
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3, Issue-2, May 2013

179

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B1490053213/2013©BEIESP

Abstract—The Component Based Software Development

(CBSD) approach is becoming the trend for software development

which is based on developing the software from existing

components instead of developing software from scratch

everytime. Measuring software complexity is an important aspect

during software development. Because software complexity is an

important determinant of software development effort, testing

effort , cost, maintainability etc. Researchers have proposed a

wide range of complexity metrics for software systems . But the

traditional software product and process metrics are neither

suitable nor sufficient in measuring the Component and

Component Based Software (CBS) complexity. So CBSD provides

one of the central problems in measuring component and CBS

complexity. Measuring component complexity plays an important

role in determining the complexity of CBS system. Because

component complexity affects the complexity of whole CBS .

Component complexity affects integration and testing effort, cost,

maintainability of CBS system . But now a days black box

components are being used during CBSD and most of the time

source code is not available which creates difficulty in measuring

component complexity. In this paper a metric has been proposed

for determining the black box component complexity. The

proposed metric measures component complexity on the basis of

component interface specification and use the concept of assigned

weights.

 Index Terms— Black Box Component, CBSD, CBS system ,

component complexity, complexity metrics, traditional software

product and process metrics.

I. INTRODUCTION

 The Component Based Software Development(CBSD)

approach is increasingly being adopted for software

development. This approach uses reusable components as

building blocks for constructing software systems. CBSD

provides advantages like reduced development time, cost and

effort, increased quality along with many others. These

advantages are mainly provided by the reuse of already

built-in software components. The following Fig.1 shows the

technique for developing software from existing components.

 .
 .
 .

Fig .1 Component based Software development technique

Manuscript received on May, 2013.

Navneet Kaur, Computer Science & Engineering Department, Thapar

University, Patiala, India.

Ashima Singh, Computer Science & Engineering Department, Thapar

University, Patiala, India.

 But it is neccessary to measure the software complexity in

each software development approach because software

complexity affects software development effort,cost,

testability,maintainability etc. So many metrics have been

proposed for measuring software complexity. But traditional

software product and process metrics are not sufficent for

measuring the component and Component Based Software

(CBS) complexity. So CBSD provides one of the central

problems in measuring component and CBS complexity.

Measuring component complexity plays an important role in

determining CBS system complexity. Because component

complexity affects the complexity of whole CBS system .The

component complexity is an important factor affecting the

integration complexity, understandability,testability,

maintainability etc of CBS system . But now a days black box

components are being provided by component vendors for

reuse and most of the time source code is not provided with

components which creates difficulty in measuring component

complexity. In this paper a complexity metric for black box

component, CCM(BB) , has been proposed. The proposed

metric is based on the component interface specification and

use the concept of assigned weights.

 The CBS system complexity is mainly calculated on the

basis of it’s components complexity . Thus by measuring the

component complexity and selecting the less complex

component during the component selection, the whole

complexity of CBS system can be reduced. Like complex

components will increase the integration effort(glue code

complexity) ,testing effort and maintenance effort etc

II. BRIEF DISCUSSION OF SOME EXISTING

METRICS

In this section some existing object oriented metrics and

component integration metrics have been discussed.

A. Object Oriented Metrics

 There are many object oriented metrics that can be used to

measure the component based software complexity. Some

object oriented metrics have been discussed below :

 Metric 1: Weighted Methods Per Class (WMC)

This metric gives the combined complexity of local methods

in a given class. The greater value of this metric shows more

complexity, increase in testing effort and decrease in

understandability.

Metric 2: Depth of Inheritance (DIT)

This metric is for class . It gives maximum length from the

class node to root. More length means more complexity.

Metric 3: Response For Class (RFC)

The RFC metric gives the number of methods that can

execute in response to a message sent to an object with in this

class ,using to one level of nesting.

Metric 4: Coupling Between Objects (CBO)

For a given class, this metric

measures the number of other

classes to which the class is

coupled. High value of this metric

A Complexity Metric for Black Box Components

Navneet Kaur, Ashima Singh

Component

 Repository

 Component 1

 Component 2

 Component n

Software

System

Select Assamble

A Complexity Metric for Black Box Components

180

Retrieval Number: B1490053213/2013©BEIESP Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

shows the poor design, difficulty in understanding, decrease

in reuse and increase in maintenance effort.

Metric 5: Lack of Cohesion Method (LCOM)

The cohesion of a class is characterized by how closely the

local methods are related to the local instance variables in the

class. LCOM is defined as the number of disjoint sets of local

methods. High value of this metric shows good class

subdivision.

