
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3, Issue-2, May 2013

371

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B1568053213/2013©BEIESP

Abstract— Task scheduling in heterogeneous multiprocessor

systems is an extremely hard NP complete problem. Hence, the

heuristic approaches must be used to discover good solutions

within a reasonable time. Particle Swarm Optimization (PSO) is a

population based new heuristic optimization technique developed

from swarm intelligence. This paper presents a Modified Discrete

PSO (MDPSO). PSO was originally designed for continuous

optimization problems. Some conversion techniques are needed to

operate PSO in discrete domain. In Discrete PSO, conversion

techniques are not required. Here, the particles are directly

represented as integer vectors. The MDPSO extends the basic

form of DPSO which incorporates mutation, which is an operator

of Genetic Algorithm, for the better diversity of the particles. In

this paper, the scheduler aims at minimizing make span,

reliability cost and flow time in heterogeneous multiprocessor

systems for scheduling of independent tasks using four different

MDPSO algorithms. The performance of PSO greatly depends on

its control parameters such as inertia weight and acceleration

coefficients. Slightly different parameter settings may direct to

very different performance. This paper compares the formulation

and results of four different MDPSO techniques: constant control

parameters, random inertia weight with time varying acceleration

coefficients, linearly decreasing inertia weight with time varying

acceleration coefficients and constant control parameters with

dependent random parameters. Benchmark instances of Expected

Time to Complete (ETC) model is used to test the MDPSO. Based

on this comparative analysis, MDPSO with linearly decreasing

inertia weight provides better results than others.

Index Terms— Expected Time to Complete, Heterogeneous

Multiprocessor systems, Task Scheduling, Particle Swarm

Optimization.

I. INTRODUCTION

Heterogeneous Computing (HC) systems consist of mixed

group of machines, communication protocols and

programming environments and offer a diversity of

architectural capabilities that has different execution

requirements. One of the key challenges of HC system is the

task scheduling problem. In general, scheduling is concerned

with distribution of limited resources to certain tasks to

optimize few performance criterions, like the completion

time, waiting time. Task assignment problems can be

classified into two categories based on the types of tasks [1]:

scheduling a meta-task composed of independent tasks with

no data dependencies and assigning an application composed

of tasks with precedence constraints.

Manuscript received on May, 2013.

S.Sarathambekai, Assistant Professor, Dept of IT/ PSG College of

Technology/ Coimbatore, Tamilnadu, India.

Dr.K. Umamaheswari, Professor, Dept of IT/ PSG College of

Technology/ Coimbatore,Tamilnadu, India

There are more than a few conflicting objectives in \

multi-objective optimization problems to be optimized and it

is tough to identify the greatest solution. For example, a bike

manufacturer wish to maximize its turnover, but in the

meantime also to minimize its manufacturing cost. These

objectives are classically conflicting to each other. A higher

turnover would raise the manufacturing cost. There is no

single optimal solution. The most traditional approach to

solve a multi-objective optimization problem is to summative

the objectives into a single objective by using a weighting

sum. This paper uses Randomly Assigned Weighted

Aggregation (RAWA) method [2] to calculate the fitness

value.

Particle Swarm Optimization (PSO) [1, 3] is a population

based intellect algorithm proposed by Kennedy and Eberhart

[4] in 1995, motivated by the flocking behavior of birds. This

has been applied effectively to a number of problems and its

use is rapidly increasing. In PSO, each particle is a candidate

solution in the search space. All particles have fitness values

calculated by a fitness function, and have velocities to direct

the flying of the particles. Compared with Genetic Algorithm

(GA), PSO has some striking characteristics. It has memory,

and the knowledge of good solutions is shared by all particles.

In this way, PSO can update its particles‘ positions according

to individuals‘ memory and swarm‘s greatest information

iteratively. With the collective intelligence of these particles,

the swarm can converge to an optimum or near-optimum.

PSO has a flexible and well-balanced method to improve and

adjust to the global and local exploration and exploitation

abilities within a short computation time. These

characteristics make PSO highly reasonable to be used for

solving single objective and also multi-objective optimization

problems.

A significant development in the performance of PSO with

the time varying parameters (inertia weight and acceleration

coefficients) over the generations was suggested by

P K Tripathi [5]. The time varying parameter concepts has

been used in previous works e.g., in GA [6], PSO [7, 8] etc,

even though the majority of these works dealt with Single

Objective Optimization (SOO) problems. This paper slightly

modifies the existing DPSO for enhancing the performance of

the algorithm to optimize multiple objectives.

