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Abstract— In a heterogeneous parallel computer system, the 

computational power of each of the processors differs from one 

another. Furthermore, with distributed memory, the capacity of 

the memory, which is distributed to each of the processors, differs 

from one another. Using queuing system to describe a distributed 

memory heterogeneous parallel computer system, each of the 

heterogeneous processors will have its own heterogeneous queue. 

The variation of waiting time of heterogeneous parallel computer 

system with distributed memory needs to be modeled because it 

will help designers of parallel computer system to determine the 

extent of variation of the waiting time. It will also help users to 

know when to realize minimum variation of the waiting time. This 

paper models the variation of the waiting time of distributed 

memory heterogeneous parallel computer system using recursive 

models. It also uses the statistical method of Z-Transform to verify 

and validate the recursive model. 
 

Keywords— distributed memory, heterogeneous parallel 

computer, parallel computer system, queuing network, recursive 

models, variation, waiting time, Z-Transform. 

I. INTRODUCTION 

 A heterogeneous parallel computer system is one in which 

the computational power of each of the processors differs 

from one another. With distributed memory, it means that 

each of the heterogeneous processors has its own memory. 

Describing the system using queuing network, each of the 

processors has its own queue. With a round robin scheduling 

algorithm, processes can be scheduled to the various parallel 

processors, whenever a process needs to perform an I/O 

operation, it joins the appropriate I/O queue. Therefore, the 

queuing network of a heterogeneous parallel computer system 

consists of parallel processors, parallel processor queues, I/O 

processors and I/O queues. Suppose there are n different 

parallel processor queuing systems and k different I/O 

queuing systems. A queuing system in this context is defined 

as a processor, together with its own queue.  

We assume that the various queues are finite [1], [2], [3], 

[4] i.e. there is a limit to the number of jobs that can be 

admitted into the queues, and negligible communication 

overhead. Suppose X1, X2, X3, …, Xn , Xn+1, Xn+2, Xn+3, …, 

Xn+K are the maximum number of processes that can be 

admitted into the respective queues. We assume that 

processes arrive at the various queues according to Poisson 

distribution, and they are serviced according to Exponential 

distribution [5], [6].  Figure 1 illustrates a model of the 

queuing network of a heterogeneous parallel computer system 
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with distributed memory. 

There are different performance metrics of a parallel 

computer system that can be modeled, however, for 

distributed memory heterogeneous parallel computer system, 

variation of waiting time is an important performance metric 

that needs to be modeled. This is because the various 

computational resources and processes are heterogeneous, 

therefore there is need to measure the extent of variation 

between the heterogeneous computational resources and 

processes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Queuing network of a heterogeneous parallel 

computer system with distributed memory 

II. LITERATURE REVIEW AND LIMITATION OF 

CURRENT TECHNIQUE 

Queuing approach has been used extensively in the 

literature to model the performance of computer systems. 

However, this has been done in different ways and for 

different models of computer systems. In [20], the authors 

used a recursive computation approach to solve the steady 

state equations, thereby leading to the modeling of the various 

performance metrics of a multi-terminal system that is subject 

to breakdown. Furthermore, the author in [24] used a rigorous 

approach to model the performance of heterogeneous parallel 

computer system without introducing any constraint on the 

kind of interconnection 

between the heterogeneous 

nodes. Furthermore, in [24], 
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systems with the same interconnection speed were considered 

when modeling the performance of heterogeneous parallel 

computer system. The authors in [25] looked at alternative 

ways of measuring the performance of heterogeneous parallel 

computer system, by modeling linear speed and linear 

efficiency using simulation-modeling techniques. In [26], the 

author showed that Little’s formulae could be universally 

applicable, if properly interpreted to take account of 

state-varying entrance rates, batch arrivals, and multiple 

customer classes. In [27], the author confirmed that Little's 

formula could be applied to very general queuing systems (not 

just M/M/1), even whole networks! The authors in [28] 

considered a new performance metric, variation of the 

computing power as a unique performance metric that is ideal 

for a heterogeneous network of workstations, though an 

approach different from queuing approach was used to do 

this. In [29], analytic models were used to model the 

performance of computer intensive applications of parallel 

computers, while [30] used recursive models only to evaluate 

the performance of compute intensive application of a parallel 

computer system. In [31], recursive models were used to 

evaluate various performance metrics of heterogeneous 

parallel computer system with distributed memory; however, 

variation was not part of the performance metric modeled. In 

[33], the authors used recursive model to model the variation 

of the average number of processes in the system, though the 

developed recursive models were not validated. 

