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Abstract- Lattice reduction is a powerful algorithm for 

cryptanalyzing public key cryptosystems, especially RSA. 

There exist several attacks on RSA by using the lattice 

reduction techniques. In this paper, we attack on the 

version of RSA, called Multiprime RSA, by using the lattice 

reduction techniques.    

Index Terms- Lattice reduction, Multiprime RSA, 

Unravelled linearization. 

I. INTRODUCTION 

   Multiprime RSA is a version of original RSA. In 

Multiprime RSA, the modulus is a product of three or more 

primes. The encryption process is similar to the original RSA. 

The decryption and signature schemes can be done by 

Chinese Remainder Theorem. As in original RSA, there exists 

lattice based attacks for this version too. In this paper, we 

present an attack on multiprime RSA by using unravelled 

linearization . 

II. MATHEMATICAL PRELIMANRAIES 

A. Lattices 

Let  be set of  linearly independent vectors 

in  The lattice generated by  is the set 

. That is, the set of all integer linear 

combinations of the basis vectors. The set  is called basis 

and we can compactly represent it as an  matrix each 

column of whose is a basis vector: . The 

rank of the lattice is defined as  while its 

dimension is defined as  For good introduction of 

lattices and their applications refer [1][2].  

B.  Lattice reduction 

Lattice reduction is a problem to find the reduced basis of the 

given lattice. Reduced basis is the basis of the lattice such that 

the vectors are near orthogonal. So many versions exist to find 

reduced basis, but the one given by Lenstra, Lovasz, Lovasz is 

a special one, called LLL reduced. Because there exist a 

polynomial time algorithm for this reduction called LLL 

algorithm. This problem not only solves the reduced problem, 

it also solves SVP problem in some extent. 

C. LLL  Algorithm 

Let  be a lattice spanned by linearly independent vectors 

, where . By , we 

denote the vectors obtained by applying the Gram-Schimdt 

process to the vectors . It is known that given 
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basis  of lattice , LLL algorithm can find a new 

basis  of  with the following properties:  

1)   

2.For all , if , then  for all  

3. , . 

The determinant of  is defined as , where 

 denotes the Euclidean norm on vectors.[1][2]   

D. Unravelled linearization 

    Unravelled linearization is a clever technique of 

linearization introduced by Hermann and May[14], and it 

proceeds in three steps:  linearization, basis construction, 

unravellization . In the cryptanalysis of RSA literature, the 

existing work proceeded in two steps, basis construction, 

identifying special structure (called sub lattice) in a basis to 

compute determinant easily.  

E. Multiprime RSA 

The public and private exponents are defined as inverses 

modulo , so that . So, the key equation is 

, where  is a some positive integer.  We can 

replace  with . So  can be written as 

.  Since, we have assumed the primes are 

balanced, we have the upper bound for . 

Ciet et.al[12] provided the bound for the secret exponent as 

. They have used the technique called 

“Geometrical progressive matrices” introduced by 

Boneh-Durfee. In this paper, we use another technique called 

“Unravelled linearization” which is introduced by Hermann 

and May. The advantage of this method is simplified analysis.   

F .  Exitsing small private exponent attacks on Multi Prime 

RSA:  

Several attacks have been existed in the literature of RSA, 

which can be extended easily to Multiprime RSA. We listed 

the results below.  

Wiener’s attack[12]: Let  be an -prime RSA modulus with 

balanced primes, let  be a valid public exponent, and   be its 

corresponding private exponent. Given the public key, if the 

private exponent satisfies , then the modulus can 

be (probabilistically) factored in time polynomial in . 

