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 

Abstract — In this paper, we present a new method to measure 

the similarity between features using fuzzy numbers. The 

proposed method uses the concept of geometry to calculate the 

degree of similarity between triangular fuzzy numbers defined on 

the features. We also prove some properties of the proposed 

similarity measure and use different data sets to compare the 

proposed method with existing methods. In the feature selection 

methods, the proposed similarity measure compared with other 

fuzzy similarity measures can be more efficient. 

Keywords: Similarity Measure, Symmetrical or Asymmetrical 

Triangular Fuzzy Number, Features. 

I. INTRODUCTION 

  While similarity is an essential concept in human 

reasoning and plays a fundamental role in theories of 

knowledge, there is no unique and general-purposed 

definition of similarity. The reason for this lack of a definition 

comes from the fact that one can find practical cases where 

similarity properties are not satisfied (e.g., symmetry, 

indiscernibility, or transitivity; [1]). Indeed, several studies 

([2] and [3]) have shown that similarity measures do not 

necessarily have to be transitive, implying a contradiction 

with the most usual approach of comparison, based on 

geometrical assumptions in the feature space. 

  Fuzzy set theory provides a consistent basis for 

information processing and an elegant, mathematically 

well-founded, representation of the uncertainty in the data. 

Since the data that are to be processed are often imprecise, 

using fuzzy set theory or its derivatives (e.g., possibility 

theory or belief function theory) has become a common 

approach in recent years [4]. In this paper, similarity measures 

are defined by the use of membership function that is derived 

from fuzzy residual implications. We present a new method to 

calculate the similarity between features based on triangular 

fuzzy numbers (TFN). 

  This paper is organized as follows. Section 2 describes the 

related terms. Section 3 explains the proposed fuzzy 

similarity measure for evaluate similarity between features. In 

Section 4, the experimental results of the proposed method 

are presented. The last section summarises and conclusion 

related work. 
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II. RELATED TERMS 

A. Fuzzy Sets 

  Let  be a crisp set defined over a universe , the classical 

set theory is built on the fundamental concept such that 

element is either a member  or not, this concept can be 

clarified using the characteristic function (membership 

function)   taking only two values 1 to indicate if an 

element  is a member of  and 0 otherwise, As shown 

in equation 1. 

            (1) 

  In fuzzy set theory this property is generalized by 

accepting even partial membership of a set, this make the 

fuzzy set theory to be an extension of the classical (crisp) set 

theory. If we allow our valuation set  to be the real 

interval  then  is called a Fuzzy set [5]. The 

membership function of fuzzy set is denoted by: ; that is  

: . is the degree to which , the closer 

the value of the degree of membership  is to 1, the more 

x belongs to . Notice that  is completely determined by the 

set of ordered pairs: , .  

B. Membership Function 

  Fuzziness in a fuzzy set is characterized by its membership 

functions. A membership function (MF) is a curve that defines 

how each point in the input space is mapped to a membership 

value (or degree of membership) between 0 and 1. The input 

space is sometimes referred to as the universe of discourse, a 

fancy name for a simple concept. It classifies the element in 

the set, whether it is discrete or continuous. The graphical 

representations may include different shapes. There are 

certain restrictions regarding the shapes used. The “shape” of 

the membership function is an important criterion that has to 

be considered. There are different methods to form 

membership functions. Zadeh proposed a series of 

membership functions that could be classified into two 

groups: those made up of straight lines, or “linear” and 

Gaussian forms, or “curved” [6]. Based on this criterion the 

membership function can be of the following types [7]. 

 (1) Triangular Fuzzy Number Defined by its lower limit , its 

upper limit , and the modal value , so that . 

We call the value  margin when it is equal to the value 

.  
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As shown in equation (2). Figures 2 and 3 show the triangular 

fuzzy number. 

      (2) 

 
Fig 2: Triangular Fuzzy Symmetrical. 

 

 
Fig 3: Triangular Fuzzy Asymmetrical. 

 

 (2) Trapezoidal Fuzzy Number 

Defined by its lower limit , its upper limit  and the lower 

and upper limits of its nucleus or Kernel  and  respectively. 

As shown in equation (3). Figure 4 show the Trapezoidal 

fuzzy number. 

       (3) 

 
Fig 4: Trapezoidal Fuzzy Number. 

