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Abstract— Task scheduling in heterogeneous multiprocessor 

systems is an extremely hard NP complete problem. Hence, the 

heuristic approaches must be used to discover good solutions 

within a reasonable time. Particle Swarm Optimization (PSO) is a 

population based new heuristic optimization technique developed 

from swarm intelligence. This paper presents a Modified Discrete 

PSO (MDPSO). PSO was originally designed for continuous 

optimization problems. Some conversion techniques are needed to 

operate PSO in discrete domain. In Discrete PSO, conversion 

techniques are not required. Here, the particles are directly 

represented as integer vectors. The MDPSO extends the basic 

form of DPSO which incorporates mutation, which is an operator 

of Genetic Algorithm, for the better diversity of the particles. In 

this paper, the scheduler aims at minimizing make span, 

reliability cost and flow time in heterogeneous multiprocessor 

systems for scheduling of independent tasks using four different 

MDPSO algorithms.  The performance of PSO greatly depends on 

its control parameters such as inertia weight and acceleration 

coefficients. Slightly different parameter settings may direct to 

very different performance. This paper compares the formulation 

and results of four different MDPSO techniques: constant control 

parameters, random inertia weight with time varying acceleration 

coefficients, linearly decreasing inertia weight with time varying 

acceleration coefficients and constant control parameters with 

dependent random parameters. Benchmark instances of Expected 

Time to Complete (ETC) model is used to test the MDPSO. Based 

on this comparative analysis, MDPSO with linearly decreasing 

inertia weight provides better results than others. 

 

Index Terms— Expected Time to Complete, Heterogeneous 

Multiprocessor systems, Task Scheduling, Particle Swarm 

Optimization. 

I. INTRODUCTION 

Heterogeneous Computing (HC) systems consist of mixed 

group of machines, communication protocols and 

programming environments and offer a diversity of 

architectural capabilities that has different execution 

requirements. One of the key challenges of HC system is the 

task scheduling problem. In general, scheduling is concerned 

with distribution of limited resources to certain tasks to 

optimize few performance criterions, like the completion 

time, waiting time. Task assignment problems can be 

classified into two categories based on the types of tasks [1]: 

scheduling a meta-task composed of independent tasks with 

no data dependencies and assigning an application composed 

of tasks with precedence constraints.  
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There are more than a few conflicting objectives in \ 

multi-objective optimization problems to be optimized and it 

is tough to identify the greatest solution. For example, a bike 

manufacturer wish to maximize its turnover, but in the 

meantime also to minimize its manufacturing cost. These 

objectives are classically conflicting to each other. A higher 

turnover would raise the manufacturing cost. There is no 

single optimal solution. The most traditional approach to 

solve a multi-objective optimization problem is to summative 

the objectives into a single objective by using a weighting 

sum. This paper uses Randomly Assigned Weighted 

Aggregation (RAWA) method [2] to calculate the fitness 

value. 

Particle Swarm Optimization (PSO) [1, 3] is a population 

based intellect algorithm proposed by Kennedy and Eberhart 

[4] in 1995, motivated by the flocking behavior of birds. This 

has been applied effectively to a number of problems and its 

use is rapidly increasing. In PSO, each particle is a candidate 

solution in the search space. All particles have fitness values 

calculated by a fitness function, and have velocities to direct 

the flying of the particles. Compared with Genetic Algorithm 

(GA), PSO has some striking characteristics. It has memory, 

and the knowledge of good solutions is shared by all particles. 

In this way, PSO can update its particles‘ positions according 

to individuals‘ memory and swarm‘s greatest information 

iteratively. With the collective intelligence of these particles, 

the swarm can converge to an optimum or near-optimum. 

PSO has a flexible and well-balanced method to improve and 

adjust to the global and local exploration and exploitation 

abilities within a short computation time. These 

characteristics make PSO highly reasonable to be used for 

solving single objective and also multi-objective optimization 

problems. 

A significant development in the performance of PSO with 

the time varying parameters (inertia weight and acceleration 

coefficients) over the generations was suggested by                    

P K Tripathi [5]. The time varying parameter concepts has 

been used in previous works e.g., in GA [6], PSO [7, 8] etc, 

even though the majority of these works dealt with Single 

Objective Optimization (SOO) problems. This paper slightly 

modifies the existing DPSO for enhancing the performance of 

the algorithm to optimize multiple objectives. 

