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Abstract- A Bayesian classifier is one of the most widely used 

classifiers which possess several properties that make it 

surprisingly useful and accurate. It is illustrated that performance 

of Bayesian learning in some cases is comparable with neural 

networks and decision trees. Bayesian theorem suggests a straight 

forward process which is not based on search methods. This is the 

major point which satisfies the marvelous time complexity of 

Bayesian classifier. At the other hand, constructing phase of fuzzy 

intrusion detection systems suffer from time consuming processes 

which are based on search methods. In this paper we propose a 

novel method to accelerate such processes using Bayesian 

inference. Experimental results show meaningful time reduction.  

 

Keywords: Fuzzy intrusion detection systems, Naïve Bayes 

classifier, Rule`s consequent class, Time complexity.  

I. INTRODUCTION 

Nowadays, intrusion detection systems (IDS) have become 

an indispensable component of security infrastructure of 

computer networks. Since Denning first proposed an intrusion 

detection model in 1987 [33], many research efforts have 

been focused on how to effectively and accurately construct 

detection models. An intrusion detection system dynamically 

monitors the events taking place in a system, and decides 

whether these events are symptomatic of an attack or 

constitute a legitimate use of the system [34]. In general, IDSs 

fall into two categories according to the detection methods 

they employ, namely misuse detection and anomaly detection. 

Misuse detection identifies intrusions by matching observed 

data with pre-defined descriptions of intrusive behavior. 

Anomaly detection builds models for normal behavior and 

detects anomaly in observed data by noticing deviations from 

these models. When the fuzzy systems applied to intrusion 

detection systems for the first time, experts of security have 

the burden of generating necessary rules for such systems 

[35]. From the mid-1990s to the late 1990s, acquiring 

knowledge of normal or abnormal behavior had turned from 

manual to automatic. Artificial intelligence and machine 

learning techniques were used to discover the underlying 

models from a set of training data. To generate fuzzy rules, 

commonly employed methods are based on a partition of 

overlapping areas [36], or based on fuzzy implication tables 

[37], or by fuzzy decision trees [31] or association rules [1]. 

Recent methods of computational intelligence such as neural 

networks, Evolutionary computation and artificial immune 

systems can be used too. 
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Nowadays, Fuzzy systems have been applied to many 

aspects of human life and you can see a vast variety of 

methods, applications, and also commodities which are based 

on fuzzy logic, all around [2], [3]. One of the most important 

parts of this logic is Fuzzy rule-based systems. They have 

been applied successfully on classification problems [4], [5]. 

These systems also have been applied to computer security 

problems and results have shown their successfulness in that 

area [6], [7]. One of the most important features of Fuzzy 

rule-based systems which arises their popularity is their 

comprehensibility because they easily can be interpreted by a 

human users [6], [8]. Current approach for designing such 

systems is to generate the antecedent part of the fuzzy rules 

from data automatically and then determining the consequent 

class for each rule which each rule can best cover the relevant 

data points. Generating the antecedent part of the fuzzy 

classification rules, can be accomplished in many ways. The 

simplest way is to generate them randomly, but random search 

cannot generate good rules, especially in large pattern spaces. 

The heuristic and meta heuristic search approaches can be 

used in this case such as evolutionary algorithms, ant colony, 

bee colony particle swarm optimization and so on. The state 

of the art approach is to extract rules from data using rough set 

theory [13] and it`s extensions [14], such as variable precision 

rough set [15], rough fuzzy hybrids [16], fuzzy-rough hybrids 

[17] and recently flourished vaguely quantified rough sets 

[18]. They use different approaches to generate rules. After 

generating antecedent part of fuzzy rules, a typical process 

should determine the consequent class of them. This process 

examines all classes of dataset to find the best consequent 

class for each rule. One pass over all dataset instances is 

necessary in this case. Since the classification accuracy fully 

depends on how good the rules are, so lots of attempts have 

been accomplished to generate rules which best fit data. For 

example in evolutionary algorithms domain, many different 

fitness functions have been introduced to tackle this problem. 

