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Abstract— Real world indoor environments are rich in planar 

surfaces. Floor detection or ground-plane detection is a crucial 

requirement for a robotic navigation task. Despite frequent 

successes in this area, problems with detection of navigable floor 

with multiple planar and non-planar slopes at multiple heights 

still exist. For robust and safe navigation, such small variations 

such as floor joins, carpet deformities, raised steps and floor 

gradients need to be detected and robot path and kinodynamics 

plan must be adjusted accordingly. The authors suggest a 

recursive RANSAC segmentation based algorithm that estimates 

the dominant and sub-dominant plane models for all the 

navigable planes within a detected floor or a ground plane. The 

algorithm also divides the input point clouds intelligently into 

multiple regions of interest for both efficiency and accuracy 

enhancement. The recursive estimation approach for determining 

plane parameters helps to detect multiple planes within each 

region. Among other benefits of this approach, reduction of 

search space size for the estimation of plane parameters stands out 

to be the most striking result of this work. This region wise plane 

estimation approach also helps to reduce the computational load 

by selectively dropping less significant floor sections from 

estimation process. The floor estimation technique coupled with 

sensor response functions for two different point cloud generators 

further investigates into the robustness of the method when 

deployed on two distinct sensors i.e. RGB+D sensor and a stereo 

vision camera. In our experiments we segment navigable floor 

planes in real-time for a slowly moving sensor. The location and 

geometrical parameters of the floor planes are updated in a global 

coordinate system whenever a change their location is detected.  

The planes are associated to a grid map which serves as a 

path-planning reference to a mobile robot used in our 

experiments. The results of floor detection and the precision of 

floor anomaly detection are compared sensor-wise and with the 

ground truth defined by obstacle heights and configuration. 

 

Index Terms— Mobile Robotic System, Stereo Vision,   

Navigation,   Grid-map,   3D terrain Maps.  

I. INTRODUCTION 

  Ground-plane or floor detection and segmentation 

constitute a fundamental step in any AGV (Automated 

Guided Vehicle) path planning process. As mobile robot  

applications are finding their way fast into our household and 

officespace, reliable and safe navigation is facing more 

challenges to address in terms of dealing with increasingly 

complex obstacle space. Planar surfaces have a very wide 

range of geometrical and non-geometrical properties, for 

example their orientation, their shape and size, texture and 
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color. All these properties have either a positive or negative 

impact on the accuracy in 3D information produced bya 

sensing device. In our experiments we employ two different 

kinds of 3D sensors based on non-overlapping technologies, 

namely Microsoft Kinect RGB+D sensor and Point Grey 

Bumblebee stereo vision camera. This allows us to test our 

ground-plane detection technique over two 3D datasets 

having distinct sensor response to objects at the same distance 

and accuracy thresholds. 

From the standpoint of the authors, the estimation of the 

floor planes needs to be highly accurate in order to enable the 

indoor AGV to be able to differentiate between floor and 

obstacles as low as just 1.0 cm. Indoor AGVs can usually 

navigate through wheelchair accessible surfaces thus 

throughout our experiments we categorize wheelchair 

accessible pathways as navigable. It may be mentioned here 

that 3D sensors employed in our experiments produce large 

amount of data and thus in order to keep the floor detection to 

follow the real time constraints, the proposed method relies 

upon an object oriented, threaded implementation of 

pre-optimized segmentation and filtering techniques from 

open source libraries such as OpenCV, Mobile Robot 

Planning Toolkit (MRPT) and Point Cloud Library (PCL).  

II. RELATED WORK  

         Although other related methods emphasize on the 

accuracy of 3D reconstruction [1], ground plane detection 

using minimal or noisy 3D data [2] and detection of dominant 

planes in the environment [3] , none of the works suggest a 

method that detects both dominant and sub-dominant planes 

along with the height based classification of obstacles. The 

proposed method not only addresses the navigability problem 

associated with variations in floor plane but also presents a 

real-time detection technique that can compromise on 

accuracy given the available computational resources.  

      The compromise occurs in four respects (i) the amount of 

3D data to be processed, (ii) the amount of plane detection 

search-space under consideration, (iii) the fineness in the 

resolution of the floor plane and (iv) the number of possible 

inclination angles for the planes. This highly customizable 

technique allows optimized use of precious onboard and 

remote computational resources. Among other obstacle 

detection methods some ([4][5]) completely ignore the 

significance of detecting the ground plane and variations in 

within it while others [6] use pixel based region segmentation 

and classification techniques that may or may not be able to 

classify floor anomalies.  
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In contrast to all discussed approaches, the proposed method 

has the reliability and accuracy advantage since it processes 

the dense point clouds in real-time in order to detect floor 

planes with varying resolution and angle accuracy. The 

method effectively compresses the dense point clouds into 

compact surfels [7] thus contributing to the domain of 

compression for navigation data. 