The remainder of the paper is organized as follows: The

problem statement is given in Section 2. Section 3 reviews

related algorithms for task scheduling problem. Section 4

presents the MDPSO algorithm.

Experimental results are reported

Comparison among four Modified Discrete

Particle Swarm Optimization for Task Scheduling

in Heterogeneous Computing Systems

S.Sarathambekai, K.Umamaheswari

Comparison among four Modified Discrete Particle Swarm Optimization for Task Scheduling in Heterogeneous

Computing Systems

372

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B1568053213/2013©BEIESP

in Section 5. Finally, Section 6 concludes the paper.

II. PROBLEM DEFINITION

A Heterogeneous Computing (HC) system consists of a

number of heterogeneous Processor Elements (PEs)

connected with a mesh topology. Let T = {T1, T2…, Tn}

denote the n number of tasks that are independent of each

other to be scheduled on m processors P = {P1, P2..., Pm}.

Because of the heterogeneous nature of the processors and

disparate nature of the tasks, the expected execution times of a

task executing on different processors are different. Every

task has an Expected Time to Compute (ETC) on a specific

processor. The ETC values are assumed to be known in

advance. An ETC matrix is an n x m matrix in which m is the

number of processors and n is the number of tasks and. One

row of the ETC matrix represents estimated execution time

for a specified task on each PE. Similarly one column of the

ETC matrix consists of the estimated execution time of a

specified PE for each task.

The task scheduling problem is formulated below the

following assumptions:

1. All tasks are non-preemptive

2. Every processor processes only one task at a time

3. Every task is processed on one processor at a time.

This paper considers the scheduling of meta-tasks on a set

of heterogeneous processors in a way that minimizes the make

span, reliability cost and flow time at the same time.

Most popular optimization criterion is minimization of

make span [1] i.e. the finishing time of the newest task. Make

span computes the throughput of the HC system. Assume that

(i ε{1,2,...,n}, j ε {1,2,...,m}) is the execution time for

performing i
th

 task in j
th

 processor and (j ε {1,2,...,m}) is

the previous workload of . According to the above

definition, make span can be estimated as follows:

Make span=max { } j ε {1, 2, 3…, m) (1)

 task i allocated to processor j

Reliability is defined to be the probability that the system

will not fail during the time that it is executing the tasks. The

Reliability Cost [9, 10] as like a meter of how reliable a given

system is when a group of tasks are allocated to it. The lesser

the reliability cost raises the reliability. In this model,

processor failures are assumed to be independent, and follow

a Poisson Process with a constant failure rate. Failures of

communication links are not considered here. The reliability

cost of a task on a processor is the product of 's failure

rate(PFR) λj and 's execution time on .Thus, the

reliability cost of a task schedule is the summation over all

tasks' reliability costs based on the given schedule. According

to the above definition, the reliability cost is defined in (2),

where indicates that task is allocated to

 Reliability Cost = (2)

Flow time [11] is the sum of the finishing times of tasks.

Flow time measures the Quality of Service of the HC system.

The flow time can be estimated using (3), where is the

finishing time of on a processor

 Flow time= (3)

 task i allocated to processor j

III. RELATED WORK

In general, finding optimal solutions for the task

assignment problem in a HC system is NP-complete [12].

Therefore, only small-sized instances of the problem can be

solved optimally using precise algorithms. For large scale

instances, most researchers have spotlighted on developing

heuristic algorithms that give up near-optimal solutions within

a reasonable computation time.

Braun [13] explained 11 heuristics for task scheduling and

assessed them on different types of heterogeneous computing

environments. The 11 heuristics examined are Opportunistic

Load Balancing, Minimum Execution Time, Minimum

Completion Time, Min_min, Max_min, Duplex, Genetic

Algorithm, Simulated Annealing, Genetic Simulated

Annealing, Tabu, and A* .The authors illustrated that the

Genetic Algorithm can obtain better results in comparison

with others. The above stated heuristics aimed at minimizing a

single objective, the make span of the schedule.

Izakian [14] recommended an efficient heuristic called

min-max for scheduling meta-tasks in heterogeneous

computing systems. The effectiveness of proposed algorithm

is investigated with 5 popular pure heuristics min-min,

max-min, LJFR-SJFR, sufferage, and Work Queue for

minimizing make span and flow time. The author also

considers the effect of these pure heuristics for initializing

Simulated Annealing (SA) meta-heuristic approach for task

scheduling on heterogeneous environments.