The remainder of the paper is organized as follows: The 

problem statement is given in Section 2. Section 3 reviews 

related algorithms for task scheduling problem. Section 4 

presents the MDPSO algorithm. 

Experimental results are reported 
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in Section 5. Finally, Section 6 concludes the paper. 

II. PROBLEM DEFINITION 

A Heterogeneous Computing (HC) system consists of a 

number of heterogeneous Processor Elements (PEs) 

connected with a mesh topology. Let T = {T1, T2…, Tn} 

denote the n number of tasks that are independent of each 

other to be scheduled on m processors P = {P1, P2..., Pm}. 

Because of the heterogeneous nature of the processors and 

disparate nature of the tasks, the expected execution times of a 

task executing on different processors are different. Every 

task has an Expected Time to Compute (ETC) on a specific 

processor. The ETC values are assumed to be known in 

advance. An ETC matrix is an n x m matrix in which m is the 

number of processors and n is the number of tasks and. One 

row of the ETC matrix represents estimated execution time 

for a specified task on each PE. Similarly one column of the 

ETC matrix consists of the estimated execution time of a 

specified PE for each task. 

The task scheduling problem is formulated below the 

following assumptions: 

1. All tasks are non-preemptive 

2. Every processor processes only one task at a time 

3. Every task is processed on one processor at a time. 

This paper considers the scheduling of meta-tasks on a set 

of heterogeneous processors in a way that minimizes the make 

span, reliability cost and flow time at the same time. 

Most popular optimization criterion is minimization of 

make span [1] i.e. the finishing time of the newest task. Make 

span computes the throughput of the HC system. Assume that 

(i ε{1,2,...,n}, j ε {1,2,...,m}) is the execution time for 

performing  i
th

 task in j
th

 processor  and  (j ε {1,2,...,m}) is 

the previous workload of  . According to the above 

definition, make span can be estimated as follows: 

 

Make span=max {  }  j ε {1, 2, 3…, m)      (1) 

                        task i allocated to processor j     

 

Reliability is defined to be the probability that the system 

will not fail during the time that it is executing the tasks. The 

Reliability Cost [9, 10] as like a meter of how reliable a given 

system is when a group of tasks are allocated to it. The lesser 

the reliability cost raises the reliability. In this model, 

processor failures are assumed to be independent, and follow 

a Poisson Process with a constant failure rate. Failures of 

communication links are not considered here. The reliability 

cost of a task on a processor  is the product of 's failure 

rate(PFR) λj and 's execution time on  .Thus, the 

reliability cost of a task schedule is the summation over all 

tasks' reliability costs based on the given schedule. According 

to the above definition, the reliability cost is defined in (2), 

where  indicates that task is allocated to  

 

      Reliability Cost =              (2) 

 

Flow time [11] is the sum of the finishing times of tasks. 

Flow time measures the Quality of Service of the HC system. 

The flow time can be estimated using (3), where   is the 

finishing time of on a processor  

 

           Flow time=                                                                (3) 

                                task i allocated to processor j 

III. RELATED WORK 

In general, finding optimal solutions for the task 

assignment problem in a HC system is NP-complete [12]. 

Therefore, only small-sized instances of the problem can be 

solved optimally using precise algorithms. For large scale 

instances, most researchers have spotlighted on developing 

heuristic algorithms that give up near-optimal solutions within 

a reasonable computation time. 

Braun [13] explained 11 heuristics for task scheduling and 

assessed them on different types of heterogeneous computing 

environments. The 11 heuristics examined are Opportunistic 

Load Balancing, Minimum Execution Time, Minimum 

Completion Time, Min_min, Max_min, Duplex, Genetic 

Algorithm, Simulated Annealing, Genetic Simulated 

Annealing, Tabu, and A* .The authors illustrated that the 

Genetic Algorithm can obtain better results in comparison 

with others. The above stated heuristics aimed at minimizing a 

single objective, the make span of the schedule. 

