
International Journal of Soft Computing and Engineering (IJSCE) 

ISSN: 2231-2307, Volume-3 Issue-1, March 2013 

34 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: A1286033113/2013©BEIESP 

 

Abstract— Embedded systems are a mixture of software 

running on a microprocessor and application-specific hardware. 

There are many co-design methodologies that are used to design 

embedded systems. One of them is Hardware/Software co-design 

methodology which requires an appropriate profiler to detect the 

software portions that contribute to a large percentage of program 

execution and cause performance bottleneck. Detecting these 

software portions improves the system efficiency where these 

portions are either reprogrammed to eliminate the performance 

bottleneck or moved to the hardware domain gaining the 

advantages of this domain. There are profiling tools used to 

profile software programs such as GNU Gprof profiler. GNU 

Gprof integrates an extra code with the software program to be 

profiled causing inaccurate results and a significant execution 

time overhead. To address these issues, this paper proposes a 

software profiler called AddressTracer that is accurately able to 

evaluate performance matrices of any specific software portion. A 

set of benchmarks, Dijkstra, Secure Hash Algorithm, and 

Bitcount are profiled using AddressTracer, Airwolf and GNU 

software profiling tool (Gprof), for a quantitative comparison. 

The achieved results show that AddressTracer gives accurate 

profiling results compared to Gprof and Airwolf profilers. 

AddressTracer provides up to 50.15% improvement in accuracy of 

profiling software compared to Gprof and 6.89% compared to 

Airwolf. Furthermore, AddressTracer is a non-intrusive profiler 

which does not cause any performance overhead. 

 
Index Terms— Embedded Systems, FPGA, profiling tools, 

Hardware/Software co-design.  

I. INTRODUCTION 

Nowadays embedded systems, involved in most of life 

aspects, have the capability of reacting in real-time with 

sensory inputs, and designed to perform one or more 

dedicated applications. The embedded systems include 

hardware and software components operational together to 

execute specific computation, control, and communication 

tasks. In other words, embedded systems usually contain 

application-specific hardware accelerator circuits, general 

input/output interfaces and processor core which execute a 

software program exists in memory storage. Designing these 

systems is commonly known as hardware/software co-design. 

The advantage of the application specific hardware is that it is 

faster and more power efficient than software, but it is 

expensive. On the other hand, the software is cheaper than 

hardware but it is slow and consumes much power when 

executed on a general purpose processor.  

 

Therefore hardware based system is more suitable in fast 

 
Manuscript received on March 2013. 

 Medhat Hussein Ahmed Awadalla, Electrical and Computer 

Engineering Department, SQU, Muscat, Oman. 

Kareem Ezz El-Deen, Department of Computer Science, Faculty of 

Computers and Information / Organization Name, University of Fayoum, 

Egypt. 

realization or power critical situations, whereas noncritical 

modules of embedded systems are realized in software [1]. 

Therefore, embedded system designers must decide which 

part/components of the system should be implemented on 

hardware domain and which one in software to get 

satisfactory behavior, in terms of cost, power and 

performance. In any embedded system, separating the design 

into software and hardware domains is a remarkable issue that 

should be addressed which is referred to hardware/software 

partitioning problem in embedded systems design.  

There are verities of existing profiling tools which provide 

different profiling capabilities, and different measuring 

techniques. Profiling tools have classified based on its 

implementation, hardware-based, software-based and 

FPGA-based tools [2, 3]. This variety helps the embedded 

system designers to find the appropriate profilers that enable 

them to optimize their software code. However, there are 

many profiling tools probably provide inaccurate results. 

Some of profiling tools, such as those are software-based 

implementation, require the embedded system designers to 

compile their software programs with special compiling 

options that insert extra instrumentation code at the binary 

level. This intrusive to the software program incurs significant 

performance overhead during the run-time.  There are also 

other profiling tools depend on sampling technique, which 

generate a number of interrupts on the target processor to 

collect information about the running code. This can cause a 

very significant disruption of runtime system behavior leading 

to inaccurate profiled results. There are other tools that profile 

the software code by simulating the behavior of 

microprocessor. This approach is extremely slow, especially 

when simulating a system on-a-chip. It is clear that, to make 

designers able to effectively partition their embedded system 

designs, the profiling tools should accurately collect the 

desired performance information with without disturb the 

running systems as shown in fig. 1.  

In this design flow, the complete software is first 

programmed using a high level language and then verified for 

correct operation. An appropriate profiler is used to collect 

information about runtime performance of the program. The 

embedded system designers use this information to specify 

the functions that impact the performance of the system. The 

designers repartition the system by implementing these 

functions in hardware, and then redesign the system to 

comprise the hardware and software components. The flow 

design steps are repeated until the system performance is 

satisfactory. 

 

 

 

Real-Time Software Profiler for Embedded 

Systems 

Medhat H. A. Awadalla, Kareem Ezz El-Deen 



 

Real-Time Software Profiler For Embedded Systems 
 

35 

 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: A1286033113/2013©BEIESP 

 
 

Figure 1: Software Profiling Methodology [4] 

This paper proposes AddressTracer as a function-level, 

non-intrusive, software profiler for software applications 

running on soft-core processor instantiated on an FPGA. The 

AddressTracer counts the number of times the functions are 

called, and calculates the exact clock-cycle execution time of 

these functions. 

