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 Abstract—Fast Fourier transform (FFT) has become 

ubiquitous in many engineering applications. Efficient 

algorithms are being designed to improve the architecture of 

FFT. Among the different proposed algorithms, split-radix FFT 

has shown considerable improvement in terms of reducing 

hardware complexity of the architecture compared to radix-2 and 

radix-4 FFT algorithms. New distributed arithmetic (NEDA) is 

one of the most used techniques in implementing multiplier-less 

architectures of many digital systems. This paper proposes 

efficient multiplier-less VLSI architectures of split-radix FFT 

algorithm using NEDA. As the architecture does not contain any 

multiplier block, reduction in terms of power, speed, and area 

can greatly be observed. One of the proposed architectures is 

designed by considering all the inputs at a time and the other is 

designed by considering 4 inputs at a time, the total number of 

inputs in both cases being 32. The proposed designs are designed 

using both FPGA as well as ASIC design flows. 180nm process 

technology is used for ASIC implementation. The results show 

the improvements of proposed designs compared to other 

architectures. 

 Index Terms—Split-radix, FFT, VLSI, NEDA, 

multiplier-less, FPGA, ASIC. 

I.  INTRODUCTION 

Fast Fourier Transform (FFT) has become ubiquitous in 

many engineering applications [1]. High-speed FFT 

architectures are necessary to implement several 

communication systems, signal processing systems, etc. [2] 

– [4]. The FFT blocks are also used in mechanical 

engineering and civil engineering applications [5] – [6]. FFT 

has been considered as the most efficient way of 

implementing the discrete Fourier transform (DFT) and it 

was first implemented in 1965 [7]. The efficiency of the 

FFT algorithm lies in its reduced number of arithmetic 

operations. DFT has the order of       arithmetic 

operations whereas FFT has the order of          

arithmetic operations.  If the architecture is designed for 

complex inputs, the number of arithmetic operations 

becomes approximately double when compared to those 

which are designed for real inputs.  
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One of the disadvantages of conventional FFT 

architectures is the presence of multiplier blocks, which has 

increased hardware, increased power consumption and 

reduced operating frequency. The basic FFT design is based 

on radix-2 butterfly block, which was proposed by Cooley-

Tukey [7]. Recent advances in the algorithm include FFT 

architectures based on higher and split-radix such as radix-4, 

radix-8, radix-2
k
, etc. [8] – [12]. 

 Split-radix FFT is one of the FFT algorithms that 

use combination of different radix FFT. Split-radix FFT 

algorithm combines simplicity of radix-2 FFT with less 

computational complexity radix-4 FFT. The advantage of 

split-radix FFT is that it has considerably fewer number of 

arithmetic computations compared to that of radix-4 and 

radix-2 FFT. Split-radix also has several other advantages 

such as regular structure, no reordering of internal signals 

except for outputs, etc. Since it mostly uses radix-2 block in 

its architecture, it is possible to implement split-radix FFT 

for inputs of kind 2
k
, k being an integer. 

 Distributed Arithmetic (DA) was invented about 30 

years ago and has since seen widespread applications in area 

of VLSI implementation of DSP algorithms [13]. DA has 

become one of the most efficient tools in implementation of 

multiply and accumulate (MAC) unit in several DSP 

systems. Most of the applications, for example discrete 

cosine transform (DCT), discrete wavelet transform (DWT) 

calculation, are commonly implemented using DA based 

approach as they all are hardware intensive with multipliers 

and MAC units. MAC unit is implemented using DA by pre-

computing all possible products and then storing them in a 

read only memory (ROM). In simple words, DA computes 

the inner product of two multi-dimensional vectors. Thus, 

increase in the number of dimensions increases the memory 

requirement to store all the obtained products. This is due to 

the reason that, increase in number of dimensions increases 

the number of obtained partial products. The elimination 

increased memory requirement is possible only if one or 

both of the inputs has a fixed set of coefficients. This 

method is commonly known as NEw Distributed Arithmetic 

(NEDA) [14]. Thus, using NEDA, distribution of arithmetic 

is done on the coefficient values instead of doing on the 

inputs. This results in memory-less DA architecture of the 

implemented systems. Conventional NEDA based 

architectures are bit-serial in nature. Depending on the 

application and requirement, they can be designed as digit-

serial or bit-parallel architectures. Thus, NEDA is classified 

under the family of shift-add algorithms. VLSI 

implementation of NEDA becomes simpler if the constant 

coefficients have magnitudes those are less than one. 