Izakian [14] recommended an efficient heuristic called 

min-max for scheduling meta-tasks in heterogeneous 

computing systems. The effectiveness of proposed algorithm 

is investigated with 5 popular pure heuristics min-min, 

max-min, LJFR-SJFR, sufferage, and Work Queue for 

minimizing make span and flow time. The author also 

considers the effect of these pure heuristics for initializing 

Simulated Annealing (SA) meta-heuristic approach for task 

scheduling on heterogeneous environments. 

To achieve a better solution quality, modern 

meta-heuristics have been commenced for the task scheduling 

problem such as SA, Tabu Search, GA and Swarm 

Intelligence (SI).SI consists of two successful techniques of 

Particle Swarm Optimization (PSO) and Ant Colony 

Optimization algorithm (ACO). Abraham [15] stated the 

usage of a number of nature inspired meta-heuristics (SA, 

GA, PSO, and ACO) for task scheduling in computational 

grids using single and multi-objective optimization 

techniques. PSO yields faster convergence when compared to 

GA, because of the balance between exploration and 

exploitation in the search space. 

The main advantages of PSO algorithm are précised as: 

simple concept, easy implementation, robustness to control 

parameters, and computational effectiveness when compared 

with mathematical algorithm and other heuristic optimization 

techniques [16].However, these greater characteristics make 

PSO a highly feasible candidate to be used for solving 

multi-objective optimization problems. In fact, there have 

been several recent proposals to extend PSO to handle 

multi-objectives: The swarm metaphor of Ray and Liew [17], 

Dynamic neighborhood PSO proposed by Hu and Eberhart 

[7], the Multi-objective PSO 

(MOPSO) by Coello and Lechuga 

[18]. 
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Different criteria can be used for evaluating the 

effectiveness of scheduling algorithms. So far, some of works 

have been completed for investigating a number of these 

heuristics for minimizing make span or make span and flow 

time, yet no attempts has been made to minimize make span, 

reliability cost and flow time for scheduling meta tasks on 

heterogeneous systems using MDPSO. 

IV. MODIFIED DISCRETE PARTICLE SWARM 

OPTIMIZATION 

PSO is like to the other evolutionary techniques. The 

system is initialized with a population of random solutions 

(particles). The population of the possible particles 

(solutions) in PSO is called a swarm. Each particle moves in 

the D-dimensional problem space with a velocity. The 

velocity is dynamically changed based on the flying 

knowledge of its own (Personal best) and the knowledge of 

the swarm (Global best). The velocity of a particle is 

controlled by three components, namely, inertial momentum, 

cognitive, and social. The inertial component simulates the 

inertial behavior of the bird to fly in the previous direction. 

The cognitive component models the memory of the bird 

about its previous best position, and the social component 

models the memory of the bird about the best position among 

the particles.PSO is different from other evolutionary 

techniques in a way that it does not apply the filtering 

operation (such as crossover and/or mutation) and the 

members of the entire swarm are preserved through the search 

procedure, so that information is socially shared among 

particles to direct the search towards the finest position in the 

search space.PSO can be easily implemented and it is 

computationally inexpensive, since its memory and CPU 

speed necessities are low [19]. 

The movement of the particle towards the best solution is 

directed by updating its velocity and position characteristics. 

The velocity and position update for MDPSO are given in (4) 

and (5) 

 

(j) - 

(j) -             (4) 

 

                       (5) 

 

where i=1, 2, 3…P, j=1, 2, 3…D, P is the number of 

particles in the swarm, W is the inertia weight which is used to 

control the impact of the previous history of velocities on the 

current velocity of a given particle, is the j
th

 element of 

the velocity vector of the i
th

 particle in t
th

 iteration which 

determines the direction in which a particle needs to move, 

is j
th

 element of i
th

 particle (solution) in t
th

 

iteration.  and are random values in range[0, 1] sampled 

from a uniform distribution, C1 and C2 are positive constants, 

called acceleration coefficients which control the influence of 

Personal best (Pbest) and Global best (Gbest) on the search 

process. Position updating of DPSO is different from classical 

PSO. Equation (6) shows that the updating the particle 

position in discrete domain. Each column of position matrix, 

value 1 is assigned to the element whose corresponding 

element in velocity matrix has the maximum value in its 

corresponding column. If there is more than one element with 

maximum value in a column of velocity matrix, then one of 

these elements is selected randomly and 1 assigned to its 

corresponding element in the position matrix. In DPSO, the 

above (5) is rewritten as follows [11] 

 

                                                                   (6) 

The Fig.1 shows the flow chart for MDPSO and Table 1 

shows the pseudo code of the general MDPSO algorithm.  