Though analytic queuing method has been used in literature 

[29], [32] to model the performance metrics of various 

computer queuing models, however, one limitation of the 

analytic method is its inability to efficiently determine the 

exact convergence of some mathematical series that are used 

in modeling variation of waiting time of distributed memory, 

heterogeneous parallel computer system. Therefore, there is 

the need for another modeling approach, rather than analytic 

modeling approach. The use of efficient linear recursive 

model [9] can efficiently model the variation of waiting time 

of a distributed memory, heterogeneous parallel computer 

system. Therefore, recursive models can be used to efficiently 

determine the exact convergence of any series used in 

modeling the variation of waiting time of a distributed 

memory parallel computer system.   

III. DEVELOPING THE RECURSIVE MODELS 

The recursive model was developed for one queuing 

system; afterwards, it was generalized to consider all the 

queuing systems of the queuing network. As a result, the 

following models have been developed for one queuing 

system and for all the queuing systems of the queuing 

network. 

A. Models Based on a Queuing System 

The following models have been developed for one 

queuing system 

1. Recursive Probability Density Function of the Number of 

Processes in One Queuing System. 

Let Xi denotes the maximum number of processes that can 

be in the ith finite queuing system at any time [12], [13], [14].  

Suppose the arrival rate, xi when xi processes are in the ith 

queuing system of the queuing network be described as: 


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
otherwise

Xx iii

ix
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1,...3,,2,1,0,
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Since the various processors are heterogeneous, therefore, 

it implies that the departure rate will vary, which can be 

described as: 
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Xx iii
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Using the steady state probability as stated in [7], [16] the 

probability that xi processes will be in the ith queuing system 

is 


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 


otherwise

XxP
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ix
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The utilization factor for the ith queuing system, i  is 

defined as: 

i

i




. To obtain the value of P0i in equation (3), we 

sum all the probabilities for the ith queuing system and equate 

it to 1.  This implies that:  





i

i

X

x

xiP
0

1.                                         (4) 

From equations (3) and (4), it implies that:  

P0i+iP0i+i
2
P0i + i

3
P0i + i

4
P0i + … + i

X
iP0i = 1.    (5)           

Factorizing equation (5), it implies that  

P0i (1 + i + i
2
 + i

3
 + … + i

X
 i) = 1.             (6) 

Recursive model can be used to show where the series in (6) 

converges. The recursive model is given below as: 
  

                   1, X = 0 

 

 

Sum1(X,  ) =                  (7) 

 

 

                 Term1(X,  ) + Sum1(X-1,  ), X   0 

The recursive algorithm that can be used to implement the 

recursive model in equation (7) is given below as: 

Double sum1 (int X, double  ) 

1.  Request data 

1.1 Request X 

1.2 Request    

2.  Determine Sum1 

2.1 Sum1 = 1 if X = 0 else 

Sum1=Term1(X,  )+Sum1(X-1,  )  

3.  Display Sum1 

Term1(X,  ) is the recursive model that determines the 

xth term of the series in (6), it is given as: 

            1, Xi = 0 

 

 

Term1i(Xi, i )  =                 (8) 

   

           *i Term1i(Xi-1, i ),  Xi   0 

The recursive algorithm that can be used to implement the 

recursive model in equation (8) is given below as: 

Double Term1(int X, 

double   ) 
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1. Request data 

1.1 Request X 

1.2 Request    

2. Determine Term1 

2.1 Term1 = 1 if X = 0 else 

Term1=  *Term1i(Xi-1, i ) 

3.Display Term1 

Using equation (7) in equation (6), we obtain the following: 

Poi Sum1(Xi, i ) = 1               (9) 

Solving for Poi in equation (9), we obtain the following: 

Poi  =  
) ,Sum1(X

1

i i
                   (10) 

Using equation (10) in equation (3), we have the following: 












Otherwise
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

                         (11)             

Equation (11) is the probability density function that models 

the probability that xi processes will be admitted in the ith 

queuing system.  
2. Average Number of Processes in One Queuing System. 