 DSP system design techniques such as folding, 

pipelining have always improved performance of the 

systems in terms of hardware, latency, frequency, etc. In 

DSP architectures, systematic 

control circuits are determined 

by using the folding 

transformation. 
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 In folding technique, time multiplexing of algorithm 

operations is done, by reducing to a single functional unit. 

Thus, in DSP systems, folding technique provides a means 

of trading time for area. Conventional folding technique can 

be used to reduce the number of hardware functional units 

by a factor of N at the expense of increasing the 

computation time or multiplexing time by a factor of N 

[15].This technique also helps in data allocation in the 

required registers. To avoid excess amount of registers that 

are generated in these architectures while folding, there are 

techniques to minimise the number of registers needed to 

implement DSP architectures through folding. 

 In the following sections, first we present a brief 

overview of split-radix FFT and NEDA. Then, we propose 

multiplier-less VLSI architectures of split-radix using 

NEDA. Later, we give the FPGA and ASIC implementation 

summary of proposed designs. Next, we compare the 

proposed architectures with the existing ones. Finally, we 

conclude the paper with mentioning possible further 

improvements. 

II. OVERVIEW OF SPLIT-RADIX FFT AND NEDA 

A.  Split-radix FFT 

 While calculating FFT using Radix-2 method, it can be 

concluded that the even-numbered points and the odd-

numbered points are computed independently. This leads to 

the possibility of using different computational methods for 

different independent parts of the algorithm which will 

reduce computational complexity. Split-radix algorithm uses 

the above method by combining the simplicity of radix-2 

algorithm and lesser computational complexity of radix-4 

algorithm, achieving the lowest number of arithmetic 

operation count to compute DFT of power-of-two sizes N. 

Split-radix method recursively expresses DFT of length N in 

terms of one smaller DFT of length N/2 and two smaller 

DFTs of length N/4. Split-radix is only applicable when N is 

a multiple of 4, but we can combine this with other FFT 

algorithms. 

 The N-point DFT of a sequence      is given by 

            
  

   

   

 

             

(1) 

 Where   
             is known as the twiddle factor. 

 The algorithm for the fast and less complexity 

computation of the DFT by Split-radix (SRFFT) was 

developed by Duhamel and Hollmann [16], [17] for data 

sequences having a length N that is an integer power of 2. 

According to them, the even-numbered samples of the N-

point DFT can be calculated by 

                 
 

 
      

  

 
 
  

   

 

          
 

 
   

(2) 

 Those even-numbered DFT points can be calculated 

without any additional multiplications. So, radix-2 algorithm 

is sufficient for the above calculation. The odd-numbered 

samples          requires an additional multiplication of 

  
  . To implement this, radix-4 algorithm is used for its 

lesser computational complexity. 

 Using radix-4 algorithm for the odd –numbered samples of 

the N-point DFT, the following N/4-point DFTs are 

obtained. 
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(4) 

 Hence, the N-point DFT now has been decomposed into 

one N/2-point DFT without phase factor and another two 

N/4-point DFTs with phase factor. Figure 1 shows the split-

radix butterfly unit. 

 

Fig. 1. Split-radix butterfly unit 

B. New Distributed Arithmetic (NEDA) 

 NEw Distributed Arithmetic (NEDA) technique is being 

used in many digital signal processing systems that require 

MAC unit as their computational block. Transforms such as 

FFT, DCT, etc. have many multipliers that in turn require 

more hardware. Implementation of such transforms using 

NEDA improves performance of the system in terms of 

area, speed and power. The mathematical derivation of 

NEDA is discussed below. 
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 Inner product calculation of two sequences can be 

represented as 

     

 

   

   

(5) 

 Where    are constant fixed coefficients and    are 

varying inputs. Matrix representation of equation (5) may be 

given as 

            

  

  

 
  

                                                     (6) 

 Considering both    and    in 2’s complement form, they 

can be expressed in the form 

       
        

    
                                                 (7) 

 Where         ,            and   
  is the sign 

bit and   
  is the least significant bit. Substituting equation 

(7) in equation (6) results in the following matrix product 

which is modelled according to the required design of FFT. 