 

 

Fig. 1.   (a) Obstacle test bed (b) corresponding grid-map 

at 0.1m resolution (b) at 0.2m resolution and (c) at 0.3m 

resolution. 

III. PROBLEM DESCRIPTION 

3.1 Grid-map 

A certain map location is identified by Cartesian 

coordinates (in meters) for a particular location within a 

global map on which AGV path needs to be planned. These 

Cartesian coordinates are actually the centroid of a square 

shaped region logically defined on a map stored at the robot 

memory. A collection of such square shaped adjacent regions 

constitute the global grid-map for our problem. The length of 

the side of a squared region is termed as the “map resolution” 

for our problem. A snapshot of a global grid- map is 

represented in figure. 1. 

We assume that a Grid-map is available for a robot that 

needs to navigate through an indoor environment. The 

Grid-map can be converted in shape of an eight connected 

graph , a set of vertices and edges, which can be later used for 

implementing path planning algorithms. The unit of space for 

the grid-map is a vertex as defined in the next section. The 

dimensions of the grid-map unit exactly represent the physical 

space. Each vertex can be assigned a value between {0 and 1}. 

Here {1} represents the absolute belief that the location is 

navigable while {0} represents the exact opposite of this 

belief. Any intermediate value. represents the degree of the 

belief regarding the navigable status of a particular location as 

per Equ. (1) below:  
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The criterion for marking a certain vertex as accessible 

includes calculating the difference in the height of any two 

adjacent vertices.  If the calculated difference d is greater than 

a pre-defined threshold (T) then the AGV travel between two 

adjacent vertices is restricted.  The criterion is mathematically 

expressed  by Equ. (2). 
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3.2 Population of Grid-Map 

We define a vertex within graph G as 

   Z,sintpo_planeV
y,x
  .  Here  (x) and (y) are the index of 

the vertex on grid-like eight connected graph. Variable is a set 

of 3D points which belongs to a plane detected at a vertex. 

Variable Z represents the largest z-coordinate value detected 

by the proposed method among the set  (plane_points). In 

other words Z represents the highest point from the ground 

plane within the set (plane_points). The ultimate objective of 

the grid-map is to differentiate between traversable and 

non-traversable vertices. For this purpose the vertices are 

assigned values based upon the height and slope of the 

detected plane.  The less the height and the slope, the more 

likely it is for the vertex to be traversable. 

3.3 Sensors and Error Modeling 

For the Microsoft Kinect sensor, the following expression 

from [8] is used to predict the random error in depth data from 

the sensor. 
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where  
k

Z  denotes  the distance (depth) of a point  k  in 

the object space,  b  is the base length and  f  is the focal 

length of the infrared camera, m is the parameter of a linear 

normalization for disparity d, with 
'd

  and 
zk

  respectively 

are the standard deviation of the measured normalized 

disparity and the standard deviation of the calculated depth. 

Equ. (3) in essence denotes that the random error of depth 

measurement is proportional to the square distance from the 

sensor to the object. The plane detection parameters were 

adjusted using the monotonically increasing function, Equ. 

(3) as the distance Z of points from the sensor increases.  It 

must be mentioned here that as the distance of detected planes 

increase from the sensor it becomes harder for the proposed 

method to detect small variations due to the increasing 

standard deviation of the calculated . Thus the proposed work 

assigns more confidence level to the variations detected 

within a range of 3 meters (
zk

 =1.4cm ) from the sensor as 

compared to the variations detected at the maximum range of 

5m,  where the standard deviation itself stands at 4cm. 

For Bumblebee (XB)3 color stereo vision camera, an 

accuracy function is provided by Point Grey Research Inc. 

(given in expression (iv), detailed in [9]), the plane detection 

parameters for our algorithm were adjusted to avoid the noise 

to be considered as obstacles. 
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 Here (
Zk

 ) represents the standard deviation of calculated 

depth error,   'm  denotes the uncertainty in disparity, f, b and 

have the same meaning as for expression in Equ. (3).  Figure 2 

represents the increase in standard deviation in calculation 

with respect to increase in object distance from the camera. In 

the case of Bumblebee camera the standard deviation 
Zk

  is 

relatively very less for first 5 meters.  Obstacles or anomalies 

with height difference as low 1 cm  can be detected easily 

within first 3 meters as errors hover  around 35.0  cm.  It 

may be mentioned here that Kinect sensor and Bumblebee 

stereo vision camera have very different responses to 

obstacles at the same distance with the same texture or 

smoothness properties. 