The rest of this paper is organized as follows: Section 2 

reviews the related work of software profiling tools. Section 3 

presents the AddressTracer architecture. Section 4 

demonstrates and discusses the results obtained from 

profiling three software benchmarks using Airwolf, gprof, 

and AddressTracer. Section 5 gives conclusion and 

suggestions for future work. 

II. RELATED WORK  

The most related work to theme of this paper includes that 

of GNU’s gprof [4], which is software profiling tool used to 

profile C/C++ application codes. Gprof is a statistical profiler 

used to count the number of times the functions have been 

called and calculate the execution time for each function. The 

application must be first compiled and linked with the enabled 

profiling options. These options will insert additional 

instrumentation codes into the binary executable file. 

Instrumentation codes generate an appropriate number of 

interrupts to sample the program counter (PC) of the 

processor. The results obtained by gprof are based on the 

sampling process, so they are subjected to statistical 

inaccuracy. Gprof can calculate an accurate number of times 

the functions have been called. However the execution time of 

each function is not accurate. Frequent Loop Analysis Tool 

(FLAT) is on chip non-intrusive, small, and low power 

profiler. It specifies functions in software that heavily use 

loops [5]. FLAT architecture contains the Frequent Loop 

Cache Controller, which is a cache controller used to keep the 

data updated with the latest values. A Frequent Loop Cache 

(FLC) stores the execution frequency of each loop function at 

the index memory location that is based on the Short 

Backward Branch (SBB) value. Usually a loop in an 

application is typically denoted by the last instruction being 

SBB that jumps back to the first instruction of the loop. The 

SBB instruction is not a special instruction; rather, it is a jump 

instruction with a small negative offset. SBB is required from 

the microprocessor. If the SBB signal is not one of the 

architecture control signals, the cache controller could 

substitute it by replicating a small portion of the instruction 

decode logic. Watches Over Data Streaming On Computing 

element links (WODSTOCK) is a real-time system profiler 

that runs on the reconfigurable design platform [6]. It is used 

to monitor the data flow between each Computing Elements 

(CE). It is able to detect and remove bottlenecks in a system to 

improve the overall system performance. The CEs are 

connected by the system data links which are implemented 

using Xilinx Fast Simplex Links (FSL) [7] to allow steaming 

and buffering of data. The FSL are FIFOs that support slave 

read and master write protocols by Xilinx MicroBlaze 

soft-core processor [8]. WODSTOCK watches the data 

streaming between CEs on FSLs and measures the number of 

run-time execution clock cycles to determine which CE is 

stalled or starved for data.  SnoopP [6] is an on-chip, 

function-level, nonintrusive profiler for software application 

running on a soft-core processor. SnoopP contains a 

user-specified variable number of segment counters. These 

counters are used to measure the number of clock cycles spent 

in executing of contiguous regions of memory. Each segment 

contains two comparators to check the value of the program 

counter between the specified low and high address. If the 

value of the PC is presently accessing an address within these 

bounds, then the counter value is incremented. The design is 

implemented on Xilinx Multimedia Board with Virtex-II 

2000 based on MicroBlaze soft-core processor [8]. Two 

benchmarks, Dhrystone and AES, are profiled using SnoopP 

and gprof. The results show that the SnoopP is more accurate 

than gprof. SnoopP does not provide any performance 

overhead because it is a non- intrusive profiler. 

Airwolf [9], is an on-chip, function-level, real time profiler 

for software program running on soft-core processor. It is 

developed on NiosII processor [10]. It is used to calculate the 

run-time of each function by counting the number of system 

clock cycles. Airwolf does not require any instrumentation 

code added to the binary file while it adds an extra code to 

each function; “A pair of software drivers needs to be placed 

in between a software function block in the source code in 

order to activate and deactivate a particular profiling counter 

contained in Airwolf” [9]. Airwolf contains 20 profiling 

counters which allow for up to 20 functions to be profiled at a 

time. Each profiling counter consists of two counters; 32-bit 

hit counter and a 64-bit time counter. Four software 

benchmarks are profiled using Nois2-gprof and Airwolf 

profiler. The results show that the Airwolf provides an 

improvement in accuracy and reduces the run time 

performance overhead. 

 

 

 

 



International Journal of Soft Computing and Engineering (IJSCE) 

ISSN: 2231-2307, Volume-3 Issue-1, March 2013 

36 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: A1286033113/2013©BEIESP 

III. ADDRESSTRACER PROFILER  

This section introduces an FPGA-Based profiling tool, the 

AddressTracer profiler. AddressTracer is an on-chip 

FPGA-based nonintrusive profiler for software running on a 

processor. This profiler is used to determine the run time 

spent in the execution of any software portion, such as loop 

block, function, or an entire program, by accurately counting 

the number of the clock cycles taken in the execution of this 

portion. AddressTracer does not require inserting any 

instrumentation code like Gprof [4] or adding any extra code 

like Airwolf [9]. The profiling technique that is used in 

AddressTracer profiler depends on tracing addresses via the 

system buses. Therefore, this approach does not disturb the 

program or the system behavior during the execution 

compared to the other techniques explained in pervious 

section. The objective of AddressTracer is to provide 

accurate and quick results to embedded system designers 

without modifying the software code. AddressTracer contains 

a set of dedicated hardware segments that are used to profile 

any software code. This section begins by explaining the 

architecture of a segment and then introduces the simulation 

to confirm the Hardware implementation. Finally, the address 

tracing methodology that the AddressTracer follows to profile 

software is discussed. 