(3) Gaussian Bell shape, other MFs and basic properties of 

fuzzy sets [8]. 

C. T – norm and T – conorm 

  The triangular norms (t-norm), which generalize the form 

of intersection and union, are next well described and later 

will be used to construct our similarity measure:  

For any x .  

T – norm: A two-place function  is 

called t – norm if the following conditions are satisfied: 

; 

; 

 

 
A t-norm is called Archimedean if and only if  is continuous 

and  

T – conorm: A two-place function 

 is called t – conorm if the 

following conditions are satisfied: 

; 

; 

 

 
Notice that t-norms are functions which are called fuzzy 

intersections and unions are the common shorthand term for 

triangular norms, t-norm and t-conorm only differ on their 

boundary conditions. Some additional properties of t-norm 

and t-conorm are presented in the following definitions [9]. 

A function  is dual t-conorm of 

t-norm such that for all x  both the following 

equivalent equalities hold, and 

, where (1 – x) and (1 – y) 

are respectively complements of x and y. 

Next we present a list of the main well know and most 

frequently used t – norms [9], [10]: 
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By using the duality we can easily establish the Yu's t-

conorm, which is: 

 
 

D. Similarity measures for Fuzzy sets 

In this section we present a brief review of similarity 

measures for fuzzy sets and their axiomatic basis. Since the 

concept of similarity has a wide range of applications, there 

are different approaches present in literature as axioms for 

degree or measure of similarity. These axioms have 

differences and similarities depending upon the contexts in 

which they are constructed. At first hand, a similarity measure 

for fuzzy sets is expected to be a T- equivalence on 

which is later realized to be a very unrealistic 

requirement. Some other lists of properties are also found in 

literature that a reasonable similarity measure must satisfy. 

We shall suffice to present a set of axioms formulated by 

Bustince [11] for an interval valued similarity measure. 
 

A function  is called a normal 

interval valued similarity measure, if  satisfies following 

properties for all A, B, C :  

I. ,  

II. ,  

III. ,  

IV. Monotonic

. 

 

 

Distance based similarity measures for Fuzzy sets. The most 

obvious way of calculating similarity of fuzzy sets is based on 

their distance. This calculation is in two step: in first part the 

distance between two fuzzy sets is obtained by a distance 

measure and in the second part one of the relationships 

between similarity and distance comes into play to reach at the 

degree of similarity. 

Various distance measures are present in literature. The 

most commonly employed distance measures are: 

1. The Hamming distance 

 
2. The normalized Hamming distance 

 
3. The Euclidean distance 

 
4. In general 

 
5. The sup distance 

 

 
Where measures 1 – 4 are constructed for finite universe. 

The relationship between the notions of similarity and 

distance is expressed in several ways some of which are as 

follows: If  is the distance measure between two fuzzy sets 

 and  on a universe , then following measures of 

similarity are presented in [12], [13] and [14] respectively: 

 

1. The distance based assessment proposed by Koczy: 

 
2. The distance based assessment proposed by Williams and 

Steele: 

 
Where   is the steepness measure. 

3. Family of distance based similarity measures presented by 

Sanitini: 

 
 

E. Fuzzy similarity measures 

(1) Simple fuzzy similarity measures 
 

As definition of the cardinality of a fuzzy set  in  we 

consider the usual sigma-count of : 

 
Furthermore, the complement  of  is defined by: 

 
and therefore . 

 

We have expressed T – norms in Section 2.3. In this paper, 

only the T – norm of equation (4) we use. Consider two fuzzy 

sets  and  in  and let  and , then 

we define: 

 

 
Where T is an arbitrary t-norm, and Sn denotes its dual 

t-conorm: . We further restrict the 

t-norm T to the family of Minimum t-norms, namely the 

t-norms characterized by the functional equation: 

 
Hence, fuzzification equation (27) for set union can be 

restated in the alternative form: 

 
Notice that rules (24), (25) and (29) are such that both the 

expressions  and  are 

fuzzified to the same expression. 

Equations (24) and (25) leads to the fuzzy similarity 

measures listed in Table (1). 

 

 

 

 

 

 

 

 



 

A New Method to Measure the Similarity between Features in Machine Learning Using the Triangular Fuzzy Number 

 

514 Retrieval Number: F1246112612/2013©BEIESP 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Table (1): Simple fuzzy similarity measures. 
 