 

 

Fig. 2.  Distance vs. Accuracy chart for Point Grey 

Bumblebee stereo vision camera for 1280x960 resolution 

(wide baseline). 

3.4  The Problem 

The input to proposed method constitutes of a set of 3D 

points   
k1

p,,pP  . These points are gathered via any one 

of the two sensors mentioned in detail in the previous section. 

The objective of the proposed method is to detect the 

navigable floor planes by fitting all possible planes to the 

input 3D points consuming minimal time and resources. 

Furthermore the method should also provide the plane 

orientation and location information for all the 

non-traversable planes, which are categorized as obstacles 

with reference to the presented method.  

All those points in the input point cloud are clipped which 

lie outside the region of interest (ROI). In our experiments, 

the ROI is a cuboid with the height equivalent to that of the 

robot (along with sensors) used for navigation (75cm), width 

equals to 400cm and length equals to 490cm. The location of 

the sensor with reference to the ROI is shown in figure 5. It is 

ensured that the sensor location bisects the ROI width.  

The argument behind choosing an area of roughly 4x5 

meters in front of robot is that a mobile robot only needs as 

much area in front of it to be able to plan its immediate path. A 

drawback of choosing such an ROI is that a robot has to rely 

on past data or on some other form of sensors to be aware of 

terrain in its vicinity that is not part of the ROI. At the same 

time relatively small size of an ROI allows us to freely apply 

expensive filtering techniques as well as relay of 3D data over 

the network for off-board processing. 

 

Fig. 3.   Sensors mounted on Powerbot for 

experimentation. 

 

 

Fig. 4.   Floor detection and segmentation flowchart. 

IV. THE FLOOR DETECTION  AND 

SEGMENTATION METHOD 

4.1 Capturing Point Cloud at pose  (x, y) and   

Although there is no particular innovation involved at this 

step but it is worth mentioning that sensors involved in the 

experiments produce very dense point clouds. The need was 

felt to down-sample the incoming data but this approach was 

quickly retreated as any beneficial down-sampling technique 

proved to be very expensive in terms of execution time. 

Although dense point clouds are an added burden on 

computational resources but techniques were developed at 

later steps in the method to avoid processing unnecessary 

points. Kinect sensor pose, and Bumblebee camera pose, are 

associated with observations from respective sensors. This 

enables the proposed method to map each point to the vertex 

of the global grid-map G while the mobile robot mounted with 

multiple sensors navigates the environment. 
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4.2 Extract ROI 

As discussed in the previous section, all points lying within 

ROI are extracted and passed on to the sub-sectioning module 

for further processing. ROI is kept standard for both sensors 

used in our experiments although sensors with different field 

of view (FOV) ideally require customized ROI. 

4.3 Sub-sectioning ROI and Execution Priority 

ROI is split up into a grid of cuboids 'G  . The (x,y,z) 

dimensions of the grid are equal to the dimensions of the ROI 

as shown in figure.  The x  resolution (
res

x ) and y resolution 

(
res

y ) of however is a tunable parameter.  If the resolution is 

set too low, the RANSAC based plane fitting algorithm will 

fail to detect small variations in the floor as the random error 

in depth data (
Zk

  and 
Zk

 ) will surpass floor variations. On 

the other if the resolution is set too high, the computational 

burden will render the method non real-time.  High resolution 

nonetheless makes the map nearer to its 3D representation but 

the foremost priority of the method is to achieve reliable and 

effective navigation.  Thus fast floor detection can be 

achieved at the expense of lower resolution for .  As a rule of 

thumb, the more quicker the rate of growth for functions (
Zk

  

or 
Zk

 ), the more higher the resolution should be for 'G  as 

represented by expression in Equ. (5) : 

 

                                    
 
 

resresZk

resresZk

yxO

yxO






                         (5) 

 

Fig. 5.   ROI divided into sub-sections.  The  (x-y)  

resolution for dividing ROI is a tunable parameter. 