Furthermore, the average number of processes in the ith 
queuing system (i.e the queue and the processor) can be 

described statistically as expectation of ix , where ix  is the 

random variable that denotes the number of processes in the 
ith queuing system. This can be written as   

E( ix ) =  


i

i

i

X

x
xii Px

0

.                                       (12) 

Using equation (11) in equation (12), we obtain the following: 
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Equation (13) can be simplified as:   
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(14) 

A recursive model has been used in [30], [31] to determine 

the convergence of the series in equation (14). The recursive 

model is called Sum2i(Xi, i ), and it is given as: 

1,   Xi = 1 

 

                       

                       (15) 

 

Term2i(Xi)*term1i(Xi-1, 
i ) + Sum2i(Xi-1, i ), Xi   1 

The recursive algorithm that can be used to implement the 

recursive model in equation (15) is given below as: 

Double Sum2(int X, double   ) 

1. Request data 

1.1 Request X 

1.2 Request    

2. Determine Sum2 

2.1 Sum2 = 1 if X = 1 else 

Sum2= Term2i(Xi)*term1i(Xi-1, 
i ) +   

Sum2i(Xi-1, i ) 

3. Display Sum2 

Term2i(Xi) is given as: 

 

1, Xi = 1 

    

 

Term2i(Xi) =   

(16) 

 

1 + term2i(Xi-1), Xi   1  

The recursive algorithm that can be used to implement the 

recursive model in equation (16) is given below as: 

Double Term2(int X) 

1. Request data 

1.1 Request X 

2. Determine Term2 

2.1 Term2 = 1 if X = 1 else 

Term2= 1 + term2i(Xi-1) 

3. Display Term2 

term1i(Xi, i ) is the recursive model in equation (8). 

Therefore, using equation (15) in equation (14), we obtain: 
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B. Models Based on The Whole Queuing Network. 

Having developed the models for the performance metrics 

of one queuing system, these models can be extended to the 

whole queuing systems of the queuing network of a 

heterogeneous parallel computer system. It is necessary to 

define ii  as the probability that a process will join the ith 

queue after each cpu burst, and 0  as the probability that the 

execution of a process has been completed. Arrival of 

processes into the various parallel processor queues can come 

from the outside world or from the various I/O queues or from 

the particular parallel processor, at the expiration of the time 

quantum for that process. Let i  be the rate of arrival of 

processes into the ith queuing system, and  , the rate of 

arrival of processes from the outside world.. Under the steady 

state, when we consider the queuing network, the overall 

utilization factor has been defined in [31] as:

 

)18(,...,3,2,1,
0
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


 

 

1. Variation of Average Waiting Time in all the Queuing 

Systems of the Queuing Network 

Suppose ix  is the random variable that denotes the number 

of processes in the ith queuing system. Therefore, the average 

or mean processes in all the queuing systems of the queuing 

network can be defined as 

kn

x

Y

kn

i

i






1

                         (19) 
Little’s formula can be used to related equation (19) to the 

average waiting time in all the queuing systems of the queuing 

network. Therefore, using the 

constant of proportionality of 

Little’s formulae [7], we can 
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establish a relationship between the average number of 

processes in all the queuing systems and the average waiting 

time in all the queuing systems of the queuing network., as 

shown in equation (20). 
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The constant of proportionality,  
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Using equation (20), we can take the variance of the 

average waiting time as: 
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Using one of probability theory laws in [23], we obtain: 
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From [23], the variance can be defined statistically as:  

22
))(()()( iii xExExVAR                         (24) 