3.1. Segment Architecture 

AddressTracer profiler contains a variable number of 

segments. These segments are used to profile software 

running on a processor. Each segment contains two hardware 

counters which are used to profile one software portion such 

as a function. Therefore, the number of segments in this 

profiler is determined by the number of portions the designers 

want to profile.  Fig. 2 illustrates the general architecture of a 

segment. 

As shown in Fig. 2, the segment contains a Tracer block 

which is used to decide if count_en signal is high or low 

depending on the Add_bus. Add_bus is a 32-bit input to the 

Tracer block, representing the addresses values that 

AddressTracer monitors. Count_en is an output signal from 

Tracer block used to enable or disable the counters.  If the 

Add_bus holds the starting address of a specific portion, the 

count_en signal will be active high, and when the Add_bus 

equals the ending address of the portion, the count_en signal 

will be active low. Hence, the count_en signal is getting high 

as long as the desired portion is being executed. 

AddressTracer segment contains two counters. The first 

counter is a 32-bit Hit counter used to count the number of 

positive edges of the count_en signal. Therefore, it can count 

the number of times a portion has been called. The second 

counter is a 64-bit Time counter that is fed by two signals; 

count_en and system clock. The count_en signal is used to 

mask the system clock to make the Time counter able to count 

the number of clock cycles of a specific portion’s execution. 

The 64-bit Time counter is able to measure over 100 million 

hours of profiling time when using a 50 MHz system clock. 

3.2 Simulation 

Mentor Graphic Modelsim simulator [11] was used to 

perform simulation for AddressTracer to confirm the 

behavior of this profiler. An Experimental environment was 

built using Xilinx Embedded Development Kits [12 - 15] to 

profile a software function. More details about the 

experimental environment are presented in the section 4. This 

environment simulates MicroBlaze soft-core processor 

executing a software function and AddressTracer profiling 

this function. The starting and ending addresses of this 

function are 0x00000168 and 0x00000198 respectively. As 

shown in the fig. 3, Trace_PC bus is used to trace the 

addresses on the system bus which mirrors the program 

counter register of MicroBlaze soft-core processor. 

Trace_valid_instr is a signal used to mask the Trace_PC bus 

which if it equal 1, this means the Trace_PC value is valid and 

vice versa [8].  

The count_en signal is converted to 1 when the processor 

starts to execute the function, which the Trace_PC bus is 

equal to 0x00000168. In additions, fig. 4 shows that the 

count_en goes to 0 when the Trace_PC hold the ending 

address of the function. Clk_Count_LSB represents the Least 

Significant 32-Bits of the Time counter which is incremented 

by 1 at every clock cycle during the count_en signal is active 

high.  Therefore, Clk_Count_LSB counts the number of clock 

cycles of the function execution (0X304 clock cycles). The 

Hit counter will be incremented by 1 when the count_en 

signal is active high, and does not change any more. It will be 

incremented again if the count_en signal changes from low to 

high, it is a positive edge counter.  

Simulation results show that the hardware implementation 

of the AddressTracer is validated as described before. 

Count_en signal goes high and low at the starting and ending 

execution of the function. Furthermore, Time counter is 

enabled and disabled with count_en transactions. Finally, Hit 

counter counts the number of count_en changes from low to 

high calculating the number of function calls. 

 
Figure 2: Segment Architecture of AddressTracer 

 
Figure 3: Simulation of AddressTracer (Starting the 

execution of the function) 

 
Figure 4: Simulation of AddressTracer (Ending the 

execution of the function) 

 

 

 



 

Real-Time Software Profiler For Embedded Systems 
 

37 

 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: A1286033113/2013©BEIESP 

3.3. Address Tracing Methodology 

AddressTracer is developed to profile the programs 

running on Xilinx MicroBlaze soft-core processor. At the 

early stages of AddressTracer development, AddressTracer is 

connected to MicroBlaze to profile the program by tracing its 

addresses as they appear on the On-chip peripheral bus 

(OPB). OPB is a bus designed for easy connection of on-chip 

peripheral devices [12, 13]. Suppose a memory controller 

connected to the MicroBlaze using OPB as shown in fig. 5. 

When the MicroBlaze reads the program from the memory, 

the addresses will pass via the OPB. Therefore, the 

AddressTracer can trace the function execution by feeding the 

Add_bus of the AddressTracer with the Address bus of OPB 

(OPB_Addr). This scenario is applied, and a set of 

benchmarks software are profiled using AddressTracer, 

Airwolf, and gprof. The results show that the AddressTracer 

is more accurate and does not cause any performance 

overhead compared to Airwolf, and gprof. 