 

     The sub-sectioning approach apart not only serves to detect 

the floor plane accurately but also helps to reduce the 

computational load on filtering and segmentations algorithms 

that can have the complexity up to order where n is the 

number of 3D points per subsection. Each subsection is 

assigned an execution priority in order make the proposed 

method detect the floor planes located closer to the robot 

much earlier as compared to the floor planes situated away 

from the robot. The execution priority can be adjusted in a 

variety of ways in order to facilitate quick path-planning but 

no experiments were designed to quantify advantages of such 

an approach. Experiments were conducted however where 

sub-sections that were the farthest from the robot were 

skipped from the floor plane detection loop thus saving 

expensive computational cycles. 

 

4.4 Sparse Outlier removal through Statistical Outlier  

Removal Filter 

Measurement errors from deployed sensors in our 

experiments produce significant outliers. Such outliers are 

removed by performing a statistical analysis on the 

neighborhood of each 3D point. The points which lie outside 

the noise bounds defined by expression (iii) and (iv) are 

trimmed from the output of respective sensors. The sparse 

outlier removal technique used within our method is based on 

the computation of the distribution of point to neighbors’ 

distances in the input dataset which is generally a standard 

technique under the given circumstances [10]. A cut-off 

cardinality threshold is used to determine the n closest 

neighbors to the 3D point under consideration. Now for each 

3D point, mean distance between the point and all its 

neighbors is computed. The distribution of distances is 

assumed to be a normal distribution N with a mean and a 

standard deviation . Each point whose mean is outside an 

interval defined by the mean of global distances and standard 

deviation can be considered as outlier and clipped from the 

output point cloud produced by the sensor. Expression of 

Equ. (6) illustrates the outlier set: 

                       
globalglobalx

xK,out                       (6) 

  

    Here,    is an input parameter which helps to define a 

quintile of the distribution of distances N(0,1) for each 3D 

point x. If the value of absolute difference  
globalx

   lies 

outside the 
global

   range, point x is considered an outlier.  K 

on the hand is the number of closest neighbors whose 

distances from point x form the normal distribution N.  This 

step is repeated for all point cloud sub-sections. The filtered 

point cloud for each sub-section is then processed for plane 

detection. 

4.5 RANSAC based recursive segmentation for 

dominant plane detection 

       This step detects multiple planes within a given 

sub-section of the point cloud by recursively executing 

RANSAC or “Random Sample Consensus” method for plane 

fitting. Here the notion of recursion means that the same 

segmentation algorithm is applied to a sub-set of input point 

cloud repeatedly. This sub-set consists of leftover points ( 'P ) 

from the last iteration which were not assigned to a plane. 

Thus these leftover points are fed to the segmentation 

algorithm again and again unless either no more points can be 

assigned to a plane or a predefined recursion iteration limit is 

hit as signified by steps 5 and 5.1 in figure 4.  The RANSAC 

based plane fitting algorithm requires three parameters (i) a 

normal to the plane ( n̂ ), (ii) the acceptable error (E) in the 

Euler angles of the plane whose normal is  n̂  and (iii) the 

distance threshold   for a 3D point to be part of the plane. 

The distance threshold is the maximum allowable distance 

between the point and its projection on the plane for it to be 

considered as part of the plane.   
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It must be mentioned here that each time a subsection of 

point cloud is   '

y,x
Gtionsecsub  submitted to the 

segmentation algorithm, the algorithm after detecting the 

dominant floor plane, preserves the normal to the detected 

plane 
xy

n̂ . The rest sub-dominant planes within the subsection 

are stored in a set 
xy

N̂ . 

4.6  Plane assignment to the grid-map 

      After the detection of dominant and sub-dominant planes 

within each   '

y,x
Gtionsecsub  of the input point cloud from 

the sensor, the planes need to be assigned to the grid-map . It 

is important here to note that a radius is estimated for each 

detected plane. This radius depends upon the 2D area that the 

points span across. The radius is made a part of vector . This 

step effectively converts ̂ into a surfel .  The surfels  are then 

evaluated against each vertex of the grid-map . If a surfel  is 

found to be spanning across certain vertices (or a vertex), each 

vertex is assigned a value depending upon the height of 

surfel  from the floor.  In case the surfel  itself represents the 

floor it is assigned a maximum value of 1.0.   For the surfels  

at maximum height (in experiments this height equals 75cm), 

the vertex is assigned a minimum value of 0.0.  The elevation 

angle that a surfel  makes from the floor further affects he 

value of each vertex. In experiments each vertex value was 

passed through a linear function that maps the vertex value to 

100 percent if the elevation angle is and to 20 percent if the 

elevation angle is 60deg. It takes many factors to decide the 

threshold value for navigability of floor, including robot 

ground clearance, robot Center of Gravity,  application and its 

speed constraints.  