To achieve a better solution quality, modern

meta-heuristics have been commenced for the task scheduling

problem such as SA, Tabu Search, GA and Swarm

Intelligence (SI).SI consists of two successful techniques of

Particle Swarm Optimization (PSO) and Ant Colony

Optimization algorithm (ACO). Abraham [15] stated the

usage of a number of nature inspired meta-heuristics (SA,

GA, PSO, and ACO) for task scheduling in computational

grids using single and multi-objective optimization

techniques. PSO yields faster convergence when compared to

GA, because of the balance between exploration and

exploitation in the search space.

The main advantages of PSO algorithm are précised as:

simple concept, easy implementation, robustness to control

parameters, and computational effectiveness when compared

with mathematical algorithm and other heuristic optimization

techniques [16].However, these greater characteristics make

PSO a highly feasible candidate to be used for solving

multi-objective optimization problems. In fact, there have

been several recent proposals to extend PSO to handle

multi-objectives: The swarm metaphor of Ray and Liew [17],

Dynamic neighborhood PSO proposed by Hu and Eberhart

[7], the Multi-objective PSO

(MOPSO) by Coello and Lechuga

[18].

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3, Issue-2, May 2013

373

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B1568053213/2013©BEIESP

Different criteria can be used for evaluating the

effectiveness of scheduling algorithms. So far, some of works

have been completed for investigating a number of these

heuristics for minimizing make span or make span and flow

time, yet no attempts has been made to minimize make span,

reliability cost and flow time for scheduling meta tasks on

heterogeneous systems using MDPSO.

IV. MODIFIED DISCRETE PARTICLE SWARM

OPTIMIZATION

PSO is like to the other evolutionary techniques. The

system is initialized with a population of random solutions

(particles). The population of the possible particles

(solutions) in PSO is called a swarm. Each particle moves in

the D-dimensional problem space with a velocity. The

velocity is dynamically changed based on the flying

knowledge of its own (Personal best) and the knowledge of

the swarm (Global best). The velocity of a particle is

controlled by three components, namely, inertial momentum,

cognitive, and social. The inertial component simulates the

inertial behavior of the bird to fly in the previous direction.

The cognitive component models the memory of the bird

about its previous best position, and the social component

models the memory of the bird about the best position among

the particles.PSO is different from other evolutionary

techniques in a way that it does not apply the filtering

operation (such as crossover and/or mutation) and the

members of the entire swarm are preserved through the search

procedure, so that information is socially shared among

particles to direct the search towards the finest position in the

search space.PSO can be easily implemented and it is

computationally inexpensive, since its memory and CPU

speed necessities are low [19].

The movement of the particle towards the best solution is

directed by updating its velocity and position characteristics.

The velocity and position update for MDPSO are given in (4)

and (5)

(j) -

(j) - (4)

 (5)

where i=1, 2, 3…P, j=1, 2, 3…D, P is the number of

particles in the swarm, W is the inertia weight which is used to

control the impact of the previous history of velocities on the

current velocity of a given particle, is the j
th

 element of

the velocity vector of the i
th

 particle in t
th

 iteration which

determines the direction in which a particle needs to move,

is j
th

 element of i
th

 particle (solution) in t
th

iteration. and are random values in range[0, 1] sampled

from a uniform distribution, C1 and C2 are positive constants,

called acceleration coefficients which control the influence of

Personal best (Pbest) and Global best (Gbest) on the search

process. Position updating of DPSO is different from classical

PSO. Equation (6) shows that the updating the particle

position in discrete domain. Each column of position matrix,

value 1 is assigned to the element whose corresponding

element in velocity matrix has the maximum value in its

corresponding column. If there is more than one element with

maximum value in a column of velocity matrix, then one of

these elements is selected randomly and 1 assigned to its

corresponding element in the position matrix. In DPSO, the

above (5) is rewritten as follows [11]

 (6)

The Fig.1 shows the flow chart for MDPSO and Table 1

shows the pseudo code of the general MDPSO algorithm.

Fig. 2 shows the block diagram for MDPSO.

Fig.1. Flow of execution for MDPSO

Table 1 Pseudo code of MDPSO

Comparison among four Modified Discrete Particle Swarm Optimization for Task Scheduling in Heterogeneous

Computing Systems

374

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B1568053213/2013©BEIESP

1. Initialize the population.

2. Evaluate the particles.

3. The average of the fitness value is calculated and

swap mutation is applied to the particles whose

fitness value is greater than the average fitness value.