As shown in fig. 6, when the cache is used, the MicroBlaze 

is connected to the memory controller using XCLs (Xilinx 

Cache Links). XCLs are P2P links used in the caching 

processing [8]. DXCL and IXCL are used to cache Data and 

Instruction from the external memory respectively. When the 

MicroBlaze caches data or instructions, the addresses are 

passed through XCL buses and not through the OPB. To make 

the AddressTracer able to trace these addresses, the Add_bus 

of the AddressTracer is connected to Trace_PC bus. The 

MicroBlaze core exports a number of internal signals for 

tracing purposes such as Trace_PC. Trace_PC is a 32-bit bus 

used to mirror the executing PC of the MicroBlaze. 

Therefore, AddressTracer is able now to trace any addresses 

through the PC of the processor not through address bus of 

OPB. Furthermore, as illustrated in Fig. 6, The AddressTracer 

is connected to Trace_Valid_Inst signal which is used as an 

indication to the PC value [8]. When the PC value is valid the 

Trace_Valid_Inst will be high and vice versa. 

From tracing via OPB and via Trace_PC, it is concluded 

that the implementation of AddressTracer does not depend on 

the MicroBlaze’s architecture and AddressTracer can be 

connected to any bus that provides the addresses of the 

programs. Therefore, AddressTracer can profile programs 

running on any processor whether this processor is 

MicroBlaze or any other one. 

It is clear that, AddressTracer does not require inserting any 

extra code at the program source code level or at binary level. 

Furthermore, AddressTracer profiles the software programs 

in parallel with the running system. Therefore, the profiling 

technique used by AddressTracer does not disturb the 

software program or the system behavior during the software 

running, so it does not cause any performance overhead on the 

program execution. 

The AddressTracer counters are memory mapped and the 

AddressTracer is connected to OPB bus. This allows the 

MicroBlaze processor to read the profiling results and then 

pass them to the host computer through the UART. 

3.4. AddressTracer, Airwolf, and SnoopP Architectures 

discriminations 

Based on the simulation results, Airwolf results are 

erroneous because of its drivers. For example, the counters of 

Airwolf will not be disabled unless the drivers of the Airwolf 

are added before the Return statement of any function. This 

causes that the Airwolf will not count the cycles that the 

processor spent in executing this statement. Moreover, the 

header of a function may contain some bytes as arguments. 

The drivers of Airwolf are added after the header of any 

function. Therefore, Airwolf will not also profile these bytes. 

Hence, if the header size is higher, the error in the results of 

Airwolf will be higher and vice versa.  Fig. 7 shows a 

simulation for Airwolf verses AddressTracer to confirm the 

previous conclusions. Airwolf and AddressTracer are both 

used to profile the same function which takes int x as an 

argument and contains Return statement at the end of it. As 

shown in the fig. 7, AT_count_en, the enable signal of 

AddressTracer, goes to high with the starting address of the 

function. On other hand, Airwolf does not detect that the 

function has already started. After some clocks are spent, 

Airwolf started counting which AW_count_en is active. After 

Airwolf counted 9 clocks, AW_count_en goes down and 

dis-activated announcing the end of the function’s execution. 

The AddressTracer reports that the function’s execution 

consumes 30 clock cycles.  

When a function profiled by Airwolf does not have a Return 

statement or arguments in the header, the Airwolf will count 

more cycles due to its drivers. Therefore, the results obtained 

by Airwolf depend on the implementation of the functions and 

the position of its drivers [16]. However, the experimental 

results show that Airwolf has a good accuracy compared with 

Gprof software profiling. AddressTracer does not need any 

extra code to be added to a function, so it is more accurate 

than Airwolf. It profiles any software portion from its starting 

address to ending address.  

 
Figure 5: Tracing addresses via OPB 

 

Figure 6: Tracing addresses using Trace_PC 

bus 



International Journal of Soft Computing and Engineering (IJSCE) 

ISSN: 2231-2307, Volume-3 Issue-1, March 2013 

38 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: A1286033113/2013©BEIESP 

 

 
SnoopP profiler does not count the number of times a 

function is called, and only counts instructions executed in 

contiguous regions of memory [6]. Therefore, SnoopP does 

not give accurate results in some situations. For example, if 

function A calls a sub-function C and SnoopP is used to 

profile function A. SnoopP will accurately count the 

instruction clock cycles that is required by A and C. The total 

time spent by the function A will equal the summation of the 

execution time of both function A and function C. However, if 

function A and function B call sub-function C, and SnoopP is 

used to profile A and B. It may not be possible to distinguish 

which portion of the sub-function C's execution time is due to 

function A versus function B. Hence it cannot calculate the 

accurate execution time spent by function A or function B. 

IV. EXPERIMENTAL RESULTS 

Xilinx Embedded Development Kit (EDK) is a suite of 

tools and intellectual properties (IP) that enables to design a 

complete embedded system for implementation in a Xilinx 

FPGA device [15]. EDK has several components like Xilinx 

Platform Studio (XPS), Software Development Kit (SDK), 

and GNU Compiler. XPS tool suite is the development 

environment or GUI used for designing the hardware portion 

of the embedded processor system. XPS contains a processing 

IP library, software drivers, documentation, and reference 

designs. SDK is an integrated development environment used 

for C/C++ embedded software application creation and 

verification (Xilinx Incorporated, 2007b). 

Xilinx Microprocessor Debug (XMD) engine for 

MicroBlaze provides a user debugging interface using 

command line tools. All software applications will be 

compiled using GNU Compiler for C/C++ software 

development targeting the MicroBlaze soft-core processor. 