Fig. 2 shows the block diagram for MDPSO. 

 

 

Fig.1. Flow of execution for MDPSO 

 

Table 1 Pseudo code of MDPSO 
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1. Initialize the population. 

2. Evaluate the particles. 

3. The average of the fitness value is calculated and 

swap mutation is applied to the particles whose 

fitness value is greater than the average fitness value. 

In swap mutation, two positions are randomly 

selected and are swapped. 

4. Compare the fitness values and find the swarm then 

update Personal best and global best particles. 

5. Update velocity and position using (4) and (6) 

6. Goto step 2 till the termination condition is met 

 

A. Particle representation and Initialize population 

The particles are represented in position vector format in 

which the elements are integer numbers between 1 and m, 

where m is the number of processors. The initial population is 

randomly generated based on the equation (7) 

                  Random (1, M)                                (7) 

 
                                    Fig.2.Block diagram for MDPSO 

 

where Random is a function which generates an integer 

uniformly distributed in the range [1,M]. Fig.3 shows an 

illustrative example for a particle which corresponds to a task 

assignment that assigns four tasks to two processors.     

Particle 1 (2) = 2 means that task 2 in particle 1 is assigned to 

processor 2, and so on. 

 

 

Fig.3.An example for Population 

B. Particle Evaluation 

The three objectives, make span, reliability cost and flow 

time are calculated as given by (1), (2) and (3). RAWA is used 

to calculate the weights for MDPSO. For the RAWA [2], the 

weights can be generated in the following way: 

                                                       (8) 

                     (9) 

                                  (10) 

The function  is a sum of three objectives, 

the make span, reliability cost and flow time. For three 

objective functions, the weighted single objective function 

 is obtained as follows: 

                                                                                          
(11) 

C. Mutation 

After finding the fitness value of all the particles, the 

average of the fitness value is calculated and swap mutation is 

applied to the particles whose fitness value is greater than the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

average fitness value. The fitness value of the mutated 

particle is compared with the parent particle. If parent is better 

than the mutated particle then parent can update their velocity 

and position using (4) and (6) otherwise the corresponding 

mutated particle can update their velocity and position using 

(4) and (6) 

D. Particle’s Movement 

The particle position is updated during the each iteration 

based on two types of experiences: personal best and global 

best experiences. The personal best experience (Pbesti) is the 

experienced position by particle present i which obtains the 

smallest fitness value during flying. The gbest represents the 

best particle found in the entire population of each generation. 

For each iteration, the particle modifies its velocity and 

position through each dimension j by referring to  and 

the swarm‘s best experience  using (4) and (6) 

V. EXPERIMENTAL EVALUATION 

The experimental results are attained using a set of 

benchmark instances [20] for the distributed heterogeneous 

systems. All algorithms are coded in C and executed on a 

Linux platform. 

A. Benchmark description 

Particle 

Initialization ) 

Evaluate particles in  

and calculate average 

fitness value. 

Select particles from 

whose fitness is 

larger than average 

fitness value. 

Evaluate particles in 

 

Replace particle in  by the 

corresponding mutated particle in 

 if  is better than 

 

Update Pbest and 

Gbest of  

Apply Swap Mutation 

(Mutated particles 

named ) 

 