In swap mutation, two positions are randomly

selected and are swapped.

4. Compare the fitness values and find the swarm then

update Personal best and global best particles.

5. Update velocity and position using (4) and (6)

6. Goto step 2 till the termination condition is met

A. Particle representation and Initialize population

The particles are represented in position vector format in

which the elements are integer numbers between 1 and m,

where m is the number of processors. The initial population is

randomly generated based on the equation (7)

 Random (1, M) (7)

 Fig.2.Block diagram for MDPSO

where Random is a function which generates an integer

uniformly distributed in the range [1,M]. Fig.3 shows an

illustrative example for a particle which corresponds to a task

assignment that assigns four tasks to two processors.

Particle 1 (2) = 2 means that task 2 in particle 1 is assigned to

processor 2, and so on.

Fig.3.An example for Population

B. Particle Evaluation

The three objectives, make span, reliability cost and flow

time are calculated as given by (1), (2) and (3). RAWA is used

to calculate the weights for MDPSO. For the RAWA [2], the

weights can be generated in the following way:

 (8)

 (9)

 (10)

The function is a sum of three objectives,

the make span, reliability cost and flow time. For three

objective functions, the weighted single objective function

 is obtained as follows:

(11)

C. Mutation

After finding the fitness value of all the particles, the

average of the fitness value is calculated and swap mutation is

applied to the particles whose fitness value is greater than the

average fitness value. The fitness value of the mutated

particle is compared with the parent particle. If parent is better

than the mutated particle then parent can update their velocity

and position using (4) and (6) otherwise the corresponding

mutated particle can update their velocity and position using

(4) and (6)

D. Particle’s Movement

The particle position is updated during the each iteration

based on two types of experiences: personal best and global

best experiences. The personal best experience (Pbesti) is the

experienced position by particle present i which obtains the

smallest fitness value during flying. The gbest represents the

best particle found in the entire population of each generation.

For each iteration, the particle modifies its velocity and

position through each dimension j by referring to and

the swarm‘s best experience using (4) and (6)

V. EXPERIMENTAL EVALUATION

The experimental results are attained using a set of

benchmark instances [20] for the distributed heterogeneous

systems. All algorithms are coded in C and executed on a

Linux platform.

A. Benchmark description

Particle

Initialization)

Evaluate particles in

and calculate average

fitness value.

Select particles from

whose fitness is

larger than average

fitness value.

Evaluate particles in

Replace particle in by the

corresponding mutated particle in

 if is better than

Update Pbest and

Gbest of

Apply Swap Mutation

(Mutated particles

named)

Compare particles in

 with

Update particle velocity

and position

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3, Issue-2, May 2013

375

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B1568053213/2013©BEIESP

The simulation model in [20] based on ETC matrix for 512

tasks and 16 PEs are used. The instances of the benchmark are

categorized into 12 types of ETC‗s based on the 3 following

metrics: task heterogeneity, machine heterogeneity and

consistency are simulated. In this benchmark, quality of the

ETC matrices are varied in an attempt to simulate various

possible heterogeneous computing environments by setting

the values of parameters , and ,

which represent the mean task execution time, the task

heterogeneity, and the machine heterogeneity respectively. In

ETC matrices, the amount of variance among the execution

time of tasks in the meta-task for a given processor is defined

as task heterogeneity. Machine heterogeneity represents the

distinction among the execution times for a given task across

all the processors [20]. The Coefficient of Variation Based

(CVB) ETC generation method gives a larger control over the

spread of execution time values than the common range based

method proposed by Braun [13].
The CVB type ETC matrices generation method works as

follows. First, a column vector of the expected task execution

time with the preferred task heterogeneity, s, is created

following gamma distribution with mean and stand

deviation

The input parameter is desired coefficient of

variation of values in s. The value of is high for high

task heterogeneity, and small for low task heterogeneity. Each

element of s is then used to produce one row of the ETC

matrix following gamma distribution with mean q[i] and

standard deviation s[i] such that the desired

coefficient of variation of values in each row is . The

value of is large for high machine heterogeneity, and

small for low machine heterogeneity. Task and machine

heterogeneities are modeled by using different and

 values: high heterogeneity is represented by setting

 and equal to 0.6, and low heterogeneity is

modeled using and equal to 0.1.