Gprof requires C/C++ program to be integrated with 

instrumentation code. Therefore, the program must be 

compiled with the    –pg option [4]. The size of the function 

and its starting and ending addresses can be obtained by 

viewing the assembly code using the mb-objdump utility or 

using GNU Debugger (GDB) interface [7]. 

 The system, shown in fig. 8, is implemented using 

Spartan-3E Starter Kit. Spartan-3E development board is a 

low-cost solution for evaluating the Xilinx Spartan-3 

XC3S500 FPGA. Its features are a 500K gates, on-board I/O 

devices, and 32MX16 DDR SDRAM. The board also 

contains a Platform Flash JTAG-programmable ROM, so 

designs can easily be made non-volatile [7]. 

 
Figure 8: MicroBlaze Profiling Environment 

The system consists of MicroBlaze soft-core processor, and 

DDR SDRAM off-chip memory. This memory stores the 

program to be profiled and OPB bus is used to connect all 

components. Universal Asynchronous Receiver Transmitter 

(UART) controller is used to transfer streaming message back 

to the host computer. System Clock Timer is used by gprof in 

order to profile the software functions. Airwolf was 

developed to run on Altera Nios II soft-core processor at 

which Airwolf profiler was instantiated onto Nios 

Development Board, Stratix Professional Edition, featuring a 

Stratix EP1S40F780C5 FPGA chip. The results that 

published in [4] were obtained from experiments running 

using SRAM off-chip memory, while Spartan 3E starter kit 

does not have SRAM. Therefore, to be able to compare the 

results of Airwolf with that of AddressTracer, Airwolf was 

re-implemented to run on Xilinx MicroBlaze soft-core 

processor on Spartan 3E starter kit. AddressTracer and 

Airwolf Profiler blocks are used to profile the software 

functions. Finally, AT_Airwolf and AT_Gprof blocks are 

used to measure the performance overhead caused by Airwolf 

and gprof using AddressTracer technique. 

4.1. Profiling Benchmarks and comparison of results 

The results obtained from profiling a set of software 

benchmarks (Dijkstra, Secure Hash Algorithm (SHA), and 

Bitcount) are compared. Each software benchmark is profiled 

using AddressTracer, Airwolf, and Gprof with respect to their 

software compilation settings.  

4.1.1. Dijkstra 

The Dijkstra benchmark constructs a large graph in an 

adjacency matrix representation and then calculates the 

shortest path between every pair of nodes using repeated 

applications of Dijkstra’s algorithm [17]. In this experiment, 

Dijkstra program is implemented to compute the shortest path 

between 100 distinct nodes. Table 1 shows the profiled results 

of Dijkstra program. The first column lists the names of 

functions. Second column, has two sub-columns, shows the 

results that obtained by AddressTracer. The first sub-column 

shows the execution time of each function in seconds. The 

second sub-column lists the number of calls of each function 

that are calculated. Column 3 and 4 show the results that 

obtained by Airwolf and Gprof respectively.The execution 

time of Enqueue function via AddressTracer is 2.97 second, 

2.91 second by Airwolf, and 0.82 second by Gprof. As 

noticed, AddressTracer and Airwolf results are very close to 

each other. The difference in 

accuracy between AddressTracer 

and Airwolf can be calculated as 

follows: 



 

Real-Time Software Profiler For Embedded Systems 
 

39 

 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: A1286033113/2013©BEIESP 

 [(TAddressTracer -TAirwolf)*100/ (TAddressTracer)]. 

AddressTracer provides up to 0.33% accuracy improvement 

in profiled results of this program compared to Airwolf. This 

implies that Airwolf reports results with comparable accuracy 

to those of the AddressTracer profiler for smaller, less 

computationally intensive benchmarks. However, 

AddressTracer provides up to 13.11% accuracy improvement 

compared to Gprof. Gprof profiler provides inaccurate 

calculations of the execution time due to its sampling 

technique. To confirm that the results obtained by Gprof 

depend on the value of sampling frequency, the same program 

with the same environment was executed many times with 

different sampling frequency. Gprof results were varied 

according to the sampling frequency as shown in table 2.  

Table 2 illustrates the results reported by Gprof with different 

sampling frequencies. It is clear that the sampling techniques 

used by Gprof provide inaccurate results. As also obviously 

shown in Table 1, the profilers have a similar ranking of the 

time consuming functions. Table 1 also outlines that the 

number of times the functions have been called. 

AddressTracer, Airwolf, and Gprof have a similar number of 
functions call.  

1) Secure Hash Algorithm (SHA) 

Secure hash algorithms are typically used with other 

cryptographic algorithms, such as digital signature algorithms 

and keyed-hash message authentication codes, or in the 

generation of random numbers (bits) using massage digests. 

When a message is applied to SHA algorithm, the output 

result is called a message digest. Message digests range in 

length from 160 to 512 bits, depending on the algorithm [9]. 

Gprof needs numerous loops of the main algorithm to obtain 

its percentage of the execution time per function, so the main 

algorithm is looped 10000 iterations. 