Boneh-Durfee’s attack[12]: Let  be an -bit -prime RSA 

modulus with balanced primes, let   be a valid public 

exponent and let  be its corresponding private 

exponent. Given the public key , if the private exponent 

satisfies , then the 

modulus can be factored in time polynomial in   

Blomer-May’s attack[12]: Let be an -bit  -prime RSA 

modulus with balanced primes, and let  be a valid 

public exponent and let  be 

its corresponding private 

exponent. Given the public key 
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, if the private exponent satisfies 

, then 

the modulus can be probabilistically factored in time 

polynomial in  

Ciet’s attack[12]: Let   be an -bit -prime RSA modulus 

with balanced primes, let  be a valid public exponent 

and  be its corresponding private key. Given the public 

key , the private exponent satisfies , then 

the modulus can be factored in time polynomial in  

Ciet’s attack is the best among all the attacks listed above. But 

for this attack they have used complicated concept called 

geometrical progressive matrices. This concept is difficult to 

understand. Here, we use another technique called unravelled 

linearization, to achieve the same bound as Ciet.     

III. ATTACK ON MULTIPRIME RSA 

A  Attack   

  Let  be an -bit -prime RSA modulus with balanced 

primes, let  be a valid public exponent with a same size as 

modulus and  be its corresponding private key. Given 

the public key  the private exponent satisfies 

, then the modulus can be factored in   

B Justification 

  We follow the analysis of ciet. The key equation is same as 

the original RSA.  The underlying polynomial 

 used by Boneh-Durfee. Here, we 

introduced the variable  for the monomial  ,  for 

and for   Then the new polynomial is 

with the relation  

Now, construct the polynomials for the basis, as introduced by 

Jochemsz and May[18] with leading monomial  

 for and . 

For extra shifts, use the variable  and introduced as in the 

Boneh-Durfee paper.  for  and 

. It is also noted that . For  and 

 refer the matrix in fig(1). 

 

 
Fig 1: Lattice matrix for the parameters m=2, t=2. 

 

Now one can show that the above construction yields that, 

every new row introduced only one new monomial. For the 

sake of completeness we present the details here[13].  For 

this, observe the factor   by the binomial 

theorem . The first term 

introduces a new monomial . If we substitute the value of 

 in the second term, we have 

. Observe that these monomials 

appear in  and , respectively. In general, the 

 term of the binomial expansion contains monomials 

that appear in  for  Thus, the shift 

introduces exactly one new monomial  if all shifts 

 for  and  were used in 

the construction of lattice basis. It remains to show that the 

chosen - shifts  satisfies the requirement, i.e we show 

that if  is a -shift, then all of  for 

 and  are also used as shifts. 

Refer  the fig1 for the example. Notice that it is sufficient to 

show  is used as a shift. Since  is in the set of 

shifts, we know that  and therefore 

 For , we have 

. Our requirement is thus fulfilled if 

the condition  holds. From this, we have 

 Since the basis matrix is by construction triangular, we 

can easily compute the determinant as the product of the 

diagonal entries. Note that each shift polynomial  

introduces a diagonal term  and each extra shift  

contributes a diagonal term . Let  and the 

bounds of  are  respectively. we compute 

the determinant of the lattice as  for values  

 

 

 

 
Also we have  Note that 

determinant of the lattice is bounded by .  Substitute 

all these values, we get the inequality 

 
Also observe that the upper bounds of ,  respectively 

, , . Substitute above upper bounds into above 

inequality, we have . 

Above inequality is minimized when . Substitute  

value into above inequality, we have 

 After simplification, we 

have .  For , it reduces to Boneh-Durfee’s 

bound.  

IV. EXPERIMENTS 

We have done the experiments for the values  and  

Each prime is 512 bits. 

The first prime number is 

116537828586841913086877388758392484266914975644

077633018402584228579378409617027811545958082898

029092923233209100078886193343225302055201188096

92679380997 

The second prime number is 

131826229329565403436248779512203514722655268331

81272216094982197833709213

75043552460492359780814205

46816538771514365277545166
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00745921127969161360047588573 

The third prime numbers is 

111254344132057563269181072257827377989379474823

364050289457357780479996545069223293396756485319

161797651533335045302647663423960844039034205243

32784224827. 

We construct the matrix as above and we apply LLL 

algorithm for this matrix. We use NTL library[14] for all 

these calculations. We apply grobner basis technique for first 

two rows to get a common solution.   

V. CONCLUSION 

In this paper, we present the attack on multiprime RSA. So 

many attacks have been provided for this version, but the one 

presented  in this paper is easy to understand. We did not get 

the better bound but analysis is simple. 
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