S Expression 

S11 

 
(Complement S11)S12 

 
S13 

 
(Complement S13)S14 

 
 

 

(2) ∩ - based fuzzy similarity measures 
 

From Table (1) we see that are candidate for fuzzification 

by means of equations ((24), (25) and (29). In Table (2) are 

shown the expressions of the corresponding fuzzy similarity 

measures. 

Table (2): ∩ - based fuzzy similarity measures. 
 

S Expression 

S21 

 
(Complement S21)S22 

 
S23 

 
(Complement S23)S24 

 
S25 

 
(Complement S25)S26 

 
S27 

 
(Complement S27)S28 

 

III. THE PROPOSED FUZZY SIMILARITY 

MEASURE FOR EVALUATE SIMILARITY 

BETWEEN FEATURES 

In this method, for features of a standard data set, we 

define a triangular fuzzy number. In this case, the minimum 

and maximum values in each feature is defined respectively 

the lower and upper fuzzy numbers. Each feature a 

triangular fuzzy number will vary according to the center. 

Whatever triangular fuzzy number related to more 

asymmetric features, the degree of similarity between two 

features is greater. That degree of similarity between two 

feature  is calculated as follows: 

We Use Triangular Fuzzy number , equation (2) 

which is defined as Follows: 

Let (m, 0) divides, internally, the base of the triangle in 

ratio , where  is real positive number ( ). 

 

Where α=minimum value of a feature and β=maximum 

value of a feature. 

In [15], Hsieh and Chen proposed a similarity measure using 

the "graded mean integration representation distance", where 

the degree of similarity  between fuzzy numbers  

and  can be calculated with equation (21).  

Where  

 
 and  are the graded mean integration 

representations of  and , respectively. If  and  are 

triangular fuzzy numbers, where  and 

, then the graded mean integration 

representations  and  of  and , respectively, 

are defined as follows [15], [16]:  

 

 
It is obvious that the larger the value of , the more 

the similarity between the fuzzy numbers  and . Finally, 

we average degree of similarity between features for a data set 

using equation (34) are calculated. 

 

IV. EXPERIMENTS 

In this paper, the proposed fuzzy similarity measure of the 

features on our four data sets taken from the UCI were tested 

[17]. Characteristics of the data sets in come Table (3). 

 

Table (3): Description of the used data sets. 
No. Data sets Features Sample

s 

D1 CNAE – 9  857 1080 

D2 Semeion Handwritten Digit 266 1593 

D3 Madelon 500 1800 

D4 Dbworld_bodies_stemmed 3721 64 

The proposed fuzzy similarity measure for features of a data 

set, first for each feature we define a triangular fuzzy number. 

Then using equations (21) and (31), we compute the similarity 

features. Finally, average degree of similarity of features in a 

data set to get and based on these parameter we compare the 

proposed similarity measure with ∩ - based fuzzy similarity 

measures. Comparing the results come in Table (4). 

Table (4): Calculated    to compare the degree of 

similarity of features. 

Data 

sets 

 

Similarity average feature – feature ( )  
 

proposed fuzzy 

similarity measure 

P ∩ - based fuzzy 

similarity measures 

D1 0.1958 9 0.2730 

D2 0.22 0.5 0.2641 

D3 0.4715 10 0.9565 

D4 0.033 0.125 0.543 
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In the feature selection algorithms of machine learning, the 

average correlation feature – feature less is better. In table (4), 

we see that the average degree of similarity between the 

features of the new method is better than the other fuzzy 

similarity measures. We were able to change parameter P 

until a more asymmetrical triangular fuzzy number for each 

feature is created. This change center triangular fuzzy number 

led that to obtain the best .  

V. CONCLUSION 

In this paper, we have presented a new similarity measure to 

calculate the degree of similarity between features using 

triangular fuzzy numbers. Firstly, we use the concept of 

triangular fuzzy number to determine fuzzy number for each 

feature and then to calculate the degree of similarity between 

features. Proposed fuzzy similarity measure between features 

improved, as the performance of this method is shown in 

Table (4). Of this average the degree of similarity between 

features improvement can be used in feature selection 

methods. 
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