To capture other possible characteristics of real scheduling

problems, three different ETC consistencies namely

consistent, inconsistent and semi-consistent are used. An ETC

matrix is considered consistent if a processor Pi executes task

Tj faster than processor Pj, then Pi executes all the jobs faster

than Pj. Inconsistency indicates that a processor is quicker for

a few jobs and slower for some others. An ETC matrix is

considered semi-consistent if it includes a consistent

sub-matrix. A semi consistent ETC matrix is characterized by

an inconsistent matrix which has a consistent sub-matrix of a

predefined size.

B. Algorithms compared

Simulations were carried out to compare the performance

analysis among four different MDPSO.

In first MDPSO, the control parameters W, C1 and C2 are

constant.

In second Algorithm, the inertia weight called random

inertia weight is calculated using the equation (12) and

acceleration coefficient C1 and C2 are calculated using the

equation (13) and (14)

 (12)

(13)

(14)

where Rand () function generates a random number between

0 and 1 and is the maximum number of iterations

and is the current iteration number. Larger values

of C1 guarantee larger deviation of the particle in the search

space, while the larger values of C2 signify the convergence to

the present global best (gbest). C1 has been permitted to

reduce from its initial value of while C2

has been raised from .

The Linearly Decreasing inertia Weight (LDW) is used in

third Algorithm of MDPSO. The LDW is calculated using the

equation (15) and acceleration coefficient C1 and C2 are

calculated using the equation (13) and (14)

 (15)

This adaptiveness permits to attain a good balance between

the exploration and the exploitation of the search space. The

inertia weight (W) is used to balance the global and local

search abilities. A high inertia weight is more suitable for

global search and a small inertia weight helps local search

[21]. Typically, this algorithm started with a large inertia

weight, which is decreased over time. The value of Wt is

permitted to reduce linearly with iteration from Wmax to Wmin.

In fourth Algorithm, the control parameters W, C1 and C2

are constant. The two random parameters and of (4) are

independent. If the two random parameters are high, both the

personal and social experiences are over used and the particle

is moved too far away from the local optimum. If both are

low, both the personal and social experiences are not used

fully and the convergence speed of the optimization technique

is reduced. The fourth MDPSO creates a dependency between

two random parameters and of (4) to control the balance

of personal and social experiences. Instead of taking

independent and , one single random number is

chosen so that when is large, is small and vice versa.

The (4) is rewritten as follows

(16)

TASK

PARTICLE

1 2 3 4

Particle 1 1 2 1 2

Particle 2 1 1 2 2

Particle 3 1 1 1 2

Comparison among four Modified Discrete Particle Swarm Optimization for Task Scheduling in Heterogeneous

Computing Systems

376

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B1568053213/2013©BEIESP

All the four algorithms are stochastic based algorithms.

Each independent run of the same algorithm on a particular

problem instance may yield a different result. To make a good

comparison of the algorithms each experiment was repeated 5

times with different random seeds and the average of the

results are reported.

C. Parameter setup

 Population Size (N)=30 and Number of iteration =25 for

all the algorithms.

 The Failure rate for each processor is uniformly

distributed [10, 11] in the range from 0.95×10
−6

/h to

1.05×10
−6

/h .

 The MDPSO with constant control parameters set fixed

inertia weight as W=0.8, C1 = 1 and C2=1 during the

whole run of the algorithm

 Values for time varying inertia weight and acceleration

coefficients: inertia weights and (0.8 and

0.4), the initial acceleration coefficients = 2.5,

 = 0.5, = 0.5, = 2.5. C1 has been

allowed to decrease from its initial value of 2.5 to 0.5,

while C2 has been increased from 0.5 to 2.5

D. Performance comparisons

To make the comparison fair, the swarms for all the

methods were initialized using the same random seeds. All

instances consisting of 20 tasks and 2 or 3 processors are

classified into 12 different types of ETC matrices according to

the 3 metrics. All the algorithms are applied on all 12 problem

instances and the results plotted from Fig.4 to Fig.15.

Table 2 Comparison of four algorithms for 2 processors

The instances are labeled as g_a_bb_cc as follows:

 g means gamma distribution used in generating the

matrices.

 a shows the type of inconsistency; c means consistent, i

means inconsistent, and s means semi-consistent.

 bb indicates the heterogeneity of the tasks; hi means high

and lo means low.

 cc represents the heterogeneity of the machines; hi means

high and lo means low.