For example Abadeh. et al. [6] counts the number of patterns 

which fall into covering area of the rules and uses this 

measure as a fitness function. Cordon et al. [9] utilizes 

confidence from the field of data mining for this purpose. 

Rule weighting is another option for improving the accuracy 

of fuzzy rule-based systems [5], [11], [12]. It is stated that rule 

weighting approach has a significant effect on the 

classification performance of fuzzy rule-based systems [10]. 

Ishibuchi et al. [5] compares 4 rule weighting measures on 

both artificial and real world datasets. In [11], Mansoori et al. 

propose a rule weighting method to improve the performance 

of fuzzy classification systems. This approach assigns weights 

to rules which exceeds 

unique interval [0,1].  
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In [12] Zolghadri et al. try to utilize ROC curves for rule 

weight tuning. Some researchers have focused on the 

generalization ability of such systems. For example Mansoori 

et al. [8] utilizes a measure in fitness function which tends to 

discard rules with longer antecedent parts. Such rules are 

more specific than shorter rules and tend to overfit the 

classifier. This is accomplished by finding lonely instances 

which fall into covering area of generated rules. Another way 

to improve the performance of fuzzy rule based systems is 

through the use of approaches which try to tune the 

parameters of the membership functions used to partition the 

pattern space. This approach is usually utilized when rule 

weighting approaches are not used [19]. Other approach is 

adapting measures from other fields such as data mining [4], 

[9]. For example Eftekhari et al. [4] have adapted precision 

and recall from data mining field to measure the effectiveness 

of rules. Other methods to improve the effectiveness of fuzzy 

rule-based systems are utilizing rules with multiple 

consequent classes [20] and some methods to inference with a 

fuzzy rule base like single winner rule and weighted vote [21]. 

All mentioned approaches which most of them are iterative, 

try to find the promising generated rules in each step, which 

offer better classification accuracy and also avoid time 

wasting by discarding not promising generated rules. 

Improvement in time complexity of such approaches is a side 

effect which is not studied explicitly. As we mentioned 

before, the classification accuracy depends on rules ability to 

classify unseen data points correctly. Thus authors tend to use 

methods which can determine the consequent class of rules 

with high degree of certainty. The reason why researchers 

were not used another methods to determine the consequent 

class of rules is justified in this way. In this paper we are going 

to introduce a fast and accurate method using Naïve Bayesian 

classifier to determine the consequent class of generated 

rules. This paper is organized as follows: 

First we discus general design of fuzzy rule-based intrusion 

detection systems. In the next section the Bayesian inference 

is proposed. The following section describes our proposed 

method. In the next section the time complexity analysis is 

proposed. The experimental results form the next section and 

finally the last section concludes the paper. 

II. DESIGNING FUZZY RULE-BASED 

CLASSIFICATION SYSTEMS 

Assume Rj is a fuzzy if-then rule, in the form: 

Rule Rj: if x1 is Aj1 and … and xn is Ajn, then Class Cj

 j=1,2,…,N                  (1) 

Where x=[x1,…,xn] is an n dimensional pattern vector, Aji 

(i=1,…,n), is an antecedent linguistic value, Cj is the 

consequent class of Rj and N is the number of fuzzy rules. 

Generally for an M-class problem with m labeled patterns 

xp=[xp1,…,xpn], p=1,…,m, we should generate a set of N fuzzy 

if-then rules, in the form (1) to classify patterns. Normalizing 

attributes is a conventional process before designing the 

classifier.  

After normalizing attributes, the pattern space is 

partitioned into fuzzy subspaces, and for each subspace, one 

fuzzy rule will be in charge of classifying patterns existing in 

that subspace [22]. To perform the partitioning, usually k 

suitable membership functions- indicating k linguistic values- 

are assigned to each input attribute. The use of triangular 

membership functions, because of their simplicity and 

interpretability is popular. There are two types of partitioning. 

Grid-type -or homogeneous- and accurate. Grid type 

partitioning is used when interpretability of fuzzy rules is 

important, while accurate partitioning preserves overall 

accuracy. We use first type of partitioning in this paper 

because interpretability of rules is more important for us. Fig. 

1. illustrates these membership functions for four different 

values of k. 