Metric 6: Number of Children (NOC)

This metric is based on a node (class) of inheritance tree. It

gives the number of immediate successors of the class. High

value of this metric shows more reuse, poor design and

increase in testing effort.

Metric 7: Lines of Code (LOC)

This metric is based on the size of methods. It gives measure

of physical lines , statements , and/or comments. High value

of this metric shows more complexity .

Metric 8: Cyclomatic Complexity (CC)

This metric measures the complexity of methods. It gives the

measure of independent algorithmic test paths. More

independent paths means more testing effrot.

B. Metrics for the Integration of Software Components

a) Metric 1: Component Packing Density (CPD)

The CPD metric measures the component constituents to the

number of integrated components. This metric is used to

identify the density of integrated components. Thus, a higher

density represents a higher complexity.

 #< Constituent>

 CPD< constituent_type> =

 # Components

Where #<Constituent> is the number of lines of code,

operations, classes, and/or modules in the related

components.

b) Metric 2: Component Interaction Density (CID)

The CID metric measures the ratio of actual number of

interactions to the available number of interactions in a

component.

 #I

 CID =

 # Imax

Where #I and #Imax represents the number of actual

interactions and maximum available interactions respectively

. If one component provides interface and another

components use it or if one component submits an event and

another component receive it, then it is called an interaction.

When the density of interaction increases, complexity

increases.

Metric 3: Component sIncoming Interaction Density

(CIID)

The CIID metric measures the ratio of actual number of

incoming interactions to the maximum available incoming

interactions in a component.

 # Iin

 CIID =

 # Imax_in

Where # Iin and # Imax_in represents the actual number of

incoming interactions and maximum number of incoming

interactions available in a component respectively . The

incoming interaction may be defined as a received interface

that is required in a component or a received event that arrives

at a component. High density shows that a particular

component requires so many interfaces.

Metric 4: Component Outgoing Interaction Density

(COID)

The COID metric measures the ratio of actual number of

outgoing interactions to the maximum number of outgoing

interactions available in a component.

 # Iout

 COID =

 # Imax_out

Where # Iout and # Imax_out represents the actual number of

outgoing interactions used and maximum number of

outgoing interactions available in a component respectively.

The outgoing interaction may be defined as any provided

interface used or a source of event consumed.

Metric 5: Component Average Interaction Density

(CAID)

The CAID metric is a sum of interaction densities for each

component divided by the number of components in software

system .

 i=n CIDn

 CAID = ∑

 i=1 # components

Where, ∑n CIDn represents the sum of interaction densities

for components 1...n and # components represents the number

of existing components in the software system.

c) Criticality Metrics

Metric 6: Link Criticality Metric (CRITlink)

The CRITlink metric is defined as the number of components

which have links more than a threshold value.

 CRITlink = # linkcomponents

Where # linkcomponents represents the number of

components, with their links more than a critical value. The

threshold is considered as 8 links. The links are created from

the facets of other components. If facets increase, criticality

of that component increases.

Metric 7: Bridge Criticality Metric (CRITbridge)

The CRITbridge metric is defined as the number of bridge

components in a component assembly.

 CRITbridge = # bridge_component

Where # bridge_component represents the number of bridge

components . A bridge component may be defined as a

component which links two or more components/ application.

If there is a defect in bridge, the entire application might

malfunction. More number of bridge components result in

more chances of failure. All the links provided by a bridge

component are assigned a similar weight in order to show that

they belong to the same bridge component.

Metric 8: Inheritance Criticality Metric

(CRITinheritance)

The CRITinheritance metric is defined as the number of

components, which become root or base for other inherited

components.

 CRITinheritance = # root _ component

Where # root_component represents the number of root

components which has inheritance. It is the number of

components which act as a parent/root/base for other

components .

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3, Issue-2, May 2013

181

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B1490053213/2013©BEIESP

Metric 9: Size Criticality Metric (CRITsize)

The CRITsize metric is defined as below :

 CRITsize = # size_component

Where # size_component represents the number of

components which exceed a given critical size value. The size

is determined by considering the factors like LOC, number of

classes, operations and modules in the application.

Narasimhan and Hendradjaya defined the threshold value as

1000 lines of code or 50 classes. So, the value for this metric

is given as 1 if it exceeds the threshold value.

Metric 10: # Criticality Metric

The #Criticality Metric (CRITall) is defined as the sum of all

critical metrics.