Compare particles in 

 with  

Update particle velocity 

and position 
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The simulation model in [20] based on ETC matrix for 512 

tasks and 16 PEs are used. The instances of the benchmark are 

categorized into 12 types of ETC‗s based on the 3 following 

metrics: task heterogeneity, machine heterogeneity and 

consistency are simulated. In this benchmark, quality of the 

ETC matrices are varied in an attempt to simulate various 

possible heterogeneous computing environments by setting 

the values of parameters ,  and , 

which represent the mean task execution time, the task 

heterogeneity, and the machine heterogeneity respectively. In 

ETC matrices, the amount of variance among the execution 

time of tasks in the meta-task for a given processor is defined 

as task heterogeneity. Machine heterogeneity represents the 

distinction among the execution times for a given task across 

all the processors [20]. The Coefficient of Variation Based 

(CVB) ETC generation method gives a larger control over the 

spread of execution time values than the common range based 

method proposed by Braun [13]. 
The CVB type ETC matrices generation method works as 

follows. First, a column vector of the expected task execution 

time with the preferred task heterogeneity, s, is created 

following gamma distribution with mean  and stand 

deviation  

The input parameter  is desired coefficient of 

variation of values in s. The value of  is high for high 

task heterogeneity, and small for low task heterogeneity. Each 

element of s is then used to produce one row of the ETC 

matrix following gamma distribution with mean q[i] and 

standard deviation s[i]  such that the desired 

coefficient of variation of values in each row is . The 

value of  is large for high machine heterogeneity, and 

small for low machine heterogeneity. Task and machine 

heterogeneities are modeled by using different and 

 values: high heterogeneity is represented by setting 

 and  equal to 0.6, and low heterogeneity is 

modeled using  and  equal to 0.1. 

To capture other possible characteristics of real scheduling 

problems, three different ETC consistencies namely 

consistent, inconsistent and semi-consistent are used. An ETC 

matrix is considered consistent if a processor Pi executes task 

Tj faster than processor Pj, then Pi executes all the jobs faster 

than Pj. Inconsistency indicates that a processor is quicker for 

a few jobs and slower for some others. An ETC matrix is 

considered semi-consistent if it includes a consistent 

sub-matrix. A semi consistent ETC matrix is characterized by 

an inconsistent matrix which has a consistent sub-matrix of a 

predefined size. 

B. Algorithms compared 

Simulations were carried out to compare the performance 

analysis among four different MDPSO. 

In first MDPSO, the control parameters W, C1 and C2 are 

constant. 

In second Algorithm, the inertia weight called random 

inertia weight is calculated using the equation (12) and 

acceleration coefficient C1 and C2 are calculated using the 

equation (13) and (14) 

 

                                              (12) 

 

(13) 

(14) 

 
where Rand () function generates a random number between  

0 and 1 and  is the maximum number of iterations 

and  is the current iteration number. Larger values 

of C1 guarantee larger deviation of the particle in the search 

space, while the larger values of C2 signify the convergence to 

the present global best (gbest). C1 has been permitted to 

reduce from its initial value of  while C2 

has been raised from . 

The Linearly Decreasing inertia Weight (LDW) is used in 

third Algorithm of MDPSO. The LDW is calculated using the 

equation (15) and acceleration coefficient C1 and C2 are 

calculated using the equation (13) and (14) 

 

                    (15) 

This adaptiveness permits to attain a good balance between 

the exploration and the exploitation of the search space. The 

inertia weight (W) is used to balance the global and local 

search abilities. A high inertia weight is more suitable for 

global search and a small inertia weight helps local search 

[21]. Typically, this algorithm started with a large inertia 

weight, which is decreased over time. The value of Wt is 

permitted to reduce linearly with iteration from Wmax to Wmin. 

In fourth Algorithm, the control parameters W, C1 and C2 

are constant. The two random parameters and of (4) are 

independent. If the two random parameters are high, both the 

personal and social experiences are over used and the particle 

is moved too far away from the local optimum. If both are 

low, both the personal and social experiences are not used 

fully and the convergence speed of the optimization technique 

is reduced. The fourth MDPSO creates a dependency between 

two random parameters  and  of (4) to control the balance 

of personal and social experiences. Instead of taking 

independent  and , one single random number   is 

chosen so that when  is large,  is small and vice versa. 

The (4) is rewritten as follows 

 

                                                                                          

(16) 

TASK 

PARTICLE 

1 2 3 4 

Particle 1 1 2 1 2 

Particle 2 1 1 2 2 

Particle 3 1 1 1 2 
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All the four algorithms are stochastic based algorithms. 