                 
  

    
 

   
  

     
  

   

  

  

 
  

  

(8) 

 The matrix containing   
  is a sparse matrix, which means 

the values are either 1 or 0. The number of rows in   matrix 

defines the precision of fixed coefficients used. Equation (8) 

is rearranged as shown below. 
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Where         
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 In each row, the   matrix consists of sums of the inputs 

depending on the coefficient values. An example that shows 

the NEDA operations is discussed below. Consider to 

evaluate the value of equation (11). 

      
 

 
   

 

 
  

  

  
  

(11) 

 Equation (11) can be expressed in the form of equation (8) 

as shown in equation (12). 
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 Equation (12) may be rewritten as 
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 Applying precise shifting, we rewrite equation (13) as 

                            

 
 
 
 
 
 
 
 
     

  

     

  

  

     

  

   
 
 
 
 
 
 
 

 

(14) 

 Thus implementing equation (14) further reduces number 

of adders compared to implement equation (13). 

Multiplication with    ,      can be realized with the help 

of arithmetic shifters. In equation (14), the first row of   

matrix shifts right by 1 bit, second row by 2 bits and so on. 

More precisely, the shifts carried out are arithmetic right 

shifts. The output   can be realized as a column matrix 

when we need the partial products. Thus, NEDA based 

architecture designs have less critical path compared to 

traditional MAC units without multipliers as well as 

memory. 
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Fig. 2. Proposed architecture – I of 32-point split-radix FFT

III. PROPOSED DESIGNS 

A. Proposed Architecture – I 

 A 32-point complex split-radix FFT has been proposed in 

this paper. 32 complex inputs have been taken with a 

precession of 16 bits, in parallel. The number of stages to 

calculate the final output is 5. The inputs are taken in normal 

order and the outputs are in bit-reversal order. The even-

numbered samples have been implemented by radix-2 

FFTalgorithm and the odd-numbered samples have been 

implemented using radix-4 FFT algorithm. The twiddle 

factor multiplications have been implemented using NEDA 

technique. The proposed architecture – I is shown in figure 

2. In stage-I, eight radix-4 butterfly modules have been 

used. The inputs to each radix-4 butterfly present in stage-I 

are          
 

 
      

 

 
      

  

 
  where     

 

 
   respectively. The first output of each split-radix 

butterfly present in stage-I are represented by 

                      respectively. The second output of 

each split-radix butterfly of stage-I are represented 

by                       respectively. Similarly the 

third and fourth output of each split-radix butterfly of stage-I 

are represented 

as                        
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and                        respectively. 

 In stage-II, the samples                       are 

multiplied by twiddle factor of   
  and the samples 

                        are multiplied by twiddle 

factor of    
   where N=32 and     

 

 
   respectively. 

Those inner product calculations have been done by NEDA 

technique to achieve a multiplier-less architecture. The rest 

of stage-I samples are fed to four split-radix butterfly units 

and the outputs are given to stage-III. In stage-III, the 

samples                       , 
                         , 
                        are fed to six split-radix 

butterfly units and the outputs are given to stage-IV 

respectively. The other samples of stage-III are multiplied 

by twiddle factor of    
   and    

   where N=32 and   

  
 

 
    respectfully. 

 In stage-IV, five more split-radix butterfly units have been 

used and the inputs and outputs of those are clearly shown in 

figure. The twiddle factor that is to be multiplied in stage-IV 

whenever required is     
   and    

    where N=32 

and     
 

  
  . The final stage (stage-V) uses only 

radix-2 butterfly units whenever required. The twiddle 

factor to be multiplied in stage-V is     
   since     

 

  
   that is n=0. The NEDA technique has been used here 

whenever there is a need for the calculation of inner 

products. We got the final output at the end of stage-V. 

Figure 3 shows the split-radix butterfly used in the proposed 

architectures. 

 

 
Fig. 3. Split-radix butterfly used in proposed designs 

 

B. Proposed Architecture – II 

 The draw-back of the proposed architecture – I lies in its 

huge number of input-output pins, which makes the design 

less implementable both on FPGAs as well as an ASIC. To 

overcome the above draw-back, an intelligent way of 

implementing the split-radix FFT is done through folding. 