The relevant number of membership functions used to 

partition the feature space, has undeniable impact on accuracy 

of fuzzy rule-based classification systems. There is a delicate 

tradeoff between time complexity and accuracy with the 

number of feature space partitions. A partitioned feature 

space with a few membership functions could not achieve a 

convincing accuracy. On the other hand, using more 

membership functions to perform partitioning imposes lots of 

computation overheads on system and therefore increases 

time complexity. We use membership functions illustrated in 

Fig. 1. in this paper. 

Given an input partitioning of pattern space, one approach 

is to consider all possible combinations of antecedent 

linguistic values and generate a fuzzy rule for each 

combination. For example, for a dataset containing n input 

attributes, and considering 14 mentioned membership 

functions of Fig. 1. For each attribute, the process should 

generate 14
n
 rules. This is clear that it is impractical to handle 

such a huge number of rules, especially for high dimensional 

problems. One approach to deal with this problem is to 

employ some criteria to select a small subset of best rules 

amongst all [23]. In [24] a solution is presented which adds 

one fuzzy set to the predefined set of fuzzy sets called ‘don`t 

care’ (with linguistic label L0), which is defined as µL0(x) = 1 

for all values of x. Every feature in the antecedent part of rule 

Rj which contains L0, is not considered as a valid feature in the 

rule. Therefore shorter fuzzy rules, with limited number of 

antecedents can be generated. 

In the field of data mining [25], confidence is frequently 

used to evaluate association rules. But before introducing 

that, we should be able to measure compatibility grade of each 

data instance with the antecedent part of rules. The fuzzy rule 

in (1) can be viewed as a fuzzy association rule Aj => Cj where 

Aj = (Aj1,…,Ajn). The compatibility grade of pattern 

xp=[xp1,…,xpn] with the antecedent part of rule Rj : (Aj =>Cj) is 

computed using the product operator as: 

 


n

i pip xx
1 jij )(µ)(µ                           (2) 

Where µji(.) is the membership function of the antecedent 

fuzzy set Aji and Aji ∊{L0 ,L1,…L14}. 

 
Fig.  1. Different partitioning of each input attribute 
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The fuzzy version of confidence is presented in [26], [27] 

as rule evaluation measure. The confidence of the fuzzy rule 

Aj => Cj is written as follows: 
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The confidence can be viewed as a measure of (Aj => Cj) 

validity [5]. This means rules with higher values of 

confidence provide better classification accuracies. 

Traditional process to find the consequence class Cj of 

fuzzy rule Rj is as follows: 

Cj = arg max {confidence (Aj => Ch) | h= 1,…, M}    (4) 

This means that class h with maximum degree of 

confidence is selected as consequent class of the rule (Aj => 

Ch). 

Although tuning of membership functions can improve 

classification accuracy of fuzzy rule-based systems, but this 

can be lead to degradation in interpretability of fuzzy rules. 

We use fuzzy rules with no weights and also no membership 

function tuning procedures in this paper. 

III. BAYESIAN INFERENCE 

In statistics, Bayesian inference is a method of inference in 

which Bayes' rule is used to update the probability estimate 

for a hypothesis as additional evidence is learned. Bayesian 

inference has found application in a range of fields including 

science, engineering, medicine, and law and has become 

famous for representing the best performance in some fields 

such as text mining [28]. It is illustrated that performance of 

Bayesian learning in some cases is comparable with neural 

networks and decision trees [29]. Bayesian inference 

computes the probabilities according to Bayes' rule: 
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Bayesian theorem suggests a straight forward process to 

find the hypothesis with maximum probability which is not 

based on search methods. This is the major point which 

satisfies the marvelous time complexity of Naïve Bayesian 

classifier. 

    A Naïve Bayesian classifier is one of the most widely used 

classifiers and possesses several properties [30] that make it 

surprisingly useful and accurate. A naive Bayesian classifier 

is a simple probabilistic classifier based on applying Bayes' 

theorem with strong (naive) independence assumptions. In 

simple terms, a naive Bayes classifier assumes that the 

presence (or absence) of a particular feature of a class is 

unrelated to the presence (or absence) of any other feature, 

given the class variable. Depending on the precise nature of 

the probability model, naive Bayes classifiers can be trained 

very efficiently in a supervised learning setting.  