Each independent run of the same algorithm on a particular 

problem instance may yield a different result. To make a good 

comparison of the algorithms each experiment was repeated 5 

times with different random seeds and the average of the 

results are reported. 

C. Parameter setup 

 Population Size (N)=30 and Number of iteration =25 for 

all the algorithms. 

 The Failure rate for each processor is uniformly 

distributed [10, 11] in the range from 0.95×10
−6   

/h to 

1.05×10
−6

/h . 

 The MDPSO with constant control parameters set fixed 

inertia weight as W=0.8, C1 = 1 and C2=1 during the 

whole run of the algorithm 

 Values for time varying inertia weight and acceleration 

coefficients: inertia weights  and  (0.8 and 

0.4), the initial acceleration coefficients  = 2.5, 

 = 0.5,  = 0.5,  = 2.5. C1 has been 

allowed to decrease from its initial value of 2.5 to 0.5, 

while C2 has been increased from 0.5 to 2.5 

D. Performance comparisons 

To make the comparison fair, the swarms for all the 

methods were initialized using the same random seeds. All 

instances consisting of 20 tasks and 2 or 3 processors are 

classified into 12 different types of ETC matrices according to 

the 3 metrics. All the algorithms are applied on all 12 problem 

instances and the results plotted from Fig.4 to Fig.15. 

Table 2 Comparison of four algorithms for 2 processors 

 

The instances are labeled as g_a_bb_cc as follows: 

 g means gamma distribution used in generating the 

matrices. 

 a shows the type of inconsistency; c means consistent, i 

means inconsistent, and s means semi-consistent. 

 bb indicates the heterogeneity of the tasks; hi means high 

and lo means low. 

 cc represents the heterogeneity of the machines; hi means 

high and lo means low. 

 

The table 2 shows the comparison of four MDPSO 

algorithms for 2 processors. From the results obtained, 

Algorithm 3 MDPSO is found to be the best for 2 processors 

which uses linearly decreasing inertia weights and varying 

acceleration coefficients. 

The Table 3 shows the comparison of four MDPSO 

algorithms for 3 processors. From the results obtained, 

Algorithm 3 MDPSO is found to be the best for 3 processors 

which uses linearly decreasing inertia weights and varying 

acceleration coefficients. Thus the Algorithm 3 MDPSO is 

found to be efficient for both 2 and 3 processors. In table 2 

and 3, Alg represents Algorithm. 

Fig 4 shows the comparison of fitness values for high Task, 

high machine and inconsistent type. From the results 

obtained, Algorithm 1, 2 have the same fitness values. The 

fitness value of algorithm 3 is better than others. The fitness 

values for 3 processors are better than 2 processors. In Fig 5, 

Algorithm 1 has the smallest fitness value for 2 processors 

and Algorithm 2 has the smallest fitness value for 3 

processors. In Fig 6, Algorithm 3 has the smallest fitness 

value. The fitness values for 3 processors are better than 2 

processors. 
 

Type of 

heterogeneity Alg 1 Alg 2 Alg 3 Alg 4 

 

Hi_hi_hi 6699.802 6699.802 6689.802 8532.202 

 

i_hi_lo 3601.311 3790.541 3798.071 4646.161 

 

i_lo_hi 8591.672 8591.672 8581.672 9410.282 

 

i_lo_lo 6190.731 6112.140 6190.731 7529.961 

Hi 

s_hi_hi 4168.201 4076.561 4168.201 5360.801 

 

s_hi_lo 3653.271 3653.271 3643.271 4502.801 

 

s_lo_hi 6970.892 6970.892 6960.892 8707.761 

 

s_lo_lo 5945.452 5986.451 5982.541 7401.602 

 

c_hi_hi 

tent 
3647.441 3973.801 3554.801 4584.800 

 

c_hi_lo 3550.381 3550.381 3545.381 4411.321 

 

c_lo_hi 3329.491 3304.121 3329.491 4037.080 

 