Table 3 shows the execution time of the functions of SHA 

program. AddressTracer and Airwolf have a similar rank of 

the time consuming functions and there is a very small 

difference in their execution times of all functions. In both of 

them, the update and transform functions consume 

approximately 50.3% and 44% of the total execution time of 

the program respectively.  However in Gprof, the update 

function takes 4.64% and transforms function requires 

88.51% of the total execution time of the program. This 

inaccuracy of the Gprof is due to the sampling techniques 

used.  There is 0.47% improvement in accuracy when using 

the AddressTracer Profiler instead of Airwolf. Furthermore, 

the clock-cycle counting method that AddressTracer utilizes 

shows that a 50.15% accuracy improvement in the reported 

time for this program compared to the insertion of 

instrumentation code method that Gprof utilizes. However, 

AddressTracer, Airwolf, and Gprof have the same number of 

functions call. 

4.1.3. Bitcount 

The bit count algorithm tests the bit manipulation abilities 

of a processor by counting the number of bits in an array of 

integers. It performs it using five methods including an 

optimized 1-bit per loop counter, recursive bit count by 

nibbles, non-recursive bit count by nibbles using a table 

look-up, non-recursive bit count by bytes using a table 

look-up, and shift and count bits. The input data is an array of 

integers with equal numbers of 1’s and 0’s [9]. 

Table 4 shows the execution time of the functions of 

Bitcount program. AddressTracer and Airwolf have a similar 

time consuming functions. Gprof reported that the btbl_bitcnt 

and Flipbit functions consumed 0.42, 1.19 seconds during the 

execution of this benchmark. However, the AddressTracer 

and Airwolf Profilers did not detect calls to those functions. 

The insertion of instrumentation code not only generate 

additional functions calls, interrupts and performance 

overhead, but also cause reporting of unpredictable profiling 

results. 

AddressTracer and Airwolf reported that the ntbl_bitcnt 

function, a recursive function, was running for 79.978 and 

63.509 seconds respectively. This shows that Airwolf 

presents inaccurate execution times when profiling recursive 

functions. On the other hand, Gprof reports that ntbl_bitcnt 

consumes 197.92 sec, which is completely inaccurate due to 

the recursive functions are not supported by EDK Gprof 

version [12, 13]. AddressTracer Profiler provided up to 

6.89% improvement in accuracy in Bitcount program 

compared to Airwolf. 

 

 

 

Table 1: Profiled result of Dijkstra 

 

Table 2: Profiling Dijkstra using Gprof with different sampling frequency 

 
10000Hz 20000Hz 30000Hz 35000Hz 40000Hz 

Function name Time (sec) Time (sec) Time (sec) Time (sec) Time (sec) 

Dijkstra 10.57 12.34 14.07 15.19 11.87 

Enqueue 3.23 3.83 4.37 0.82 1.56 

Dequeue 0.34 0.35 0.35 0.28 0.37 

Qcount 0.84 1.21 1.23 0.83 1.42 

 

 

 

 

 AddressTracer Airwolf Gprof 

Function name Time (sec) # of Calls Time (sec) # of Calls Time (sec) # of Calls 

Dijkstra 16.18 100 16.21 100 15.19 100 

Enqueue 2.97 72448 2.91 72448 0.82 72448 

Dequeue 0.53 72448 0.50 72448 0.28 72448 

Qcount 0.023 72548 0.017 72548 0.83 72548 



International Journal of Soft Computing and Engineering (IJSCE) 

ISSN: 2231-2307, Volume-3 Issue-1, March 2013 

40 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: A1286033113/2013©BEIESP 

Table 3: Profiled results of SHA 

Table 4: Profiled result of Bitcount 

Table 5: Size of Dijkstra functions 

 

4.2. Performance overhead Analysis 

As explained earlier the AddressTracer does not insert any 

extra code to programs. It profiles any program in parallel 

with the processor (MicroBlaze) while it runs the program. 

Therefore, the AddressTracer does not disturb the running 

system and does not cause any execution time overhead in the 

system.  

Two blocks, AT_Airwolf and AT_Gprof, are built to 

determine if Airwolf and Gprof cause any performance 

overhead. As shown in fig. 7, AT_Airwolf and AT_Gprof 

were implemented using AddressTracer technique to profile 

the execution time of the functions that have an extra code 

added by Airwolf and Gprof respectively. The starting and 

ending addresses of each function are calculated taking into 

account the extra code added by either Airwolf or Gprof. The 

execution time overhead is determined by calculating the 

difference between the execution time of a function without 

(result obtained using AddressTracer) and with (results 

obtained using AT_Airwolf and AT_Gprof) extra code.  

Then the percentage of this difference is calculated from the 

total execution time [(T with extra code –T without extra 

code)*100/T with extra code]. 

4.2.1. Dijkstra Overhead Analysis 
Table 5 shows the size of extra code added to each function. 

The first column lists the name of each function. Second 

column shows the size of each function with no extra codes. 

Column 3 shows the size of each function plus the size of the 

extra code added by Airwolf (20 bytes at each function). 

Column 4 shows the size of each function plus the size of the 

instrumentation code added by Gprof (8~20 bytes at each 

function). 