Simplifying equation (24) further, we obtain: 
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Using equation (11) in equation (25), we obtain: 
















 ),(1
)(

2

1

2

iii

x

ii

X

x

i
XSum

x
xE

ii

i



               (26) 

Simplifying equation (25), we obtain: 
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Simplifying equation (27) further, we obtain: 
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Factorising equation (28), we obtain: 
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The convergence of the series may not be efficiently 

determined analytically; therefore we seek for its convergence 

using recursive models. The same approach used earlier can 

be used to determine the convergence of the series, 

 1232
...16941


 iX

iiiii X  . The series can be 

considered as two sequences, which are: sequence1 = 1, 4, 9, 

16, …, X
2
, while the other sequence is: sequence2 = 

 132
,...,,,,1

iX

iiii  . The recursive model that can 

be used to determine the xth terms of sequence1 can be 

obtained by adding 2X-1, which is the common difference 

between the xth term and the (x-1)th term, to the (x-1)th term 

of the sequence. The recursive model can be represented as 

shown below in equation (30), as: 
 

       1, Xi = 1 

 

 

Term3i(Xi) =                (30)   

 

(2*Xi-1) + Term3i(Xi-1),  Xi   1 
 

The recursive algorithm that can be used to implement the 

recursive model in equation (29) is given below as: 

Double Term3(int X) 

1. Request data 

1.1 Request X 

2. Determine Term3 

2.1 Term3 = 1 if X = 1 else 

Term3= (2*Xi-1) + Term3i(Xi-1) 

3. Display Term3 

The recursive model that determines the xth terms of 

sequence2 has been developed in equation (8). Therefore, 

combining equation (30) and equation (8), the series in 

equation (29) converges to this recursive model, called 

Sum3i(Xi, i ), which is shown below as: 
 

 1, Xi = 1 

 

         

                     (31) 

 

 

Term1i(Xi-1, i )*Term3i(Xi) + Sum3i(Xi-1, i ) ,Xi   1  

The recursive algorithm that can be used to implement the 

recursive model in equation (31) is given below as: 

Double Sum3(int X; Double i ) 

1. Request data 

1.1 Request X 

1.2 Request   

2. Determine Sum3 

2.1 Sum3 = 1 if X = 1 else 

Sum3= Term1i(Xi-1, i )*Term3i(Xi) +  

Sum3i(Xi-1, i ) 

3. Display Sum3 

Therefore, using equation (31) in equation (29), we obtain: 
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Using equations (17) and (32) in equation (24), we 

obtain:
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Therefore, using equation (33) in equation (23), we obtain: 
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Equation (34) models the variation of the average waiting 

time in all the queuing systems of the queuing network. 
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IV. VERIFYING AND VALIDATING THE MODELS 

USING Z-TRANSFORM 

Model verification and model validation are essential parts 

of model development that will help to assess the quality of 

the developed models. If a model is not verified and validated 

it cannot be assured of quality, therefore, it can be sent back to 

the drawing board. Model verification is done in order to 

ensure that the simulation algorithm i.e. algorithms used to 

implement the models on the computer are correct and the 

simulation programs i.e. model implementation programs are 

correctly programmed. Model verification eliminates every 

error that may occur when implementing the models on the 

computer. On the other hand, model validation aims at 

making the model address the right problem, address accurate 

information about the system being modeled. Model 

validation compares the results of the simulated models with 

the results of a real system. Therefore, model validation tries 

to establish if the model is an accurate representation of the 

real system. However, due to one reason or the other, it may 

not be easy sometime to obtain results of the real system, in 

such a situation, expert knowledge can be used to determine if 

the qualitative data from the simulated model is valid or 

invalid [35]. The authors in [34] argued that though 

quantitative comparison will provide the basis for validation, 

however, it can miss the qualitative discrepancies or 

agreements that human are capable of detecting. One of the 

ways they suggested that can be used to detect such 

discrepancies or agreements is through visualization. 