CRITall = CRITlink + CRITbridge + CRITinheritance +

CRITsize

d) Triangular Metrics

Component Packing Density (CPD) , Component Average

Interaction Density (CAID), Component Criticality (CRITall)

metrics are considered as 3 axes which can be further

modified as 2 axes diagrams with CPD and CAID. For

different values varying as high and low for the 2 axes,

different cases are considered as the behaviors vary for

different systems based on real time, business type etc.

e) Dynamic Metrics

These are the metrics collected during the execution time. These

are not available during the design phase as they are collected

dynamically. These metrics are used for maintenance purposes.

III. LIMITATIONS OF EXISTING METRICS

 The existing metrics have some limitations like most of the

existing metrics are applicable to small programs or

components, while the objective of having metrics is to test

the behaviour and reliability of the components when placed

in a large system. Some metrics rely on parameters that could

never be measured or are too difficult to measure in practice.

Like in case of black box components internal structure may

not be available . So there is a need of complexity metric for

black box components because a number of existing metrics

can not be applied directly. In this paper a metric has been

proposed which measures the complexity of a black box

component on the basis of component specification.

IV. PROPOSED WORK

 In the case of black box components, most of the times

source code is not available. So the component consumer has

to rely on the component specification to predict its

functionality. So the metric proposed in this paper is based on

measuring the component complexity on the basis of

component specification. This metric uses the different

weight values to represent the different complexity levels of

components.

 The component complexity closely depends on what

contributes to develop components, as in [1]. Thus there are

four elements that affect the component complexity. First

element is Variable Factor that tells complexity of the

variables defined in the component. The variables may

consist of member variables of a class having scope for the

entire class and the parameters, which are local to a particular

method. The second element is Interfaces ,which are the

access points of component, through which a component can

request a service declared in an interface of the service

providing component.

 Interface complexity is defined as sum of complexity of the

interface methods of the class. Third element is Coupling

Factor that tells rate of coupling of the methods in the

component. Fourth element is cyclometric complexity of the

methods of the component.

 But in the case of black box components most of the times

source code is not available so it is very difficult to guess or

find the variables and it is also not possible to find the

cyclometric complexity of methods in absence of source

code. Thus the metric proposed in this paper includes the

concepts of interface methods complexity and coupling

complexity between the components ,which can be

determined on the basis of component specification. Thus the

black box component complexity may be defined as the sum

of interface methods complexity and coupling complexity.

The CCM(BB) metric has been defined to determine the

overall complexity of a black box component.

A. Determining the Interface Method Complexity

 In this section a metric for determining the complexity of

interface methods has been defined. High interface methods

complexity shows more complexity of component.

The interface methods can be divided in the following

categories:

 Interface methods having no return value and no

parameters.

 Interface methods having return value but no parameters .

 Interface methods having no return value but having

parameters.

 Interface methods having return value as well as

parameters.

 The complexity of the interface methods can be measured on

the basis of data types of return value and parameters, and on

the basis of number of parameters. On the basis of data type of

return value and parameters, and by considering the number of

parameters in a method some weights will be assigned to the

interface method.

 The data types can be divided in the following categories:

 Very simple includes integer,float,double,boolean etc.

 Simple includes structure data types.

 Medium includes class type and object type.

 Complex includes pointer and built in data types.

 Very complex includes user defined data types.
 The methods having no return value and no parameters has

been considered as simple methods and their weight value

has been assumed .025. All other interface methods are

assigned weight values depending on the count and data types

of parameters, and on the basis of return value’s data type.

The following Table I represents the weight values assigned

to different categories of data types for parameters and return

values.

Thus a Interface Method Complexity Metric for Black Box

Component, IMCM(BB), has been defined as below:

 IMCM(BB) = Wr + PCM(M)

Where Wr represents the weight assigned to the category of

return value’s data type and PCM(M) is Parameters

Complexity Metric for Method which calculate the

complexity caused by parameters.

A Complexity Metric for Black Box Components

182

Retrieval Number: B1490053213/2013©BEIESP Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

 Parameters Complexity Metric for Method ,PCM(M),

has been defined as below:

PCM(M) = a*Wvs + b*Ws + c*Wm + d*Wc + e*Wvc

 Where a,b,c,d,e represent counts and Wvs,Ws,Wm,Wc,Wvc

represent the assigned weights for very simple, simple,

medium, complex and very complex data type categories for

parameters of a method .

High value of IMCM(BB) shows decrease in

understandability and increase in testing effort.

 Table I. Represents weight values assigned to different categories of data types for parameters and return values

Parameter

Type ,Return

Value Type

Very Simple Simple Medium Complex Very Complex

Assigned

 Weight

 .10 .20 .30 .40 .50

B. Determining the Coupling Complexity

 Component coupling shows the degree of interaction

between the components. High coupling results in more

component complexity. It will create difficulty in

understanding the component behaviour, integrating the

component in system, testing the component functionality. A

component may interact with other components in order to

receive or provide some kind of data. The number of

components from which the component receives data(fan-in)

and the number of components to which the component

provides data(Fan-out), affect the component complexity

differently. Thus the component coupling complexity is the

sum of coupling complexity caused by fan-in components and

fan-out components.