Table 6 shows the execution time overhead incurred by 

Airwolf. Column 1 lists the function’s name. Columns 2 and 3 

show the execution time for the program without and with the 

extra code respectively. The last column shows the time 

difference between the two execution runs.  As shown in 

Tables 6 and 7, Dijkstra function has 0.03 and 12.18 seconds 

as additional seconds in execution time caused by Airwolf and 

Gprof respectively. Therefore, Airwolf caused a total 

execution time overhead (about 0.283%) that can be ignored 

compared to the overhead imposed by Gprof (49.80%). 

4.2.2. SHA Overhead Analysis 

As shown in Table 8, Airwolf adds 20 bytes at each function, 

while Gprof adds 8~20 bytes at each function. Table 9 shows 

that Airwolf causes additional fractions of second in 

execution time. For example, Byte_reverse function has 0.29 

second as an additional execution time. Table 10 shows that 

Gprof added 18.15 and 23.68 seconds in execution time to 

transform and update functions respectively. The results show 

that a negligible execution time overhead caused by Airwolf 

(about 0.23%) compared to that caused by Gprof (about 

20.37%). 
Table 6: Performance overhead in Dijkstra program caused by 

Airwolf 

  AddressTracer AT_Airwolf   

FCN 

Name Time (sec) Time (sec) 

Difference 

(sec) 

Dijkstra 16.18 16.21 0.03 

Enqueue 2.97 2.975 0.005 

Dequeue 0.53 0.534 0.004 

Qcount 0.023 0.04 0.017 

 Address Tracer Airwolf Gprof 

Function name Time (sec) # of Calls Time (sec) # of Calls Time (sec) # of Calls 

Byte_reverse 9.36 1290000 9.50 1290000 6.11 1290000 

Transform 80.89 1290000 79.83 1290000 80.63 1290000 

Init 0.014 10000 0.0124 10000 0.12 10000 

Update 91.70 10000 91.77 10000 4.23 10000 

Final 0.79 10000 0.79 10000 0.01 10000 

 Address Tracer Airwolf Gprof 

FCN Name 
Time 

(sec) 
# of Calls 

Time 

(sec) 
# of Calls 

Time 

(sec) 
# of Calls 

Bit_Shifter 191.258 1000000 188.95 1000000 201.11 1000000 

Flipbit 0 0 0 0 0.42 0 

Bit_count 59.657 1000000 57.484 1000000 74.42 1000000 

Bitcount 23.667 1000000 21.600 1000000 39.88 1000000 

Ar_btbl_bBitcount 17.620 1000000 15.391 1000000 31.73 1000000 

Bw_btbl_ bitcount 10.641 1000000 8.459 1000000 28.36 1000000 

Ntbl_Bitcount 47.780 1000000 45.535 1000000 70.75 1000000 

btbl_Bitcnt 0 0 0 0 1.19 0 

Ntbl_Bitcnt 79.978 8000000 63.509 8000000 197.92 1000000 

 AddressTracer Airwolf Gprof 

Function  name Size (Byte) Size (Byte) Size (Byte) 

Dijkstra 568 588 576 

Enqueue 188 208 196 

Dequeue 108 128 116 

Qcount 16 36 36 



 

Real-Time Software Profiler For Embedded Systems 
 

41 

 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: A1286033113/2013©BEIESP 

Execution time overhead:   0.056 / 19.759 = 0.283% 

Table 7: Performance overhead in Dijkstra program caused By 

Gprof 

  AddressTracer AT_Gprof   

FCN Name Time (sec) Time (sec) Difference (sec) 

Byte_reverse 9.36 13.98 4.62 

Transform 80.89 99.05 18.15 

Init 0.014 0.042 0.028 

Update 91.7 115.38 23.68 

Final 0.79 1.07 0.28 

Execution time overhead:  46.758 /229.522 = 20.37% 

Table 8: Size of SHA functions 

  AddressTracer AT_Gprof   

FCN Name Time (sec) Time (sec) 

Difference 

(sec) 

Dijkstra 16.18 28.36 12.18 

Enqueue 2.97 6.91 3.94 

Dequeue 0.53 1.8 1.27 

Qcount 0.023 2.18 2.157 

Execution time overhead:   19.547 / 39.25 = 49.80% 

Table 9: Performance overhead in SHA program caused by 

Airwolf 

  AddressTracer Airwolf Gprof 

FCN Name Size (Byte) Size (Byte) 

Size 

(Byte) 

Byte_reverse 92 112 108 

Transform 1196 1216 1208 

Init 76 96 96 

Update 532 552 540 

Final 268 288 276 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, the AddressTracer software profiler was 

proposed as an FPGA-Based, nonintrusive software 

profiler,used to profile a set of software benchmarks. A set of 

software benchmarks were profiled using software-based 

profiler (Gprof) and FPGA-Based profilers (AddressTracer 

and Airwolf). 
Table 10: Performance overhead in SHA program caused by 

Gprof 

  AddressTracer AT_Airwolf   

FCN Name Time (sec) Time (sec) 

Difference 

(sec) 

Byte_reverse 9.36 9.65 0.29 

Transform 80.89 80.91 0.02 

Init 0.014 0.015 0.001 

Update 91.7 91.79 0.09 

Final 0.79 0.81 0.02 

Execution time overhead:   0.421 / 183.175 = 0.23% 

 

The results obtained from profiling these benchmarks using 

the different profilers were compared and discussed. The 

experimental results showed that the AddressTracer provides 

up to 50.15% improvement in accuracy of profiling software 

programs compared to Gprof and up to 6.89% compared to 

Airwolf. This improvement in accuracy is helpful for 

embedded system designers to partition their designs and 

implement the appropriate software functions in the hardware 

domain.  