Visualization, according to them helps to map numerical data 

into graphical structure that human can more readily 

understand. This graphical display of the results of the 

simulated model or the system behavior will help us to 

determine if the model is valid or invalid. Furthermore, [34] 

pointed out that quantitative comparison is needed to make 

finer distinctions between behaviors that agree in their basic 

form, but qualitative comparison can help to eliminate models 

that are not in the right ballpark [34]. Sometimes, a validated 

model can be used to validate another model by comparing 

qualitative and quantitative data of the two models. 

The statistical method of Z-transform can be used to 

validate the recursive models. The Z-transform for the ith 

queuing system, using the statistical generating function is 

given as: 

GXi(z) = E(z x )                      (35) 

Therefore, using equation (35), the variance of the ith 

queuing system can be expressed in terms of the z-transform 

as in [25]: 
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Simplifying equation (36) further, using the analytic model 

for the probability density function for 1i , as stated in 

[33], we obtain the following: 
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Simplifying further, we obtain the following: 
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Simplifying further, we obtain the following: 
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Simplifying further, we obtain the following: 

 







































 ))(1(

)(1

1

)1(
)(

1

1

i

X

i

X

i

i
Xi

z

z
zG

i

i 







  (40)

 

Therefore, taking the first derivative of equation (40), with 

respect to z, and initializing z to 1, we obtain the following: 
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Simplifying further, equation (41) reduces to: 
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(42) 

Furthermore, taking the second derivative of equation (40), 

with respect to z and initializing z to 1, we obtain the 

following: 
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Simplifying further, u and v are given as: 
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Therefore, using equations (44) and (45) in equation (43), 

and using equations (43) and (42) in equation (36), we obtain 

the z-transform model for the variation of waiting time in the 

ith queuing system.  Furthermore, the z-transform can be used 

to obtain variation of the average waiting time in all the 

queuing systems of the queuing network, as shown in equation 

(46) below. 
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However, the z-transform cannot be used to effectively 

validate the recursive model for the isolated case when 

1i . 

V. METHODOLOGY 

This paper has used recursive models to model the 

variation of waiting time of distributed memory, 

heterogeneous parallel computer system. A queuing 

approach, with finite queues has been used to achieve the 

above aim, with parallel processors depicting parallel servers. 

The statistical method of probability density function and 

other probability theory concepts have used [15], [23]. A 

novel method of deriving the recursive model that determines 

the xth terms and the convergence of important mathematical 

series have been used to 

develop the recursive 

models.  
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The simulation of the models on the computer has been 

done using Java programming language and the statistical 

regression/trend line analysis has been used to analyze the 

results of the simulation [11].  The simulated recursive 

models have been validated using statistical method of 

Z-Transform. 

VI. RESULTS OF THE SIMULATION 

The results of the simulation have been analyzed to 

determine how variation of the waiting time changes as a 

particular parameter varies, while other parameters remain 

constant [10]. Table 1 and figure 2 show the result of the 

simulation, suppose the probability of a process leaving the 

system is known to be 0.2 and the probabilities that a process 

will join the first and second queues are 0.775 and 0.025, 

respectively. Suppose the first processor is a high-speed 

processor with high departure rate of 30, while the second 

processor is a low speed processor with a low departure rate 

of 10. Suppose the maximum number of processes to be 

allowed into first queue is 20, while maximum number of 

processes to be allowed into the second queue is 5. The 

experimental trials were carried out several times, in each 

trial, the arrival rate was changed, and the corresponding 

variation was obtained as the result of the simulation. 
 

Table 1: Result of VARIATION AGAINST Arrival Rate 
 

AR V.From Model V.From Z-Transform 

3 0.00186 0.00186 

4 0.00221 0.00221 

5 0.00323 0.00323 

6 0.00578 0.00578 

7 0.00978 0.00978 

8 0.00999 0.00999 

9 0.00623 0.00623 

10 0.00341 0.00341 

11 0.002015 0.002015 

12 0.001332 0.001332 

Key to the Table: 

AR: Arrival Rate. 

V.from Model: Waiting Time Variation, using Recursive 

models. 

