
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3, Issue-2, May 2013

422

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B1576053213/2013©BEIESP



Abstract— In recent years, structured peer-to-peer (P2P) has

gained an important role in the design of large-scale distributed

systems. However, due to their strict data placement rules, they are

often prone to three main load imbalances, i.e., range, data, and

execution skew. Further imbalance may result due to

non-uniform distribution of objects in the identifier space and a

high degree of heterogeneity in object loads and node capacities.

A node’s load may vary greatly over time since the system can be

expected to experience continuous insertions and deletions of

objects, skewed object arrival patterns, and continuous arrival and

departure of nodes. A virtual server looks like a single peer to the

underlying DHT, but each physical node can be responsible for

more than one virtual server. Load balancing among application

layer peer-to-peer (P2P) networks is critical for its effectiveness

but, is considered to be the most important development for

next-generation internet infrastructure. Most structured P2P

systems rely on ID-space partitioning schemes to solve the load

imbalance problem. P2P system harnesses the resources of large

populations - networked computers in a cost-effective manner

such as the storage, bandwidth, and computing power. In

structured P2P systems, data items are spread across distributed

computers (nodes), and the location of each item is determined in

a decentralized manner.

Index Terms—About four key words or phrases in alphabetical

order, separated by commas.

I. INTRODUCTION

 PEER-TO-PEER systems have emerged as an appealing

solution for sharing and locating resources over the Internet.

Each object (data item) that enters the system has an

associated load, which might represent, for example, the

number of bits required to store the object, popularity of

object, or the amount of processer time needed to serve the

object. Each objects also has a movement cost, which we are

charged each time we move object between nodes. An

assumption is made that the cost is same regardless of which

two nodes are involved in the transfer. An object’s load

may or may not be related to its movement cost. The basic

approach to the load balancing issue in structured P2P

networks or distributed hash tables (DHTs) is consistent

hashing.

 There are two main goals to be achieved, minimize the load

balance and minimize the amount of load moved. If the hot

peers become bottleneck, it leads to increased user response

time and significant performance degradation of the system.

Hence the load balancing mechanism is necessary in such

cases.

Manuscript received on May, 2013.

Vishakha Patange, M.E. (Computer Networks), Pune University,

S.C.O.E. Pune., India.

D. D. Gatade, M.E. (Computer Networks), Pune University, S.C.O.E.

Pune., India.

With the notion of virtual servers, peers participating in a

heterogeneous, structured peer-to-peer (P2P) network may

host different numbers of virtual servers, and by migrating

virtual servers, peers can balance their loads proportional to

their capacities. The security vulnerabilities are analyzed of

the typical DHT load balancing mechanism; then propose an

algorithm that both facilitates good performance and does not

dilute security.

II. LITERATURE REVIEW

A. ID Management Algorithm:

The ID management algorithm presented here is a greedy

distributed algorithm that directs joining peers to

highly-frequented regions of the ID space. It is based on the

idea that peers responsible for these regions are most likely to

be overloaded [1]. To identify these highly-frequented

regions this algorithm collects the statistics on the utilization

of the peers’ overlay links during the regular operation of the

P2P network, i.e., without generating additional messaging

overhead.

The type of balancing technique used here is Data and

Execution balancing. This algorithm collects statistics of

overlay link usage during normal operation and uses this

information to provide suitable IDs to joining peers [1].

Without using regular maintenance messages, it improves the

rate of successfully answered requests. The ID Management

directs joining peers to highly-frequented regions of the ID

space [1]. It is based on the idea that peers responsible for

these regions are most likely to be overloaded. To identify

these highly-frequented regions this algorithm collects the

statistics on the utilization of the peers’ overlay links during

the regular operation of the P2P network, i.e., without

generating additional messaging overhead [1].

This algorithm mainly presents the method ROUTE, which is

in charge of delivering an incoming msg if the current peer is

responsible for the destination ID destID or to forward it to

closer to its destination [1]. Each peer consists of the routing

table (RT) with m entries which maintains the count, ip

address and ID. Each peer calculates its Join Link Table (JT)

which contains all routing table entries. The normalization

process used for the implementation of the ID management

algorithm is based on network Chord [1]. Besides, RT and JT,

each peer maintains the third table, called as Destination

Table (DT). It keeps track of the peer’s workload W. Each

time the responsibility range of peer changes, because an

adjacent peer is joining or leaving, the table is reset [1].

B. Intra-Cluster and Inter-Cluster Load Balancing

The concept of clustering is basically the connecting of two or

more nodes in such a way that

they behave like a single node.

