were carried out several times, in each

trial, the arrival rate was changed, and the corresponding

variation was obtained as the result of the simulation.

Table 1: Result of VARIATION AGAINST Arrival Rate

AR V.From Model V.From Z-Transform

3 0.00186 0.00186

4 0.00221 0.00221

5 0.00323 0.00323

6 0.00578 0.00578

7 0.00978 0.00978

8 0.00999 0.00999

9 0.00623 0.00623

10 0.00341 0.00341

11 0.002015 0.002015

12 0.001332 0.001332

Key to the Table:

AR: Arrival Rate.

V.from Model: Waiting Time Variation, using Recursive

models.

V.from Z-Transform: Waiting Time Variation, using

Z-Transform.

Figure 2: Variation Against Arrival Rate

The undulating nature of the result shows the various points

where minimum variations and maximum variation can be

realized.

Furthermore, table 2 and figure 3 show the simulation

results as we keep the following input parameters constant,

the probability that a process will leave the network is 0.2, the

probabilities that a process will join queue 1 and 2 are 0.775

and 0.025, respectively, while the departure rates for

processor 1 and 2 are 30 and 10, respectively, and the

maximum number of processes in queue 1 and 2 (degree of

multiprogramming for the two queues) are 20 and 5,

respectively, and the arrival rate from the outside world is 4

(for non-compute intensive applications) and 30 (for compute

intensive applications). By changing the degree of

multiprogramming (maximum number of processes in the

system) for the two queues of a two-processor parallel

computer system, we obtain the corresponding variations

shown in table 2 and figure 3 for non-compute intensive

applications.

Table 2: Result Of Variation Against Degree Of

Multiprogramming

TMP V. from Model V. from Z-Transform

8 0.0010662 0.0010662

13 0.0015138 0.0015138

18 0.0020149 0.0020149

23 0.0021338 0.0021338

28 0.0021958 0.0021958

33 0.0022076 0.0022076

38 0.0022127 0.0022127

43 0.0022135 0.0022135

48 0.0022138 0.0022138

Key to the Table:

TMP: Total Maximum Number of Processes.

V.from Model: Waiting Time Variation from Model.

V.from Z-Transform: Waiting TimeVariation from Z-

Transform.

Figure 3: Variation Against the Degree of Multiprogramming

From the results in table 2 and figure 3, it can be seen that

for non-compute intensive applications, where overall

utilization factor is less than 1, as the total maximum number

of processes in all the queues increases, the waiting time

variation increases, but afterwards, it remains constant.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-6, January 2013

76 Retrieval Number: F1096112612/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

TABLE 3: Result Of Variation Against Degree Of

Multiprogramming

TMP V. from Model V. from Z-Transform

8 2.82E-04 2.82E-04

13 3.09E-04 3.09E-04

18 3.13E-04 3.13E-04

23 3.14E-04 3.14E-04

28 3.14E-04 3.14E-04

33 3.14E-04 3.14E-04

38 3.14E-04 3.14E-04

43 3.14E-04 3.14E-04

48 3.14E-04 3.14E-04

Table 3 and figure 4 show the results of the waiting time

variation against the total maximum number of processes for

compute intensive applications, i.e. when the overall

utilization factor is greater than 1. The behavior of the waiting

time variation is the same for both compute and non-compute

intensive applications.

Figure 4: Variation Against the Degree of

Multiprogramming

In a similar manner, as we keep the following input

parameters constant, probability of a process leaving the

network is 0.2, while the probability of a process going to

queue 1 and 2 is 0.4, the arrival rate from the outside world is

5. The maximum number of processes that can be in queue 1

and 2 are 15 and 14, respectively. By changing the departure

rates of the two processors, we obtain the corresponding

variations of the waiting time, as shown in table 4 and figure

5. The result shows the behavior of the waiting time variation

for compute intensive applications, i.e. when the overall

utilization factor is greater than 1, is different from the

behavior of the waiting time variation for non-compute

intensive applications, i.e. when the overall utilization factor

is less than 1. From the results in table 3 and figure 4,

increasing the speed of the processors for compute intensive

applications will lead to a corresponding increase in the

waiting time variation. On the other hand, increasing the

speed of the processors for non-compute intensive

applications will lead to a corresponding decrease in the

waiting time variation.