The table 2 shows the comparison of four MDPSO

algorithms for 2 processors. From the results obtained,

Algorithm 3 MDPSO is found to be the best for 2 processors

which uses linearly decreasing inertia weights and varying

acceleration coefficients.

The Table 3 shows the comparison of four MDPSO

algorithms for 3 processors. From the results obtained,

Algorithm 3 MDPSO is found to be the best for 3 processors

which uses linearly decreasing inertia weights and varying

acceleration coefficients. Thus the Algorithm 3 MDPSO is

found to be efficient for both 2 and 3 processors. In table 2

and 3, Alg represents Algorithm.

Fig 4 shows the comparison of fitness values for high Task,

high machine and inconsistent type. From the results

obtained, Algorithm 1, 2 have the same fitness values. The

fitness value of algorithm 3 is better than others. The fitness

values for 3 processors are better than 2 processors. In Fig 5,

Algorithm 1 has the smallest fitness value for 2 processors

and Algorithm 2 has the smallest fitness value for 3

processors. In Fig 6, Algorithm 3 has the smallest fitness

value. The fitness values for 3 processors are better than 2

processors.

Type of

heterogeneity Alg 1 Alg 2 Alg 3 Alg 4

Hi_hi_hi 6699.802 6699.802 6689.802 8532.202

i_hi_lo 3601.311 3790.541 3798.071 4646.161

i_lo_hi 8591.672 8591.672 8581.672 9410.282

i_lo_lo 6190.731 6112.140 6190.731 7529.961

Hi

s_hi_hi 4168.201 4076.561 4168.201 5360.801

s_hi_lo 3653.271 3653.271 3643.271 4502.801

s_lo_hi 6970.892 6970.892 6960.892 8707.761

s_lo_lo 5945.452 5986.451 5982.541 7401.602

c_hi_hi

tent
3647.441 3973.801 3554.801 4584.800

c_hi_lo 3550.381 3550.381 3545.381 4411.321

c_lo_hi 3329.491 3304.121 3329.491 4037.080

c_lo_lo 5789.401 5892.992 5782.992 7295.601

Type of

heterogeneity

Alg 1 Alg 2 Alg 3 Alg 4

Hi_hi_hi 4121.791 4121.79

1

4120.09

1

5131.36

1

i_hi_lo 2916.581 2911.90

1

2916.58

1

3420.48

1

i_lo_hi 4645.811 4645.81

1

4643.08

1

5478.44

1

i_lo_lo 4635.302 4635.30

2

4634.01

0

5715.60

2

His_hi_hi 3655.841 3655.84

1

3652.04

1

4638.76

1

s_hi_lo 2673.611 2686.30

1

2673.88

1

3244.44

1

s_lo_hi 5168.711 5168.71

1

5168.71

1

5874.44

1

s_lo_lo 4668.992 4673.09

1

4673.09

1

5869.64

2

c_hi_hi 3132.291 3132.29

1

2910.59

1

3776.60

1

c_hi_lo 2767.841 3792.37

1

2763.04

1

3489.08

1

c_lo_hi 3342.020 3265.18

0

3413.28

1

5113.00

1

c_lo_lo 4627.662 4683.18

2

4683.18

2

5863.72

2

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3, Issue-2, May 2013

377

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B1568053213/2013©BEIESP

0

2000

4000

6000

8000

10000 Algorithm

1
Algorithm

2
Algorithm

3

Fig.4. Comparison of fitness values for High Task-High

Machine-Inconsistent

0

1000

2000

3000

4000

5000

Algorithm 1

Algorithm 2

Algorithm 3

Algorithm 4

Fig.5. Comparison of fitness values for High Task-Low

Machine-Inconsistent

Table 3 Comparison of four algorithms for 3 processors

0

2000

4000

6000

8000

10000
Algorithm 1

Algorithm 2

Algorithm 3

Algorithm 4

Fig.6. Comparison of fitness values for Low Task-High

Machine-Inconsistent

In Fig 7 and 8, Algorithm 2 has the smallest value for 2

processors and the Algorithm 3 has smallest fitness value for

3 processors.