Assume f : xp → C, is a function which maps xp to C. xp is a 

training pattern and C is a set of classes of training patterns. 

We want to find the class of pattern xtest using Naïve Bayes:  

}.|)()(max{arg)(
1 


n

i jijNBtestNB CvaPCPCxf  (6) 

    It is obvious from formula (6) that all features assumed 

independent. 

The value of P(Cj) can be calculated by simply counting the 

number of instances that belong to class Cj and divide that to 

the cardinality of training set. The value of P (ai = v| Cj) can be 

calculated by the same way too. Just count the number of 

instances belong to class Cj which the value of their i`th 

attribute is equal to v and then divide that to the cardinality of 

instances of class Cj. These can be written as follows: 
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Which T represents training set. We use this notation to show 

training set through this paper. 

{.} Shows a set and |.| represents the cardinality of a set. 

xp ∊ T represents instances which belong to T. 

And at last xp(ai) = v informs us that the i`th feature of instance 

xp is equal to v. 

IV. PROPOSED METHOD 

In this section we are going to propose a novel method, 

which offers a faster method to determine the consequent 

classes of the generated rules. The main idea is to predict the 

consequent classes by the aid of Naïve Bayesian classifier. 

We use the Naïve Bayesian classifier that presented in 

previous section.  

Naïve Bayesian classifier can predict the consequent class 

of test data instances in classification problems, but here we 

are going to utilize this kind of classifier to determine the 

consequent class of rules. This offers a fast, accurate and 

nearly optimal method which accelerates rule generation 

methods. In this paper, the terms ‘feature’ and ‘column’ are 

assumed equal and used interchangeably. 

One of the key steps in constructing fuzzy rules is the action 

which replaces the values of data features of each data 

instance with some relevant fuzzy membership functions. If 

we look at this action from the viewpoint of discretization, we 

can look at each membership function as a potential 

discretized feature value. Our proposed method is based on 

this idea.  

The first step of our proposed method consists of 

computing probabilities needed for Naïve Bayesian classifier. 

These probabilities for a dataset with discrete features could 

be calculated by simply counting some relevant values of 

features for each class. But for a dataset with continuous 

features, we should perform discretization first. We don`t 

have any explicit discretization phase here, but we use 

membership functions as discretized features, implicitly. This 

process consists of simply replacing each feature value with 

some relevant membership functions. The replacement 

strategy is as follows: 

Assume xp is a training example. Each membership 

function Lq, which can cover xp(ai)- the value of i`th feature of 

xp, could be assumed as a potential candidate to replace xp(ai). 

This means 0))(( ipL ax
q

  .Since the membership 

functions partitioning the feature space, have overlaps with 

each other, there are more than one membership function that 

could cover xp(ai). The process of computing probabilities of 

Naïve Bayesian is as follows: 
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Assume the training set T, consists of m training examples 

with n+1 attributes which n+1`th attribute represents the 

consequent class of the instances. Assume T is a matrix with 

m rows and n+1 columns. We construct the matrix Um × (n+1) 

which every cell of U can consist of a set of objects. This 

matrix is used to save membership functions which can cover 

the values of features of data instances. In this paper we use xp 

to represent an instance of T and x'p to represent an instance of 

U. U(p,i) which represents x'p(ai) , (1 ≤ i ≤ n, 1 ≤ p ≤ m), 

consists of a set of membership functions which can cover 

xp(ai). U(p,n+1) represents the consequent class of xp(ai). It is 

obvious that the last column of matrixes T and U are 

completely equal. 

We can use formula (6) to determine the consequent class 

of the rule Rtest. This can be rewritten as: 

}.|)()(max{arg)(
1 


n

i jqijNBtestNB CLaPCPCRf  (9) 

 

Which P(Cj) is calculated by formula (7). P(ai = Lq | Cj) 

represents the probability of a set of instances of U, which 

have Lq in their i`th column and their consequent class is Cj. 

This can be written as: 
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The statement Lq∊ x'p represents that U (p,i) = x'p(ai), consists 

a set of objects, not just one object. 