      Following pseudo code details the recursive floor 

segmentation algorithm. 

 

 
     

 

V. EXPERIMENTATIONS  AND  PERFORMANCE 

ANALYSIS 

We gathered the point clouds using Kinect sensor with 

640x480 resolution@30 FPS and Bumblebee stereo vision 

camera with two resolutions 1280x960@7.5FPS and 

640x480@15FPS (wide baseline). In order to process extra 

dense clouds from 1280x960 resolution images from 

Bumblebee camera, the point cloud ROI was serialized and 

sent over the network to a high-end networked PC for efficient 

real-time processing. The mobile robotics platform used for 

our experimentation included PowerBot from Adept 

Mobilerobots, Intel Dual Core 1.8 GHz Processor onboard 

the robot and Intel (i7) 2.20 GHz Processor for off -board 

processing. In order to deliver real -time performance using 

the available resources, the search-space for RANSAC plane 

fitting algorithm is constrained by providing the fitting 

algorithm with last know floor surface normals ̂ for each point 

cloud subsection . This process is represented by statements 

{5.4}{5.5} listed in section 4.6.1. 

Obstacles of varying heights were placed at varying 

distance from the sensor as depicted in the figure .6. The 

ground truth and measured obstacle heights are compared in 

table. 1. It must be noted that ideal values for and in the 

experimental scenario were found to be 4 and 3 for both the 

Kinect sensor and the Bumblebee camera since the accuracy 

gain is not feasible enough as compared to the additional 

computational load if the values are boosted higher than  

4x
res
  and 3y

res
  .   
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The total area that is sub-sectioned in front of the sensor is 

(6.0x4.2) 25.2 m
2
 for Bumblebee stereo camera and (5.5x3.0) 

16.5 for Kinect sensor. Table 1 offers an accuracy comparison 

of the proposed method on the two sensors used. 20 

experiments were conducted with varying obstacle 

configuration for different   
resres

y,x  where the proposed 

method was executed for each sensor separately. The 

maximum height of each obstacle was measured manually and 

served as ground-truth. The errors between the detected 

maximum heights of the grid-map vertices and the ground 

truth were calculated. These average errors are shown in 

Table 1. It must be mentioned here that as the sub-section 

resolution increases the added processing due to the 

sub-sectioning process and the additional function calls start 

to affect the execution time of the proposed method.  

Table. 1. Method Accuracy: Sensor wise comparison. 

 

VI. DISCUSSIONS 

The primary output of the proposed method is a grid-map 

which can submitted to grid-based path planning method such 

as A* or D*. Apart from the primary output, the method also 

returns 3D height maps of the arena. Such maps are relatively 

much dense as compared to grid-maps and can be compressed 

and processed for decomposition into Voronoi cells.   Each 

3D point provided in the input point cloud is associated to a 

plane (given the recursion_iterations is set to a very large 

value) by the end of the execution of this method thus the 

proposed method can be termed as an exhaustive mapping 

method for a given set of input 3D points.  Figure 6 and 7 

show the obstacle test bed and the corresponding 3D terrain 

map generated by the method for 4x
res
  and 3y

res
  . The 

(x-y) resolution of terrain map is (0.2m).  

 

 

Fig. 6.  The obstacle test bed consists of flat floor and 

objects with varying slopes and heights. 

 

 

Fig. 7.   A 3D terrain map representing the detected 

planes.  Color temperature represents height. 

VII. CONCLUSIONS 

In this paper, a real-time and accurate floor detection method 

is proposed that is tested on a mobile robotics platform while 

using two distinct sensor technologies. The method uses 

various parameters that can be tuned for scenarios where 

on-board computational resources are expensive, in order to 

render real-time floor detection performance.  The proposed 

method sub-sections the floor for overall improved execution 

time and selective processing of prioritized floor sections. 

Sensor error models are used to detect floor accurately up to 6 

meters away from the sensors and detect obstacles as low as 

1cm within the range of  3 meters.   The method currently uses 

surfels to remember floor state between consecutive 

observations. The surfel parameters are improved as the 

distance between the detected surfel and sensor decreases. 

The same concept can be used in future to track the floor 

surface in noisy environments such as floors crowded with 

people. Furthermore the presented method also proposes a 

flexible floor representation (using surfels) whose parameter 

accuracy can be improved by using multiple sensors 

simultaneously. 
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