There is one another problem, when a component is coupled

with other components then some kind of data is passed

between them . But in some cases there may be some

problems in exchange of data between them. It will further

increase the coupling complexity. Thus it will result in more

integration and testing effort.

For example, Suppose return value of one component’s

method is passed to the another component’s method as a

parameter to perform its task, but if their data types are

different then there will be data type incompatibility problem.

So the return value must be converted in the required form

before passing as a parameter to second component’s method(

i.e it needs adaption.). More number of incompatibilities and

incompatibilities between more complex data types result in

more integration complexity to connect the component with

other components to provide accurate functionality. The

following Table II shows the assigned weights for complexity

in handling the data type incompatibilities, between the

different categories of data types.

Thus the coupling complexity metric considers the number of

components from which the considered component is receiving

data(Fan-in), number of components to which the considered

component is providing data (fan out) , number of interactions

causing no incompatibility problem, the counts of different

types of data type incompatibilities between different data type

categories and the weights assigned for handling them.

Thus A Component Coupling Complexity Metric for

Black Box Component ,CCCM(BB), has been defined as

below:

 The number of components from which the considered

component receives data(fan-in) and the number of

components to which the considered component provides

data(Fan-out), affect the component complexity differently.

Thus the component coupling complexity may be defined as

the sum of coupling complexity caused by fan-in components

and fan-out components as shown below:

 CCCM(BB) = FICM(BB) + FOCM(BB)

 Where FICM(BB) is Fan-in Complexity Metric which

measures the coupling complexity due to incoming data from

the other components and FOCM(BB) is Fan-out Complexity

Metric which measures the coupling complexity due to

outgoing data to other components.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3, Issue-2, May 2013

183

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B1490053213/2013©BEIESP

Table II. Weights assigned for complexity in handling the data type incompatibilities between the different categories of data

types

Actual Data Type

 Converted Data

Type

 Very Simple Simple Medium Complex Very Complex

 Very Simple .20 .30 .40 .50 .60

 Simple .30 .40 .50 .60 .70

 Medium .40 .50 .60 .70 .80

 Complex .50 .60 .70 .80 .90

 Very Complex .60 .70 .80 .90 1.0

If the interaction has no data type incompatibility then we

have considered the assigned weight as .10 .

Steps to Calculate CCCM(BB)

 Step 1 : Calculate FICM(BB)

 Fan-in Complexity Metric for Black Box Component,

FICM(BB) = fin * [Cn * .10 + (Count the different types of

data type incompatibilities need to be handled to receive the

data in the correct form and multiply the different counts with

their respective weights as shown in Table II and then add

them.)]

Where fin is the number of components from which the

considered component is receiving data. High value of fin

shows that this component’s functionality may be affected by

many components . Cn represents the count of interactions

causing no incompatibility problem.

Step 2: Calculate FOCM(BB)

Fan-out Complexity Metric for Black Box Component,

FOCM(BB) = fout * [Cn *.10+ (Count the different types of

data type incompatibilities need to be handled to provide the

data in the correct form and multiply the different counts with

their respective weights as shown in Table II and then add

them.)]

Where fout is the number of components to which the

considered component is providing data. High value of fout

shows that this component may affect the functionality of

many components . Cn represents the count of interactions

causing no incompatibility problem.

 Step 3: Calculate CCCM(BB)

 CCCM(BB) = FICM(BB) + FOCM(BB)

High coupling complexity shows that more integration and

testing effort is required. But it represents low

maintainability. Because coupling reduces the ease of

modification, e.g.,modifying a component affects all the

components to which the component is connected.

C. Determine Component Complexity Metric for Black

Box Component

Component Complexity Metric for Black Box Component,

CCM(BB), has been defined as below

 i=n

 CCM(BB) = CCCM(BB) + ∑ IMCM(BB)

 i=1

 Where n represents the number of methods defined in

component interface.

D. Advantages of CCM(BB) Metric

 Easy to understand and use.

 No need of source code, it is based on component

specification only.

 Interface Method Complexity Metric provides the

estimation of testing effort and understandability. High

value of IMCM(BB) for all the interface methods shows

more testing effort and less understandability.