The execution time overheads caused by Airwolf and Gprof 

were measured and analyzed to study the effects of inserting 

instrumentation code to the binary file of a program and 

effects of adding extra code to the source code of a program. 

In some of the software benchmarks, inserting extra code by 

Airwolf incurred overhead up to 5.65% of the total execution 

time while adding instrumentation code with Gprof caused a 

execution time overhead up to 49.80%.  

For further work, the AddressTracer can be adapted to 

profile hardware components such as monitoring memory 

related events such as the number of off-chip memory 

accesses, cache misses and memory leaks. The area occupied 

by AddressTracer on an FPGA chip could be studied and 

minimized to meet cost constraint. AddressTracer can be 

adapted to interface with the personal computer to collect 

different profiling information about running programs on the 

computer. 

 This interface can be via PCI or PCI express and with the 

capability of FPGA, AddressTracer can profile different 

performance metrics.  

REFERENCES 

1. Sungpack H., Tayo O., Jared C., Nathan G., Kozyrakis C.,  Olukotun K. 

“ A case of system-level hardware/software co-design and 

co-verification of a commodity multi-processor system with custom 

hardware. Proceedings of the 10th International Conference on 

Hardware/Software Co-design and System Synthesis,  pp. 513-520, 

2012. 
2. Patrick Schaumont . A Practical Introduction to Hardware/Software 

Codesign. 2nd Edition., xxii+480p, ISBN:978-1-4614-3736-9, 

December 2012 

3. Miller, F. Vahid, T. Givargis. Application-Specific Codesign Platform 

Generation for Digital Mockups in Cyber-Physical Systems IEEE 

Electronic System Level Synthesis Conf. (ESLsyn), pp 1-6, June 2011. 

4. Patrick R. Schaumont. A Practical Introduction to Hardware/Software 

Codesign. ISBN: 978-1-4419-5999-7 (Print) 978-1-4419-6000-9, 2010.  

5. A. Bhattacharya, A. Konar, S. Das, C. Grosan, and A. Abraham, 

“Hardware Software Partitioning Problem in Embedded System Design 

Using Particle Swarm Optimization Algorithm”. Proceedings of the 

2008 International Conference on Complex, Intelligent and Software 

Intensive Systems, 2008. 

6. Jason G. Tong and Mohammed A. S., “Profiling Tools for FPGA-Based 

Embedded Systems: Survey and Quantitative Comparison”, journal of 

computers, Vol. 3, No. 6, 2008. 

7. R. Lysecky, S. Cotterell, and F. Vahid, “A Fast On-Chip Profiler 

Memory”, in Proc. of the 39th Conference on Design Automation, pp. 

28–33, June 2002. 

8. Fenlason J. and Stallman R., GNU Gprof, accessed 2008.  Available 

Online: http://gnu.huihoo.org/gprof-2.9.1/html_chapter/gprof_toc.html. 

9. Gordon-Ross A. and Vahid F., “Frequent Loop Detection Using 

Efficient Non-Intrusive On-Chip Hardware”, in Proc. of the 2003 

International Conference on Compilers, Architecture and Synthesis for 

Embedded Systems, San Jose, California, USA, pp. 117–124, 2003. 

10. Shannon L. and Chow P., “Maximizing System Performance: Using 

Reconfigurability to Monitor System Communications”, in Proc. of the 

2004 International Conference on Field Programmable Technology 

(ICFPT), the University of Queensland, Brisbane, Australia,  pp. 

231–238, 2004. 

11. Xilinx Incorporated, “Connecting Customized IP to the MicroBlaze Soft 

Processor Using the Fast Simplex Channel (FSL) Link”, 2004. 

12. Xilinx Incorporated, “Embedded System Tools Reference Manual”, 

v7.0 January 8, 2007. 

13. Jason G. Tong and Mohammed A. S., “Profiling Tools for FPGA-Based 

Embedded Systems: Survey and Quantitative Comparison”, journal of 

computers, Vol. 3, No. 6, 2008. 

14. Xilinx Incorporated, “Spartan-3E Starter Kit Board User Guide”, V1.0, 

9, 2006.  

15. Dhaval N. Vyas, “FPGA-Based Hardware Accelerator Design for 

Performance Improvement of a System-on-a-Chip Application”, Master 

of Science in Electrical Engineering in the Thomas J. Watson School of 

Engineering and Applied Sciences Binghamton University State 

University of New York 2005. 

16. Xilinx Incorporated, “Embedded System Tools Reference Manual”, 

v7.0 January 8, 2007. 

17. Altera Corporation, “Nios Development Board Reference Manual, 

Stratix Professional Edition”, 2004. 

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Hong:Sungpack.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/o/Oguntebi:Tayo.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Casper:Jared.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Bronson:Nathan_Grasso.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kozyrakis:Christos.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/o/Olukotun:Kunle.html
http://link.springer.com/search?facet-author=%22Patrick+R.+Schaumont%22
http://gnu.huihoo.org/gprof-2.9.1/html_chapter/gprof_toc.html