V.from Z-Transform: Waiting Time Variation, using 

Z-Transform. 

 

Figure 2: Variation Against Arrival Rate 

The undulating nature of the result shows the various points 

where minimum variations and maximum variation can be 

realized. 

Furthermore, table 2 and figure 3 show the simulation 

results as we keep the following input parameters constant, 

the probability that a process will leave the network is 0.2, the 

probabilities that a process will join queue 1 and 2 are 0.775 

and 0.025, respectively, while the departure rates for 

processor 1 and 2 are 30 and 10, respectively, and the 

maximum number of processes in queue 1 and 2 (degree of 

multiprogramming for the two queues) are 20 and 5, 

respectively, and the arrival rate from the outside world is 4 

(for non-compute intensive applications) and 30 (for compute 

intensive applications). By changing the degree of 

multiprogramming (maximum number of processes in the 

system) for the two queues of a two-processor parallel 

computer system, we obtain the corresponding variations 

shown in table 2 and figure 3 for non-compute intensive 

applications. 
 

Table 2: Result Of Variation Against Degree Of 

Multiprogramming 

TMP V. from Model V. from Z-Transform 

8 0.0010662 0.0010662 

13 0.0015138 0.0015138 

18 0.0020149 0.0020149 

23 0.0021338 0.0021338 

28 0.0021958 0.0021958 

33 0.0022076 0.0022076 

38 0.0022127 0.0022127 

43 0.0022135 0.0022135 

48 0.0022138 0.0022138 

Key to the Table: 

TMP: Total Maximum Number of Processes. 

V.from Model: Waiting Time Variation from Model. 

V.from Z-Transform: Waiting TimeVariation from Z- 

Transform.  

 
Figure 3:  Variation Against the Degree of Multiprogramming 

From the results in table 2 and figure 3, it can be seen that 

for non-compute intensive applications, where overall 

utilization factor is less than 1, as the total maximum number 

of processes in all the queues increases, the waiting time 

variation increases, but afterwards, it remains constant. 
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TABLE 3: Result Of Variation Against Degree Of 

Multiprogramming 

TMP V. from Model V. from Z-Transform 

8 2.82E-04 2.82E-04 

13 3.09E-04 3.09E-04 

18 3.13E-04 3.13E-04 

23 3.14E-04 3.14E-04 

28 3.14E-04 3.14E-04 

33 3.14E-04 3.14E-04 

38 3.14E-04 3.14E-04 

43 3.14E-04 3.14E-04 

48 3.14E-04 3.14E-04 
 

Table 3 and figure 4 show the results of the waiting time 

variation against the total maximum number of processes for 

compute intensive applications, i.e. when the overall 

utilization factor is greater than 1. The behavior of the waiting 

time variation is the same for both compute and non-compute 

intensive applications. 

 
Figure 4: Variation Against the Degree of 

Multiprogramming 

In a similar manner, as we keep the following input 

parameters constant, probability of a process leaving the 

network is 0.2, while the probability of a process going to 

queue 1 and 2 is 0.4, the arrival rate from the outside world is 

5. The maximum number of processes that can be in queue 1 

and 2 are 15 and 14, respectively. By changing the departure 

rates of the two processors, we obtain the corresponding 

variations of the waiting time, as shown in table 4 and figure 

5. The result shows the behavior of the waiting time variation 

for compute intensive applications, i.e. when the overall 

utilization factor is greater than 1, is different from the 

behavior of the waiting time variation for non-compute 

intensive applications, i.e. when the overall utilization factor 

is less than 1. From the results in table 3 and figure 4, 

increasing the speed of the processors for compute intensive 

applications will lead to a corresponding increase in the 

waiting time variation. On the other hand, increasing the 

speed of the processors for non-compute intensive 

applications will lead to a corresponding decrease in the 

waiting time variation. 