Clustering is used for parallel

processing, load balancing and

Survey of Load Balancing Approachs in

Peer-To-Peer Network

Vishakha Patange, D.D.Gatade

Survey of Load Balancing Approachs in Peer-To-Peer Network

423

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B1576053213/2013©BEIESP

fault tolerance. Each cluster has a unique ID. The nodes are

grouped into strong and weak clusters based on their weight

vector which comprises of the parameters like: Available

Capacity, CPU Speed, Memory Size and Access Latency.

In Intra-Cluster Load Balancing Algorithm, the cluster leader

receives the information periodically regarding the loads and

available disk space of the peers. Based on load the cluster

leader creates a sorted list of the peers such that the first

element of the list is the heavily loaded peer [5]. It is

monitored that, only for a particular periodic time intervals

cluster leader checks for the load imbalance and not whenever

any peer joins/leaves the system. Custer leader corrects the

load imbalances which are caused by some peers while

joining/leaving the system [5]. The cluster leader checks

whether its load exceeds the average load of its neighboring

cluster leaders by more than 10% of the average load. If it

exceeds, then it determines the hot data items which should be

moved. Thus load is balanced.

In case of intra-cluster load balancing, some of the decisions

are critical to system performances regarding when to trigger

the load balancing mechanism, hotspot detection and the

amount of data to be replicated. The cluster leader receives

the information periodically regarding the loads and available

disk space of the peers. Based on load the cluster leader

creates a sorted list of the peers such that the first element of

the list is the heavily loaded peer [5]. The load balancing is

achieved by replicating the hot data from the first peer in the

list to the last peer and the second peer to the second last peer

and so on. If the load difference between the peers exceeds a

pre-specified threshold, then the data will be replicated.

C. Load Balancing Algorithm in Dynamic Structured P2P

Systems using Directories

The type of balancing technique used here is Load balancing.

The basic idea of load balancing algorithm is to store load

information of the peer nodes in a number of directories

which periodically schedule reassignments of virtual servers

to achieve better balance [6].

Here, each directory has an ID known to all nodes and is

stored at the node responsible for that ID. Each directory

collects load and capacity information from nodes which

contact it. When node’s utilization jumps above a

parameterized threshold, it immediately reports to the

directory which it has contacted recently [6]. It then schedules

immediate transfer from present node to the lightly loaded

nodes.

2.1 Proposed System

 The load balancing scheme here is not restricted to a

particular type of resource (e.g., storage, bandwidth, or CPU).

However, two assumptions are considered in our work. First,

assume that there is only one bottleneck resource in the

system, leaving multi-resource balancing to our future work.

Second, assume that the load on a virtual server is stable over

the timescale it takes for the load balancing algorithm to

perform. Basically, the load balancing scheme consists of four

phases:

a. Load balancing information (LBI) aggregation. Aggregate

load and capacity information in the whole system.

b. Node classification. Classify nodes into overloaded (heavy)

nodes, under loaded (light) nodes, or neutral nodes

according to their loads and capacities.

c. Virtual server assignment (VSA). Determine virtual server

assignment from heavy nodes to light nodes in order to have

heavy nodes become light. The VSA process is a critical

phase because it is in this phase that the proximity information

is used to make our load balancing scheme proximity-aware.

d. Virtual server transferring (VST). Transfer assigned virtual

servers from heavy nodes to light nodes. We allow VSA and

VST to partly overlap for fast load balancing.

 Also, few attentions have been paid on security threats

introduced by the load balancing. An SLBA algorithm is

implemented for security issues. SLBA works as follows: (1)

at joining time, based on targeted interval verifiable ID

generation, an unique semi-CA server generates a set of

verifiable IDs for node, which can limit any fundamental

decrease in security and greedily reduces discrepancies

between capacity and load; (2) during its run-time,

experiencing overload node should execute security-aware

load transfer algorithm, which can significantly raise the

convergence rate and load transfer security. The advantages

are :

 Better load balancing than existing schemes.

 Peers can compute their expected loads and reallocate their

loads in parallel.

III. LOAD BALANCING MODULEWISE

DISTRIBUTION

Fig.1 System Architecture

Module 1: Network Creation

In the module designing of windows for the peer page is

performed. These windows are used to send a message from

one peer to another. Omnet++ is used for the simulation in

network creation. Swing package is used to design the User

Interface. Swing is widget toolkit, part of an API for

providing a graphical user interface (GUI) for the coding. In

this module main focus is on the login design page with the

Partial knowledge information. Every user should know about

their neighbor details so that they can share the information in

the network. In this situation main focus is the DHT table in

the network. Distribute Hash Table maintain a neighbor

information in order to get the

partial information about the

clients. Like Client Ip Address,

Port No. etc. With this

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3, Issue-2, May 2013

424

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B1576053213/2013©BEIESP

information client can connect and communicate with other

clients in the network and share their data.