0
2000
4000
6000
8000

Algorithm 1

Algorithm 2

Algorithm 3

Algorithm 4

Fig.7. Comparison of fitness values for Low Task-Low

Machine-Inconsistent

0

1000

2000

3000

4000

5000

6000

7000

2
Processor

3
Processor

Algorithm 1

Algorithm 2

Algorithm 3

Algorithm 4

Fig.8. Comparison of fitness values for High Task-High

Machine-Semi consistent

 In Fig 9, Algorithm 3 has the smallest fitness value for 2

processors and Algorithm 1, 2 and 3 have the same values for

3 processors.

Fig.9.Comparison of fitness values for Low Task-High

Machine-Semi consistent

0

2000

4000

6000

8000

Algorithm 1

Algorithm 2

Algorithm 3

Algorithm 4

Fig.10.Comparison of fitness values for Low Task-Low

Machine-Semi consistent

In Fig 10, Algorithm 1 has the smallest value for 2

processors and 3 processors.

0
1000
2000
3000
4000
5000

Algorithm 1

Algorithm 2

Algorithm 3

Algorithm 4

Fig.11. Comparison of fitness

0

2000

4000

6000

8000

10000
Algorithm

1
Algorithm

2
Algorithm

3

Comparison among four Modified Discrete Particle Swarm Optimization for Task Scheduling in Heterogeneous

Computing Systems

378

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B1568053213/2013©BEIESP

values for High Task-Low Machine-Semi consistent

In Fig 11, Algorithms 3 has the smallest fitness value for 2

processors and Algorithm 1 has the smallest fitness value for

3 processors. In Fig 12, Algorithm 3 has the smallest fitness

value for both 2 and 3 processors.

Fig.12. Comparison of fitness values for High Task-High

Machine-Consistent

0

1000

2000

3000

4000

5000
Algorithm 1

Algorithm 2

Algorithm 3

Algorithm 4

0
1000
2000
3000
4000
5000
6000 Algorithm 1

Algorithm 2

Algorithm 3

Algorithm 4

Fig.14. Comparison of fitness values for Low Task-High

Machine-Consistent

In Fig 14, Algorithm 2 has the smallest fitness value for 2

processors and 3 processors. In Fig 15, Algorithm 3 has the

smallest fitness value for 2 processors and Algorithm 1 has

the smallest fitness value for 3 processors.

0
2000
4000
6000
8000 Algorithm 1

Algorithm 2

Algorithm 3

Algorithm 4

Fig.15. Comparison of fitness values for Low Task-Low

Machine-Consistent

From the results obtained, algorithm 3 is found to be the

best for 2 processors and 3 processors which uses linearly

decreasing inertia weights and varying acceleration

coefficients. Thus the Algorithm 3 is found to be efficient

among others.

VI. CONCLUSION AND FUTURE WORK

This paper has presented four different modified DPSO

algorithms. Modified Discrete PSO algorithm has been

successfully applied for scheduling of independent tasks in a

heterogeneous environment. Four different modified DPSO

algorithms were developed for minimizing the objectives like

make span, reliability cost and flow time. All the algorithms

were compared with all the 12 different types of ETC

matrices. From the various set of results obtained, Algorithm

3, which has a linearly decreasing inertia weight, is found to

be efficient than other algorithms which have random inertia

weight and constant inertia weights. The algorithm 3 is found

to be more efficient when tasks are being scheduled in 3

processors.

The future work will investigate scheduling tasks with

precedence constraint which are pre-emptive in nature or in

dynamic environments.

REFERENCES

[1] Qinma Kang, and Hong He,―A novel discrete particle swarm

optimization algorithm for meta-task assignment in heterogeneous

computing systems‖, Microprocessors and Microsystems, Elsevier,pp

10–17,(2011)

[2] Yaochu Jin, Tatsuya Okabe and Bernhard Sendhoff ,―Solving three

objective optimization problems using Evolutionary dynamic

weighted aggregation: Results and Analysis‖, Genetic and

Evolutionary Computation Conference. Springer, Berlin, pages

636—637(2003)

[3] G. Subashini, M.C. Bhuvaneswari, ―Non Dominated Particle Swarm

Optimization For Scheduling Independent Tasks On Heterogeneous

Distributed Environments‖, International Journal of Advance. Soft

Computing Appl., Vol. 3, No. 1, ISSN 2074-8523(2011)

[4] Kennedy,J, and Eberhart.R ,―Particle swarm optimization‖, In

proceeding of the fourth IEEE International conference on Neural

Networks,Perth,Australia.IEEE Service Center(1995)