c_lo_lo 5789.401 5892.992 5782.992 7295.601 

Type of 

heterogeneity 

Alg 1 Alg 2 Alg 3 Alg 4 

Hi_hi_hi 4121.791 4121.79

1 

4120.09

1 

5131.36

1 

i_hi_lo 2916.581 2911.90

1 

2916.58

1 

3420.48

1 

i_lo_hi 4645.811 4645.81

1 

4643.08

1 

5478.44

1 

i_lo_lo 4635.302 4635.30

2 

4634.01

0 

5715.60

2 

His_hi_hi 3655.841 3655.84

1 

3652.04

1 

4638.76

1 

s_hi_lo 2673.611 2686.30

1 

2673.88

1 

3244.44

1 

s_lo_hi 5168.711 5168.71

1 

5168.71

1 

5874.44

1 

s_lo_lo 4668.992 4673.09

1 

4673.09

1 

5869.64

2 

c_hi_hi 3132.291 3132.29

1 

2910.59

1 

3776.60

1 

c_hi_lo 2767.841 3792.37

1 

2763.04

1 

3489.08

1 

c_lo_hi 3342.020 3265.18

0 

3413.28

1 

5113.00

1 

c_lo_lo 4627.662 4683.18

2 

4683.18

2 

5863.72

2 
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Fig.4. Comparison of fitness values for High Task-High 

Machine-Inconsistent 
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Fig.5. Comparison of fitness values for High Task-Low 

Machine-Inconsistent 

 

Table 3 Comparison of four algorithms for 3 processors 
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Fig.6. Comparison of fitness values for Low Task-High 

Machine-Inconsistent 
 

In Fig 7 and 8, Algorithm 2 has the smallest value for 2 

processors and the Algorithm 3 has smallest fitness value for 

3 processors. 
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Fig.7. Comparison of fitness values for Low Task-Low 

Machine-Inconsistent 
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Fig.8. Comparison of fitness values for High Task-High                

Machine-Semi consistent 

 

 In Fig 9, Algorithm 3 has the smallest fitness value for 2 

processors and Algorithm 1, 2 and 3 have the same values for 

3 processors. 

Fig.9.Comparison of fitness values for Low Task-High 

Machine-Semi consistent 
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Fig.10.Comparison of fitness values for Low Task-Low 

Machine-Semi consistent 
 

In Fig 10, Algorithm 1 has the smallest value for 2 

processors and 3 processors. 
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Fig.11. Comparison of fitness 
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values for High Task-Low Machine-Semi consistent 
 

In Fig 11, Algorithms 3 has the smallest fitness value for 2 

processors and Algorithm 1 has the smallest fitness value for 

3 processors. In Fig 12, Algorithm 3 has the smallest fitness 

value for both 2 and 3 processors. 

Fig.12. Comparison of fitness values for High Task-High 

Machine-Consistent 
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Fig.14. Comparison of fitness values for Low Task-High 

Machine-Consistent 
 

In Fig 14, Algorithm 2 has the smallest fitness value for 2 

processors and 3 processors. In Fig 15, Algorithm 3 has the 

smallest fitness value for 2 processors and Algorithm 1 has 

the smallest fitness value for 3 processors. 
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Fig.15. Comparison of fitness values for Low Task-Low 

Machine-Consistent 

 

From the results obtained, algorithm 3 is found to be the 

best for 2 processors and 3 processors which uses linearly 

decreasing inertia weights and varying acceleration 

coefficients. Thus the Algorithm 3 is found to be efficient 

among others. 

VI. CONCLUSION AND FUTURE WORK 

This paper has presented four different modified DPSO 

algorithms. Modified Discrete PSO algorithm has been 

successfully applied for scheduling of independent tasks in a 

heterogeneous environment. Four different modified DPSO 

algorithms were developed for minimizing the objectives like 

make span, reliability cost and flow time. All the algorithms 

were compared with all the 12 different types of ETC 

matrices. From the various set of results obtained, Algorithm 

3, which has a linearly decreasing inertia weight, is found to 

be efficient than other algorithms which have random inertia 

weight and constant inertia weights. The algorithm 3 is found 

to be more efficient when tasks are being scheduled in 3 

processors. 

The future work will investigate scheduling tasks with 

precedence constraint which are pre-emptive in nature or in 

dynamic environments. 
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