 

Figure 5: Variation Against Total Departure Rate 

TABLE 4: Result Of Variation Against Departure Rate 
 

TDR1 TDR2 WTVM WTVZT 

1 3 0.011495 0.011495 

3 5 0.010178 0.010178 

5 7 0.015133 0.015133 

7 9 0.023701 0.023701 

9 11 0.025995 0.025995 

11 13 0.018658 0.018658 

13 15 0.010034 0.010034 

15 17 0.005631 0.005631 

17 19 0.003593 0.003593 

19 21 0.002543 0.002543 

21 23 0.001934 0.001934 

 Key to the table: 

DRP1 Departure Rate for Processor 1 

DRP2: Departure Rate for Processor 2 

WTVM: Waiting Time Variation from Model 

WTVZT: Waiting Time Variation from Z-Transform 

VI. SUMMARY AND CONCLUSION 

This paper has been able to model the variation of a waiting 

time of heterogeneous parallel computer, using recursive 

models and queuing approach. The models have been 

simulated on the computer using Java programming language 

and validated using statistical Z-Transform method, the 

results of the simulation have been analyzed in order to 

determine when to realize minimum variation.  

REFERENCES 

1. Henry H. Liu and Pat V. Crain, An Analytic Model for Predicting the 

Performance of SOA-Based Enterprise Software Applications, Proc. 

International Conference of Computer Measurement Group, (2004). 

2. S. Balsamo et al, A Review of Queueing Network Models with Finite 

Capacity Queues for Software Architecture Performance Prediction, 

(2002). 

3. Catalina M. Liado et al,  A Performance Model Web Service, Proc.  

International Conference of Computer Measurement Group, (2005). 

4. Rosselio, J et al, A Web Service for Solving Queueing Network Models 

Using PMIF. www.perfeng.com/paperndx.htm, (2005). 

5. Cathy H. Xia, Zhen Liu., Queueing systems with long-range dependent 

input process and subexponential service time.  Proc. ACM 

SIGMETRICS international conference on Measurement and modeling 

of computer systems,(2003). 

6. Shanti Subramanyam, Performance Modelling of a J2EE Application to 

meet Service Level s, Agreement, Proc. International Conference of 

Computer Measurement Group, (2005) 

7. Hamdy A. T.,. Operation Research: An Introduction, Prentice-Hall of  

India, (1999). 

8. Ivan Stojmenovic; Recursive Algorithms in Computer Science Courses : 

Fibonacci Numbers and Binomial Coefficients; IEEE Transactions on 

Education; Vol. 48, No. 3 

9. Arjan J.C. van Gemund; Performance Modelling of Parallel Systems: 

An Introduction. 

10. Justyna Berlinska, The Statistical models of parallel applications, 

Annales UMCS Informatica, (2005). 

11. Arranchenkov, K.E., Vilchersky, N.O., Shevlyakor, G.L Priority  

queueing with finite buffer size and randomized push-out; mechanism. 

Proc. of ACM SIGMETRICS international conference on measurement 

and modeling of computer systems.; (2003).   

12. Abunday, B.D., and Khorram, E. The finite source queueing model for 

multiprogrammed computer systems with different CPU times and 

different I/O times. Acta Cybern. 8, 4 , (1998)                                                                                                     

13. J. Sztrik; Finite-Source Queueing Systems and their Applications: A 

Biliography; 

14. Trivedi K. Shridharbhai, Probability and Statistics with Reliability, 

Queuing and Computer Science 

Applications, John Wiley & 

Sons Inc., (2002). 



Modeling Variation of Waiting Time of Distributed Memory Heterogeneous Parallel Computer System 

using Recursive Models 

77 

 

Retrieval Number: F1096112612/2013©BEIESP 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

15. Per Brinch Hansen. Operating System Principles. Prentice-Hall of India 

Private Limited, (1990). 

16. J. Sztrika and T. Gál A recursive solution of a queueing model for a 

multi-terminal system subject to breakdowns; Performance Evaluation 

Volume 11, Issue 1, Published by Elsevier, (1990). 

17. Robert V. Hogg and Allen T. Craig; Introduction to Mathematical 

Statistics; Macmillan Publishing Co. Inc.; (1978). 