[5] Praveen Kumar Tripathi , Sanghamitra Bandyopadhyay, and Sankar

Kumar Pal, ― Multi-Objective Particle Swarm Optimization with

time variant inertia and acceleration coefficients‖,

Elsevier,International journal of Information Sciences(2007)

[6] S.K. Pal, S. Bandyopadhyay, C.A. Murthy, ―Genetic algorithms for

generation of class boundaries‖, IEEE Transaction on Systems Man

and Cybernetics – Part B: Cybernetics,pp 816–828(1998)

[7] A. Carlisle and G. Dozier, ―Adapting particle swarm optimization to

dynamic environments‖, International Conference on Artificial

Intelligence , Las Vegas, Nevada, USA, pp. 429–434(2000)

[8] A. Carlisle and G. Dozier, ―Tracking changing extrema with adaptive

particle swarm optimizer‖, 5th Biannual World Automation

Congress, Orlando, Florida, USA, pp. 265–270(2000)

[9] Wei Luo, Xiao Qin, and Kiranmai Bellamssss,―Reliability-Driven

Scheduling of Periodic Tasks in Heterogeneous Real-Time Systems‖,

IEEE International Symposium on Embedded Computing,Ontario,

Canada(2007)

[10] Xiao Qin,Hong Jiang,―Dynamic, Reliability-driven Scheduling of

Parallel Real-time Jobs in Heterogeneous Systems‖, IEEE

International conference on Parallel Processing,pp 113-122(2001)

0
1000
2000
3000
4000
5000 Algorithm 1

Algorithm 2

Algorithm 3

Algorithm 4

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3, Issue-2, May 2013

379

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B1568053213/2013©BEIESP

[11] Hesam Izakian, Behrouz Tork Ladani, Ajith Abraham,Vaclav Snasel,

―A Discrete Particle Swarm Optimization Approach For Grid Job

Scheduling‖, International Journal of Innovative Computing,

Information and Control ICIC International, ISSN 1349-4198

Volume 6, Number 9(2010)

[12] D. Fernandez-Baca, ―Allocating modules to processors in a

distributed system‖, IEEE Trans. Software Eng. 15 (11)

-1427–1436(1989)

[13] H.J. Braun et al, ―A comparison of eleven static heuristics for

mapping a class of independent tasks onto heterogeneous distributed

computing systems‖, Journal of Parallel and Distributed

Computing, Vol 61, No.6, (2001).

[14] H. Izakian, A. Abraham and V. Snasel, ―Performance comparison of

six efficient pure heuristics for scheduling meta-tasks on

heterogeneous distributed environments‖, Neural Network World,

vol.19,no.6, pp.695-710(2009)

[15] A. Abraham, H . Liu, C. Grosan, F. Xhafa, ―Nature inspired

meta-heuristics for grid scheduling: single and multi-objective

optimization approaches‖, Studies in Computational Intelligence,

Springer Verlag: Heidelberg, Germany, pp. 247–272(2008)

[16] J. Park, K. Lee, J. Shin, and K. Y. Lee, "A Particle Swarm

Optimization for Economic Dispatch with Nonsmooth Cost

Function", IEEE Trans. on Power Systems, Vol. 20, No.1, pp. 34-42,

(2005)

[17] T. Ray, and K. Liew, "A swarm metaphor for multiobjective design

optimization", Engineering Optimization, Vol. 34, pp.

141-153(2002).

[18] C.A. Coello Coello, and M. Salazar Lechuga, "MOPSO: A proposal

for multiple objective particle swarm optimization", Congress on

Evolutionary Computation IEEE Service Center, Piscataway, New

Jersey, pp. 1051-1056(2002)

[19] Ozgur Uysal1 and Serol Bulkan2, ―Comparison Of Genetic

Algorithm And Particle Swarm Optimization for Bicriteria

Permutation Flowshop Scheduling Problem‖, International Journal

of Computational Intelligence Research, ISSN 0973-1873 Vol.4,

No.2, pp.159–175 (2008)

[20] S. Ali, H.J. Siegel, ―Representing task and machine heterogeneities

for heterogeneous computing systems‖, Tamkang Journal of Science

and Engineering, Vol. 3, No. 3, pp. 195-207 (2000)

[21] Kaushik Suresh, Sayan Ghosh, Debarati Kundu, Abhirup Sen,

Swagatam Das and Ajith Abraham, ―Inertia-Adaptive Particle Swarm

Optimizer for Improved Global Search‖, IEEE International

conference on Intelligent systems and design,pp 253-258(2008)