 The proposed architecture – II, shown in figure 4, takes 4 

inputs at a time which sums up to 8 clock cycles to read all 

the 32 inputs. For every clock cycle, the outputs of the first 

stage split-radix block are stored in registers and this process 

continues till all 32 outputs are stored. Later, the stored 

outputs are processed for second stage computations which 

consist of either NEDA blocks or split-radix blocks. The 

outputs of second stage split-radix blocks are stored in 16 

registers for further processing. The outputs of second stage 

NEDA blocks and some outputs of second stage split-radix 

blocks are given to third stage split-radix blocks. The 

remaining outputs of second stage split-radix blocks are 

given to NEDA blocks of third stage. Some outputs of third 

stage split-radix blocks are given to fourth stage NEDA 

blocks. The remaining outputs of third stage split-radix 

blocks along with third stage NEDA blocks are given to 

fourth stage split-radix blocks. 

 The outputs of fourth stage NEDA blocks and some 

outputs of fourth stage split-radix blocks are fed to fifth 

stage radix-2 blocks. Rest of the outputs of fourth stage 

split-radix blocks are directly mapped to outputs.  

 

TABLE I. DATAFLOW TABLE FOR INPUT-

OUTPUTS OF PROPOSED ARCHITECTURE – II 

Clock cycle Inputs Outputs 

1 x0,x8,x16,x24  

2 x1,x9,x17,x25 P0,P8,P16,P24 

3 x2,x10,x18,x26 P1,P9,P17,P25 

4 x3,x11,x19,x27 P2,P10,P18,P26 

5 x4,x12,x20,x28 P3,P11,P19,P27 

6 x5,x13,x21,x29 P4,P12,P20,P28 

7 x6,x14,x22,x30 P5,P13,P21,P29 

8 x7,x15,x23,x31 P6,P14,P22,P30 

9  P7,P15,P23,P31 

10 P8,P12,P16,P20  

11 P9,P13,P17,P21 Q8,Q12,Q16,Q20 

12 P10,P14,P18,P22 Q9,Q13,Q17,Q21 

13 P11,P15,P19,P23 Q10,Q14,Q18,Q22 

14  Q11,Q15,Q19,Q23 

15 W0,W2,W4,W6  

16 W1,W3,W5,W7 S0,S2,S4,S6 

17 Q12,Q14,Q16,Q18 S1,S3,S5,S7 

18 Q13,Q15,Q17,Q19 R12,R14,R16,R18 

19 W8,W10,W12,W14 R13,R15,R17,R19 

20 W9,W11,W13,W15 S8,S10,S12,S14 

21  S9,S11,S13,S15 

22 S2,S3,S4,S5  

23 T8,T9,T10,T11 Y9,U3,U4,Y25 

24 R14,R15,R16,R17 Y10,V9,V10,Y26 

25 T20,T21,T22,T23 Y8,U15,U16,Y24 

26 S10,S11,S12,S13 Y14,V21,V22,Y30 

27  Y11,U11,U12,Y27 

28 L0,L1,U3,U4 Y5,Y21,Y1,Y17 

29 L6,L7,V9,V10 Y13,Y29,Y2,Y18 

30 L12,L13,U15,U16 Y4,Y20,Y0,Y16 

31 L18,L19,V21,V22 Y12,Y28,Y6,Y22 

32 L8,L9,U11,U12 Y7,Y23,Y3,Y19 

33 L14,L15,0,0 Y15,Y31,0,0 

 In table I, the internal signals W0 to W15 are obtained 

after multiplying the signals P0 to P7 and P24 to P31 with 

their respective twiddle factors of second stage. Similarly, 

the  
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Fig. 4. Proposed architecture – II, of 32-point split-radix FFT 

signals T8, T9, T10, T11, T20, T21, T22 and T23 are 

obtained after multiplying the signals Q8, Q9, Q10, Q11, 

Q20, Q21, Q22 and Q23 with their corresponding twiddle 

factors of third stage. Finally, the signals L0, L1, L6, L7, 

L12, L13, L18, L19, L8, L9, L14 and L15 are obtained after 

multiplying the signals S0, S1, S6, S7, R12, R13, R18, R19, 

S8, S9, S14 and S15 with their twiddle factors of fourth 

stage respectively. The twiddle factors have been performed 

using NEDA blocks at respective stages. The outputs of the 

proposed architecture start coming from the 23
rd

 clock cycle 

till 33
rd

 clock cycle in bit-reversal order. 

IV. FPGA AND ASIC IMPLEMENTATION SUMMARY 

 The proposed architectures have been implemented using 

Xilinx ISE as well as Altera Quartus II, wherever applicable. 