Although the formula (10) seems convincing at the first 

glance, but it has a major drawback. The impact of values of 

attributes is neglected here. To solve this, we compute the 

sum of values of instances in i`th column of matrix T which 

can be covered by Lq and belong to class Cj, for each Lq in the 

i`th column of U and divide the computed value to the number 

of instances of class Cj. By this, an average value can be 

determined. Then we can compute the membership grade of 

this average with respect to Lq and multiply that by the value 

obtained from (10). Thus the formula (10) can be rewritten as 

follows: 
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Instance name a1 a2 C 

O1 0.2 0.5 1 

O2 0.9 0.4 1 

O3 0.1 0.2 2 

O4 0.3 0.1 1 

Fig. 2. The dataset used in example 

 

Instance 

name 

a1 a2 C 

O1 {L1,L2,L3,L4} {L1,L2,L4} 1 

O2 {L1,L2,L4,L5} {L1,L2,L3,L4} 1 

O3 {L1,L2,L3,L4} {L1,L2,L3,L4} 2 

O4 {L1,L2,L3,L4} {L1,L2,L3,L4} 1 

Fig. 3. The matrix U, constructed by membership 

functions L1 to L5 from Fig. 1. and dataset Fig. 2. 

 

Let`s see an example: 

We construct the matrix U4×3, with respect to membership 

functions {L1,L2,L3,L4,L5} obtained from Fig. 1. and dataset 

represented in Fig. 2. To find the value of U(1,1), we should 

find all membership functions which can cover the T(1,1) = 

0.2. This is equal to find membership functions which their 

membership grade for T(1,1) = 0.2 is bigger than 0. It is 

obvious that all membership functions can cover 0.2 except 

L5. Thus U(1,1) = {L1,L2,L3,L4}. The column C of matrix U, 

is the equal copy of column C of matrix T. The values of cells 

of matrix U are illustrated in Fig. 3. 

In this section C1 is used to represent the class 1 and C2 is 

used to represent the class 2. Using formula (7) we can write: 

4

3
)( 1 CP    

4

1
)( 2 CP  

Since the dataset has two classes and the column a1 of matrix 

U, consists of vales {L1,L2,L3,L4,L5}, then we should compute 

10 probabilities. For example we compute P(a1 = L3 | C1). 

Based on formula (11), we should find data instances which 

belong to class C1 and have L3 value in their a1 feature. The 

answer is the set {O1, O4} which it`s cardinality is equal 2. 

The values of a1 column of these instances in the matrix T, is 

0.2 and 0.3. The average of these two values is equal to 0.25. 

Now based on formula (11), we can write: 

 3333.0)25.0()|(
33

2
131  LCLap      

The rest of calculated probabilities are as follows: 

5333.0)()|(
3

3.09.02.0
3
3

111 1
 

LCLap 

4667.0)()|(
3

3.09.02.0
3
3

121 2
 

LCLap 

9333.0)()|(
3

3.09.02.0
3
3

141 4
 

LCLap 

2667.0)()|(
1
9.0

3
1

151 5
 LCLap 

9.0)()|(
1
1.0

1
1

211 1
 LCLap 

1.0)()|(
1
1.0

1
1

221 2
 LCLap 

8.0)()|(
1
1.0

1
1

231 3
 LCLap 

2.0)()|(
1
1.0

1
1

241 4
 LCLap 

0)()|(
1
0

1
0

251 5
 LCLap   

The values of a2 in matrix U, has 4 values {L1,L2,L3,L4}. 

Considering 2 classes of dataset, we need to calculate 8 

probabilities: 

 

 

 



International Journal of Soft Computing and Engineering (IJSCE) 

ISSN: 2231-2307, Volume- Issue-6, January 2013  

457 

 

Retrieval Number: F1190112612/2013©BEIESP 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

6667.0)()|(
3

1.04.05.0
3
3

112 1
 

LCLap   
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LCLap   
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2
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3
2
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LCLap   

6667.0)()|(
3
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3
3
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1
1

212 1
 LCLap   

2.0)()|(
1
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1
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6.0)()|(
1
2.0

1
1

232 3
 LCLap   

4.0)()|(
1
2.0

1
1

242 4
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Now we want to determine the class of rule Rtest which can 

be produced by any rule generation process.  