 Many coupling metrics consider only the number of

interactions to show the extent of coupling. But

CCCM(BB) not only considers the number of incoming

and outgoing interactions but it also considers the other

factors affecting coupling complexity like number of

components having impact on the considered

component(fin), number of components which may be

affected by considered component(fout), number of data

items being passed between components and how many

of them are creating data type incompatiblity problem.

Thus it provides more precise value of component

coupling complexity. This metric provides the good

indication of component integration and testing effort.

High coupling complexity means more integration amd

testing effort.

 CCM(BB) includes interface methods complexity and

coupling complexity. Thus it gives the overall

complexity of component.

V. CONCLUSION

 Although the Component Based Software Development is

increasingly being adopted for software development. But

measuring the black box component complexity during

component selection is still a difficult task . Because most of

the component complexity measuring metrics are based on

source code of the component but in the case of black box

components most of the times source code is not provided by

the component vendors. So in this paper a component

complexity metric has been proposed which is based on

component interface specification. By using this metric we

can guess the component understandability, testability,

integration effort (which is required to integrate this

component with other components) and overall component

complexity.

A Complexity Metric for Black Box Components

184

Retrieval Number: B1490053213/2013©BEIESP Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Thus by measuring the component complexity during the

component selection for component based software

development and selecting a less complex component the

overall complexity of CBS can be reduced. This will help in

reducing the integration and testing effort, and increasing the

maintainability.

REFERENCES

[1] Sandeep Khimta, Parvinder S. Sandhu, and Amanpreet Singh Brar, “A

Complexity Measure for JavaBean based Software Components”,

World Academy of Science, Engineering and Technology,2008 .

[2] Luiz Fernando Capretz and Miriam A. M. Capretz, “Component-Based

Software Development,” The 27th Annual Conference of the IEEE

Industrial Electronics Society,2001 .

[3] Ben Whittle and Mark Ratcliffe, “Software Component Interface

Description for Reuse,” Software Engineering Journal, November

1993.

[4] Usha Kumari and Shuchita Upadhyaya, “An Interface Complexity

Measure for Component-based Software Systems,” International

Journal of Computer Applications , Volume 36– No.1, December

2011.

[5] Chidamber, S. R., Kemerer and C.F, “A Metrics Suite for Object

Oriented Design,” IEEE Transactions on Software Engineering,

1994,pp. 476-49.

[6] Sedigh Ali, S Gafoor, A. Paul and Raymond A., “Software Engineering

Metrics for COTS-based Systems,” IEEE Computer, May 2001, pp

44-50.

[7] D. Kafura and S. Henry, “Software Quality Metrics Based on

Interconnectivity,” Journal of Systems and Software, June 1981, pp

121-131.

[8] Seyyed Mohsen Jamali, “Object Oriented Metrics,” Department of

Computer Engineering ,Sharif University of Technology, January

2006.

[9] V. L. Narasimhan and B. Hendradjaya, “A New Suite of Metrics for

the Integration of Software Components,” University of Newcastle ,

Australia.

[10] Nasib S. Gill and P. S. Grover, “Few important considerations for

deriving interface complexity metric for component-based systems,”

ACM SIGSOFT Software Engineering Notes, March 2004, Volume 29

Issue .

[11] H. Li, “Object-oriented metrics that predict maintainability,” Journal

of Systems and Software ,Volume 23 Issue 2, 1993, pp: 111-122 .

[12] Dr. P. K. Suri and Neeraj Garg,“ Software Reuse Metrics: Measuring

Component Independence and its applicability in Software Reuse,”

International Journal of Computer Science and Network Security,

VOL.9 No.5, May 2009.

 Navneet Kaur received her B.Tech Degree In

Computer Science & Engineering from

University College Of Engineering, Punjabi

University, Patiala, India (2011). Currently she is

pursuing her degree for Master of Engineering

(ME) In Computer Science & Engineering from

Thapar University ,Patiala, India. Her research

interests include, Software Components,

Software Reuse, Software Architecture and

software metrics

 Ashima is Assistant Professor in Computer

Science and Engineering Department, Thapar

University, Patiala, India; and pursuing Ph.D. in

Computer Science from Faculty of Engineering,

UCOE, Punjabi University, Patiala, India. She

holds a Bachelor of Technology (B.Tech.) degree

in Computer Science and Engineering from

GZSCET, Bathinda, India (2001). She obtained

her Master of Technology degree in Computer

Science from Department of Computer Science

and Engineering, Punjabi University, Patiala

India (2005). Her research interests include Software Process Reengineering,

Software Engineering, Agile Software Development, Software Quality

Improvement in Small Scale Enterprises, Software Reuse, Software Process

Customization and Automation, and Software Process Metrics.