Input: Design the page and connecting to each other.

Output: Get the network according to the need.

Module 2: Implementation of the client

In this module client home page design is developed. Here,

first the client is going to login. While entering into a client

home page client should connect with super peer for that

Super Peer Ip and Port No. of Super Peer which is already

running in network should be provided. Super Peer will

accept the request from the client and send the

acknowledgement to the client. Now client can communicate

with super peer. Client can browse the file from the system

and upload the data to the super peer.

Input: Enter client port and connect with super peer.

Output: Client connected with super peer.

Fig.2 Client and Super Peer Communication

Module 3: Determination of the peer

In this module, design of super peer home page is developed.

In this, super peer should connect with the virtual server so

that it asks the number of virtual servers needed in this

network. Then specify the number of virtual sever. So that

super peer will connect with the virtual server. Super peer will

have some capacity so it will check the memory first and if

memory is available it will get the data from the client and

store it in the memory if memory is not available in the Super

peer it will check is there any virtual server so that it will

upload the data to the virtual server.

Input: Enter the Super Peer Port No. and the N no. of Virtual

Server.

Output: Super Peer created.

Module 4: Establishment of the Virtual Server

Here, Virtual server is developed. Number of virtual servers

can be run simultaneously using simulation manner. The

virtual server will handle the request and response to the super

peer according to its capacity. Super Peer can have N no. of

virtual server as its need. Virtual Server will have some

capacity. If super peer capacity is over it will store the data

into virtual server. If virtual server capacity is no more then it

will response to the super peer to request another super peer to

migrate some of its virtual server.

Input: Enter the Virtual Server port no. and run it.

Output: Virtual Server created.

Module 5: Migration of the Work Load

The load balancing in the peer to peer network is

accomplished in this module, it manages the work load in the

network when the excess load occurs in the network and the

node is heavily-loaded the loads are transferred between

virtual servers. If the peer node has no sufficient virtual server

for balancing the load then the peer request for the other super

peer in the network and asks for the virtual server and then

balances its load.

Input: Request for the virtual server in the other super peer

node.

Output: Excess load is transferred to the other virtual server

through migration.

IV. CONCLUSION

A load balancing algorithm for DHTs with virtual severs is

studied which represents the system state. With the DHT

used, each peer identifies whether it is under loaded and then

reallocates its loads if it is overloaded. In particular, while the

centralized directory and tree-based approaches introduce

hotspots to the system, the participating peers perceive nearly

identical workloads in manipulating the load balancing

algorithm.

REFERENCES

[1] Daniel Warneke, Christian Dannewitz, “Load Balancing in P2P

Networks: Using Statistics to Fight Data and Execution Skew,” IEEE

Trans., Oct. 2009.

[2] Hung-Chang Hsiao, Member, IEEE Computer Society, Hao Liao,

Ssu-Ta Chen, and Kuo-Chan Huang, “Load Balance with Imperfect

Information in Structured Peer-To-Peer Systems,” IEEE Trans.

Parallel and Distributed Systems, vol. 22, no. 4, Apr. 2011.

[3] Leonidas Lymberopoulos, Symeon Papavassiliou, Vasilis Maglaris,

“A Novel Load Balancing Mechanism for P2P Networking,” ICST,

October 2007.

[4] Quang Hieu Vu, Member, IEEE, Beng Chin Ooi, Martin Rinard, and

Kian-Lee Tan, “ Histogram-Based Global Load Balancing in

Structured Peer-To-Peer Systems,” IEEE Trans. On Knowledge and

Data Engineering Vol.21, No.4, April 2009.

[5] S. Ayyasamy, S. N. Sivanandam, “ A Cluster Based Replication

Architecture for Load Balancing in Peer-To-Peer Content

Distribution, ”International Journal of Computer Networks and

Communications (IJCNC) Vol.2, No.5, September 2010.

[6] S. Surana, B. Godfrey, K. Lakshminarayanan, R. Karp, and I. Stoica,

“Load Balancing in Dynamic Structured P2P Systems,” Performance

Evaluation, vol. 63, no. 6, pp. 217-240, Mar. 2006.

[7] S. S. Patil, S.K. Shirgave, “ Load Balancing in Structured P2P

Systems using Server Reassignment Technique,” International

Journal of Computer Applications (0975-8887) Volume1- No.4.