Rtest : if a1 is L5 and a2 is L1 

We simply need to compute two probabilities: 
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The probability of class C1 is bigger than the probability of 

class C2. Thus the class of Rtest is determined C1.  

V. TIME COMPLEXITY ANALYSIS 

There are some bottlenecks which could be assumed as a 

measure for analyzing algorithms. We consider the number of 

product/division operations for complexity analysis in this 

section because the product/division operation is one of the 

operations which impose a heavy overhead on system. We 

assume here that the overhead of division operator is equal to 

the multiplication operator. As mentioned before, the 

traditional approach used to determine the consequent class of 

generated rules, in a fuzzy rule-based intrusion detection 

system is a brute force-like approach with one pass over all 

data instances. Although it doesn`t seem bad at first glance, 

but in the systems with lots of rules, it could be very time 

consuming. For example assume the number of N rules, are 

generated in an intermediate step of generation phase of a 

fuzzy rule-based intrusion detection system. The mentioned 

process to determine the consequent class of the rules, should 

be repeated N times. The process should compute the 

confidence of each rule to all classes of the dataset. This step 

could be completed in O(m), which m is the number of dataset 

instances. Calculating confidence measure needs to compute 

compatibility grade of each data instance with the rule Rj. The 

time complexity of calculating compatibility grade for each 

rule with average number of n/2 active antecedents is O(n/2) = 

O(n). Active antecedents in rules are those features that are 

not equal to L0. The total number of product operations is m × 

(n/2). Thus computing the consequent class of N rules having 

the average n/2 active antecedents out of n, using the 

traditional approach requires N × m × (n/2) product 

operations which can be written as O(Nmn). 

In proposed method, we don’t have such a huge number of 

product operations. Computing probabilities using (11) needs 

only 2 division operations means O(1). By this way the impact 

of calculating compatibility grade is eliminated. This 

calculation should be accomplished for all M classes of 

dataset for membership functions covering xp(ai) value. 

Notice that the number of membership functions which can 

cover xpi is always less than the number of all membership 

functions used to partition the pattern space. We assume the 

average number of membership functions that can cover xp(ai) 

is s/2 which s is number of all membership functions used to 

partition pattern space. Thus this operation can be done in 2 × 

M × (s/2) = O(Ms). Calculating all probabilities needs doing 

this process for n-1 columns. This means we need O(Msn) = 2 

× M × (s/2) × (n-1) critical operations. Determining the 

consequent class of N rules with average active antecedents 

equal to n/2 for a dataset with M class needs (n/2) × M × N 

product operations which is O(MNn). Therefore the time 

complexity of NBAFRBS is O(Msn) + O(MNn) = 

max{O(Msn) + O(MNn)}. It is obvious that in lots of datasets 

the number of data instances (m) is much more than the 

number of classes (M). The number of membership functions 

used to partition the feature space rarely exceeds 14 [8], [11], 

but at the other hand using big values for N to obtain good 

accuracies is popular. There is no need to mention that 

calculating the probabilities needed for Naïve Bayes offline, 

can reduce time complexity to O(MNn) which is definitely 

better than O(Nmn).  