Figure 5: Variation Against Total Departure Rate

TABLE 4: Result Of Variation Against Departure Rate

TDR1 TDR2 WTVM WTVZT

1 3 0.011495 0.011495

3 5 0.010178 0.010178

5 7 0.015133 0.015133

7 9 0.023701 0.023701

9 11 0.025995 0.025995

11 13 0.018658 0.018658

13 15 0.010034 0.010034

15 17 0.005631 0.005631

17 19 0.003593 0.003593

19 21 0.002543 0.002543

21 23 0.001934 0.001934

 Key to the table:

DRP1 Departure Rate for Processor 1

DRP2: Departure Rate for Processor 2

WTVM: Waiting Time Variation from Model

WTVZT: Waiting Time Variation from Z-Transform

VI. SUMMARY AND CONCLUSION

This paper has been able to model the variation of a waiting

time of heterogeneous parallel computer, using recursive

models and queuing approach. The models have been

simulated on the computer using Java programming language

and validated using statistical Z-Transform method, the

results of the simulation have been analyzed in order to

determine when to realize minimum variation.

REFERENCES

1. Henry H. Liu and Pat V. Crain, An Analytic Model for Predicting the

Performance of SOA-Based Enterprise Software Applications, Proc.

International Conference of Computer Measurement Group, (2004).

2. S. Balsamo et al, A Review of Queueing Network Models with Finite

Capacity Queues for Software Architecture Performance Prediction,

(2002).

3. Catalina M. Liado et al, A Performance Model Web Service, Proc.

International Conference of Computer Measurement Group, (2005).

4. Rosselio, J et al, A Web Service for Solving Queueing Network Models

Using PMIF. www.perfeng.com/paperndx.htm, (2005).

5. Cathy H. Xia, Zhen Liu., Queueing systems with long-range dependent

input process and subexponential service time. Proc. ACM

SIGMETRICS international conference on Measurement and modeling

of computer systems,(2003).

6. Shanti Subramanyam, Performance Modelling of a J2EE Application to

meet Service Level s, Agreement, Proc. International Conference of

Computer Measurement Group, (2005)

7. Hamdy A. T.,. Operation Research: An Introduction, Prentice-Hall of

India, (1999).

8. Ivan Stojmenovic; Recursive Algorithms in Computer Science Courses :

Fibonacci Numbers and Binomial Coefficients; IEEE Transactions on

Education; Vol. 48, No. 3

9. Arjan J.C. van Gemund; Performance Modelling of Parallel Systems:

An Introduction.

10. Justyna Berlinska, The Statistical models of parallel applications,

Annales UMCS Informatica, (2005).

11. Arranchenkov, K.E., Vilchersky, N.O., Shevlyakor, G.L Priority

queueing with finite buffer size and randomized push-out; mechanism.

Proc. of ACM SIGMETRICS international conference on measurement

and modeling of computer systems.; (2003).

12. Abunday, B.D., and Khorram, E. The finite source queueing model for

multiprogrammed computer systems with different CPU times and

different I/O times. Acta Cybern. 8, 4 , (1998)

13. J. Sztrik; Finite-Source Queueing Systems and their Applications: A

Biliography;

14. Trivedi K. Shridharbhai, Probability and Statistics with Reliability,

Queuing and Computer Science

Applications, John Wiley &

Sons Inc., (2002).

Modeling Variation of Waiting Time of Distributed Memory Heterogeneous Parallel Computer System

using Recursive Models

77

Retrieval Number: F1096112612/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

15. Per Brinch Hansen. Operating System Principles. Prentice-Hall of India

Private Limited, (1990).

16. J. Sztrika and T. Gál A recursive solution of a queueing model for a

multi-terminal system subject to breakdowns; Performance Evaluation

Volume 11, Issue 1, Published by Elsevier, (1990).