The proposed architecture – I can operate at a maximum 

frequency of 100.368 MHz on Xilinx Virtex-5 FPGAs. The 

outputs of proposed architecture – I are obtained after 45 ns, 

which results in its latency, in parallel. But, as the number of 

IOBs is too high to accommodate, we go for proposed 

architecture – II. Table II shows the FPGA device utilization 

summary of proposed architecture – II. The power has been 

calculated using Xilinx XPower Analyzer. 

 

TABLE II. FPGA DEVICE UTILIZATION 

SUMMARY OF PROPOSED ARCHITECTURE – II 

FPGA device: 

XC5VLX330T-

2FF1738 

Proposed Architecture – II 

Used Utilization 

Number of occupied 
slices 

2426 51840 (4%) 

Number of slice 

registers 
5010 207360 (2%) 

Number of slice 
LUTs 

7099 207360 (3%) 

Frequency 527.329 MHz 

Dynamic Power at 

maximum frequency 
0.40262 W 

  

Table III shows the comparison results of the proposed 

architecture – II, with the architecture mentioned in [18]. 

The comparison has been made using Altera Quartus II and 

its Cyclone II family of FPGA. From table III, it is clear 

that, the proposed architecture gives better results in terms 

of speed, power and area. 

 Table IV shows the ASIC implementation of the proposed 

architectures in 0.18µm process technology using Synopsys 

DC for logic synthesis and Cadence SoC Encounter for 

physical design. The process technology that has been 

followed to carryout physical 

design of the proposed 
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architectures is UMC 0.18µm mixed mode generic core.  

TABLE III. COMPARISON OF PROPOSED ARCHITECTURE – II USING ALTERA CYCLONE II FAMILY OF 

FPGA 

FPGA comparison results using Altera 

Cyclone II 
[18] Proposed Architecture – II 

Number of inputs 32 32 

Combinational functions 1442 14304 

Logic registers 857 1123 

18x18 multipliers 4 0 

Memory 2(1K) 0 

Execution time (µs) 7.995 0.14457 

Frequency (MHz) 100 210.97 

Device EP2C35 EP2C70 

TABLE IV. ASIC IMPLEMENTATION RESULTS OF PROPOSED ARCHITECTURES USING SYNOPSYS DC 

AND CADENCE SOC ENCOUNTER 

ASIC implementation results using Synopsys 

DC 

Process technology: 0.18µm 

Proposed Architecture – I Proposed Architecture – II 

Total cell area 1063769.421537 803245.469974 

Total dynamic power 84.1841 mW 14.9286 mW 

Add-sub width 16 bits 16 bits 

Slack at 100 MHz 3.68 ns 6.62 ns 

 

 The physical design of proposed architectures has been 

made in such a way that the timing constraints are met after 

both placement as well as routing. The layouts are shown in 

figure 5 and figure 6. The core utilization of proposed 

designs has been set to 0.8 to avoid congestion while 

routing. The proposed architectures have been routed using 

Nano route. The slack achieved for proposed architecture – I 

at 100 MHz clock is 3.68 ns and for proposed architecture – 

II is 6.62 ns. From table IV it is clear proposed architecture 

– II gives better results in terms of area and power compared 

to proposed architecture – I. 

 
Fig. 5. Physical Layout of proposed architecture – I 

 

 
Fig. 6. Physical layout of proposed architecture – II 

V. CONCLUSIONS 

 This paper has reported two novel and efficient 

architectures of split-radix FFT using NEDA. Both proposed 

architectures are designed for complex inputs with a data 

width of 16 bits, maintained constant all along. The 

simulation outputs of proposed architectures have not shown 

much deviation from numerical values. The proposed 

architectures are multiplier-less as well as memory-less 

ones. Proposed architecture – I is implemented as a fully 

dedicated architecture that takes all inputs in parallel and it 

has less delay of 4 clock cycles. But, proposed architecture – 

I has huge number of input-output pins;  
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this drawback has been overcome in the later proposed 

architecture. Proposed architecture – II is implemented 

using folding which is folded so as to take 4 inputs at a time. 

Both the proposed architectures are implemented 

sequentially which results in a form of pipelining. The data 

flow of proposed architecture – II is clearly mentioned in 

table II. Proposed architecture – II gives a maximum 

frequency of 527.329 MHz on Xilinx Virtex-5 FPGA and 

210.97 MHz on Altera Cyclone II EP2C70 FPGA, thus 

showing its applicability in communication systems. There 

is a huge decrement in power of proposed architecture – II 

when compared. ASIC implementation of proposed 

architectures has been done using Synopsys and Cadence 

tools. 
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