18. Andrea Clemantis, Angelo Corana; Modelling Performance of 

Heterogeneous Parallel Computer System; Journal of Parallel 

Computing, Volume 12, Issue 9, Elsevier; pages 1131-1145; (1999). 

19. E. Post, H.E. Goosen; Evaluating the Parallel Performance of a 

Heterogeneous System 

20. Beutler, F; Mean sojourn times in markov queuing network: Little’s 

formula revisited; IEEE Transaction on Information Theory; Volume 

29, Issue 2, page 233-241; (2003).             

21. Ken Vastola;  

http://networks.ecse.rpi.edu/~vastola/pslinks/perf/node46.html 

22.  Xiaodong Zhang, Yong Yan; Modeling and Characterizing Parallel 

Computing Performance on Heterogeneous Network of workstations; 

Proceedings of the 7th IEEE Symposium on Parallel and Distributeed 

Processing (SPDP ’95) 1063-6374/95 $10.00 © 1995 IEEE 

23. O.E. Oguike et al; Modelling the Performance of Computer Intensive 

Applications of Parallel Computer System; Proc. Of IEEE 2nd 

International Conference on Computational Intelligence, Modeling and 

Simulation; (2010). 

24. O.E. Oguike et al; Evaluating the Performance of Parallel Computer 

System Using Recursive Models; Proc. Of IEEE 4th UKSim European 

Modeling Symposium; (2010). 

25. O.E. Oguike et al; Evaluating the Performance of Heterogeneous 

Distributed Memory Parallel Computer System Using Recursive 

Models; 2nd IEEE International Conference on Intelligent Systems, 

Modeling and Simulation; (2011). 

26. Leonard Kleinrock, Queueing Systems Volume 1 and 2, John Wiley & 

Sons, (1975). 

27. O.E. Oguike et al; Modelling Variation of a Performance Metric of 

Distributed Memory Heterogeneous Parallel Computer System, Using 

Recursive Models; In proc. of 3rd IEEE International Conference on 

Computational Intelligence Modeling and Simulation; (2011). 

28. Bernard P. Zeigler et al; Theory of Modelling and Simulation; Elsevier; 

(2000) 

29. Cor van Dijkum et al; Validation of Simulated Models; Siswo 

Publication 403, Amsterdam, (1999) 

AUTHORS FROFILE  

Oguike, Osondu Everestus, is a Senior Lecturer in 

the Department of Computer Science, University of 

Nigeria, Nsukka, Enugu State, Nigeria. He obtained 

his B.Sc degree from the University of Lagos, Nigeria. 

His postgraduate Diploma and M.Sc degree were 

obtained from Queen Mary and Westfield College, 

University of London, United Kingdom. He has 

received many academic prizes and scholarships as a 

result of his outstanding academic performance. His research interest is in 

performance modeling of parallel computer systems. 

 
Dr Monica N. Agu, is of Department of Computer 

Science, University of Nigeria,            Nsukka, in the 

faculty of Physical Sciences. She obtained her first 

degree (B.Sc. Honors) in Computer Science, from 

University of Ibadan, Ibadan, Nigeria. Her M.Sc. 

degree was obtained from the University of Nigeria, 

Nsukka, and her Ph.D was obtained from Ebonyi 

State University, Abakaliki, Nigeria. She has co-authored some books, 

published some journal articles. She is a member of Nigeria Computer 

Society and Ccomputer Professional of Nigeria. Her research has focused on 

using Information and Communication Technology on Poverty Alleviation 

and Modelling the performance of computer systems. 

 
Echezona Stephenson C. is a faculty member, as 

well as, on a PhD of the Computer Science 

Department, University of Nigeria, Nsukka. He 

obtained his B.Sc and M.Sc degree from the 

University of Nigeria, Nsukka. His research has 

focused on using Z-Transform to corroborate the 

Recursive Performance Models of Parallel 

Computer Systems.  

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V13-48XCX65-9J&_user=10&_coverDate=04%2F30%2F1990&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1616295983&_rerunOrigin=google&_acct=C000050221&_