17. Robert V. Hogg and Allen T. Craig; Introduction to Mathematical

Statistics; Macmillan Publishing Co. Inc.; (1978).

18. Andrea Clemantis, Angelo Corana; Modelling Performance of

Heterogeneous Parallel Computer System; Journal of Parallel

Computing, Volume 12, Issue 9, Elsevier; pages 1131-1145; (1999).

19. E. Post, H.E. Goosen; Evaluating the Parallel Performance of a

Heterogeneous System

20. Beutler, F; Mean sojourn times in markov queuing network: Little’s

formula revisited; IEEE Transaction on Information Theory; Volume

29, Issue 2, page 233-241; (2003).

21. Ken Vastola;

http://networks.ecse.rpi.edu/~vastola/pslinks/perf/node46.html

22. Xiaodong Zhang, Yong Yan; Modeling and Characterizing Parallel

Computing Performance on Heterogeneous Network of workstations;

Proceedings of the 7th IEEE Symposium on Parallel and Distributeed

Processing (SPDP ’95) 1063-6374/95 $10.00 © 1995 IEEE

23. O.E. Oguike et al; Modelling the Performance of Computer Intensive

Applications of Parallel Computer System; Proc. Of IEEE 2nd

International Conference on Computational Intelligence, Modeling and

Simulation; (2010).

24. O.E. Oguike et al; Evaluating the Performance of Parallel Computer

System Using Recursive Models; Proc. Of IEEE 4th UKSim European

Modeling Symposium; (2010).

25. O.E. Oguike et al; Evaluating the Performance of Heterogeneous

Distributed Memory Parallel Computer System Using Recursive

Models; 2nd IEEE International Conference on Intelligent Systems,

Modeling and Simulation; (2011).

26. Leonard Kleinrock, Queueing Systems Volume 1 and 2, John Wiley &

Sons, (1975).

27. O.E. Oguike et al; Modelling Variation of a Performance Metric of

Distributed Memory Heterogeneous Parallel Computer System, Using

Recursive Models; In proc. of 3rd IEEE International Conference on

Computational Intelligence Modeling and Simulation; (2011).

28. Bernard P. Zeigler et al; Theory of Modelling and Simulation; Elsevier;

(2000)

29. Cor van Dijkum et al; Validation of Simulated Models; Siswo

Publication 403, Amsterdam, (1999)

AUTHORS FROFILE

Oguike, Osondu Everestus, is a Senior Lecturer in

the Department of Computer Science, University of

Nigeria, Nsukka, Enugu State, Nigeria. He obtained

his B.Sc degree from the University of Lagos, Nigeria.

His postgraduate Diploma and M.Sc degree were

obtained from Queen Mary and Westfield College,

University of London, United Kingdom. He has

received many academic prizes and scholarships as a

result of his outstanding academic performance. His research interest is in

performance modeling of parallel computer systems.

Dr Monica N. Agu, is of Department of Computer

Science, University of Nigeria, Nsukka, in the

faculty of Physical Sciences. She obtained her first

degree (B.Sc. Honors) in Computer Science, from

University of Ibadan, Ibadan, Nigeria. Her M.Sc.

degree was obtained from the University of Nigeria,

Nsukka, and her Ph.D was obtained from Ebonyi

State University, Abakaliki, Nigeria. She has co-authored some books,

published some journal articles. She is a member of Nigeria Computer

Society and Ccomputer Professional of Nigeria. Her research has focused on

using Information and Communication Technology on Poverty Alleviation

and Modelling the performance of computer systems.

Echezona Stephenson C. is a faculty member, as

well as, on a PhD of the Computer Science

Department, University of Nigeria, Nsukka. He

obtained his B.Sc and M.Sc degree from the

University of Nigeria, Nsukka. His research has

focused on using Z-Transform to corroborate the

Recursive Performance Models of Parallel

Computer Systems.

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V13-48XCX65-9J&_user=10&_coverDate=04%2F30%2F1990&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1616295983&_rerunOrigin=google&_acct=C000050221&_