VI. EXPERIMENTAL RESULTS 

In this section we are going to lunch some experiments to 

compare new method with the traditional method. For this 

purpose we need a rule generation method to generate fuzzy 

rule antecedents. We use SGERD method (a Steady state 

Genetic algorithm for Extracting fuzzy classification Rules 

from Data) to generate rule antecedents [8]. The experiments 

are accomplished on a 3.00 GHz Intel Pentium 4 CPU (one 

processing core) with 512 MB of RAM on the Windows 

platform using MATLAB. The KDD99-10% [32] train set is 

used to accomplish experiments. The test set of KDD99 is 

used for test the classifiers. To eliminate the unrealistic 

results, we have run the experiments 8 times. In this paper we 

use confidence which has been proposed in section 2 as the  

 
TABLE. 1. RESULTS OF COMPARING METHODS OF 

DETERMINING CLASSES OF GENERATED RULES ON 

KDD99-10% 

Exp

# 

Time of 

New 

method 

Time of 

traditional 

method 

Accuracy 

of 

New 

method 

Accuracy of 

traditional 

method 

1 292.77 423.12 0.72 0.72 

2 327.46 433.54 0.78 0.80 

3 340.85 452.38 0.80 0.80 

4 313.44 395.69 0.80 0.80 

5 273.58 188.59 0.72 0.58 

6 302.39 418.19 0.75 0.77 

7 284.27 425.62 0.72 0.72 

8 297.62 386.71 0.78 0.80 

Av

e#1 

304.05 390.48 0.7687 0.7587 

Av

e#2 308.40 419.32 0.764286 

0.7729 
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Fig. 4. Time improvement of proposed method for 

constructed intrusion detection systems based on 

Kdd99-10%. The horizontal axis shows improvement in 

time achieved by proposed method (Minutes), and the 

vertical axis represents experiment number (Exp#). 
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Fig. 5. Accuracies achieved by proposed and traditional 

methods for each constructed intrusion detection system 

based on Kdd99-10%. The horizontal axis shows 

accuracy, and the vertical axis represents experiment 

number (Exp#). 

rule evaluation criteria. The relevant number of rules for each 

class can be determined through the heuristic method 

proposed in [8]. That is equal to 20. The obtained results can 

be seen in Table. 1, Fig. 4 and Fig. 5. All computed times are 

in minutes. In all experiments, the time for calculating the 

probabilities needed for Naïve Bayes, is approximately 2 

seconds. 

The results show that the time needed to construct the 

Fuzzy intrusion detection systems with the proposed method 

is much less than time needed for constructing such systems 

with the traditional method. The maximum of time 

improvement is 141.35 minutes and is related to experiment 

number 7. The minimum time improvement is related to 

experiment number 4 and it’s about 82.25 minutes. Though 

the time improvement is very significant in most cases, but the 

time achieved by proposed method is worse than the time 

achieved by traditional method in experiment number 5. 

When we consider the accuracy of classifiers in experiment 

number 5, we notice that the training phase of classifier is not 

accomplished correctly. This might occur by evolutionary 

nature of SGERD [8]. The stopping criterion is satisfied, 

when the individuals are not good enough, probably. This 

results of this experiment for traditional method does not 

seem to be accurate. Since the experiment number 5 can 

worsen the overall results, we have calculated the averages of 

time and accuracy twice. First, with considering results of 

experiment number 5 (Ave#1) and second without 

considering the results of experiment number 5 (Ave#2). It is 

obviously clear that the intrusion detection systems which are 

constructed with proposed method need less time to be 

constructed. See Fig. 4. This figure shows time improvement 

of proposed method for constructed intrusion detection 

systems based on Kdd99-10%. The horizontal axis shows 

improvement in time achieved by proposed method 

(Minutes), and the vertical axis represents experiment number 

(Exp#). At the other hand, the accuracy of proposed method is 

very similar to accuracy of traditional method. See Fig. 5. In 

this figure, we have compared accuracies achieved by 

traditional and proposed methods. It is clear that achieved 

accuracies by proposed method are very similar to accuracies 

achieved by traditional method. The obtained accuracies are 

equal for proposed and traditional methods in 50 percent of 

experiments. The reason of obtaining different accuracy 

values by experiment number 5 have been negotiated before. 

Thus we can conclude that the average accuracy of proposed 

method is very similar to average accuracy of traditional 

method. The time improvement of proposed method is very 

significant. It should be stated that the proposed method can 

be integrated with any rule generation process and can 

accelerate it. 

VII. CONCLUSION 

In this paper we proposed a novel method which can 

accelerate the construction phase of Fuzzy intrusion detection 

systems. Experimental results on KDD99 datasets showed 

that our method can reduce time complexity of building fuzzy 

intrusion detection systems while preserving overall 

accuracy. Utilizing other successful methods in the field of 

text mining in constructing fuzzy rule-based classification 

systems is our aim in further works. Studying methods and 

processes which are used in other fields of data mining can be 

very promising. 
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