
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3 Issue-3, July 2013

65

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C1604073313/2013©BEIESP

Abstract — In coloring graph idealization the minimum

number of required colors for graphic coloring is determined

in a way that no contiguous summit have the same color this

number is called chromatic graph number. We should decide if

then, a color for a given integral number M , so we use that

number with no contiguous summits of the same color there

have been presented several algorithms for decision and

idealization manners so for such as: reverse counting method

,space mood counting method and etc…that don’t follow multi

statement time.

Here by in this paper we present suitable solutions for this

problem by genetic algorithm. In order to evaluate the

performance of our new approach, we have conducted several

experiments on GCP instances taken from the well known

DIMACS Website. The results show that the proposed approach

has a high performance in time and quality of the solution

returned in solving graph coloring instances taken from DIMACS

website. The quality of the solution is measured here by

comparing the returned solution with the optimal one.

Index Terms: Graph Coloring Problems (GCPs), Parallel

Genetic Algorithms (PGAS), NP-hard, chromosome.

I. INTRODUCTION

The Graph Coloring Problem (GCP) is a well-known

NP-complete problem. Graph coloring includes both vertex

coloring usually refers to vertex coloring rather than edge

coloring. Given a number of vertices, which form a connected

graph, the objective is to color each vertex such that if two

vertices are connected in the graph (i.e. adjacent) they will be

colored with different colors.

Moreover, the number of different colors that can be used to

color the vertices is limited and a secondary objective is to

find the minimum number of different colors needed to color

a certain graph without violating the adjacency constraint.

That number for a given graph (G) is known as the Chromatic

Number (χ(G)) (1).

If k = {1, 2, 3...} and P(G, k) is the number of possible

solutions for coloring the graph G with k colors, then:

χ(G) = min(k: P(G, k) > 0) (1)

Graph coloring problems are very interesting from the

theoretical standpoint since they are a class of NP- complete

problems that also belong to Constraint Satisfaction Problems

(CSPs)

Manuscript Received July, 2013.

Saideh naderi, Department of Computer Engineering, Kerman Branch,

Islamic Azad University, Kerman, Iran.

Masoud jabbarian, Department of Computer Engineering, Kerman

Branch, Islamic Azad University, Kerman, Iran.

Vahid Sattari Naeini, Department of Computer Engineering, University

of Kerman, 7616914111 Kerman, Iran.

 The practical applications of Graph Coloring Problems

include but are not limited to:

1. Map coloring (2)

2. Scheduling (3)

3. Radio Frequency Assignment (4)

4. Register allocation (5)

5. Pattern Matching

6. Sudoku

In this paper we demonstrate the use of genetic algorithms in

solving the graph-coloring problem while strictly adhering to

the usage of no more than the number of colors equal to the

chromatic index to color the various test graphs.

II. THE REVIEW OF PREVIOUS WORKS

A great deal of research has been done to tackle the theoretical

aspects of the Graph Coloring Problem in terms of its

generalization as a Constraint Satisfaction Problem (8). The

problem’s various applications and solutions have been

discussed in detail in Porumbel’s paper (9).

Evolutionary computation and parameter control has been

detailed in a number of papers including ones by Back,

Hammel, and Schwefel (7) as well as work by Eiben,

Hinterding and Michalewicz (10). Srinivas and Patnaik

examined crossover and mutation probabilities for optimizing

genetic algorithm performance (6). Genetic algorithms and

evolutionary approaches have been used extensively in

solutions for the Graph Coloring Problem and its applications

(7,1).

 The concept of utilizing a crowd of individuals for solving

NP complete problems has also been the topic of various

papers. Most notably the Wisdom of Crowds concept has

been used in solving the Traveling Salesman Problem as well

as the Minimum Spanning Tree Problem (2,10).

There are generally three approaches to solve the Graph

coloring problems (GCP) (8, 9). The first one consists in

directly minimizing the number of colors by working in the

legal colors space of the problem. In the second approach, the

number of colors is fixed and no conflict is allowed, thus,

some vertices might not be colored.

 The objective here is to maximize the number of colored

vertices (3,5). The third approach consists of first choosing a

number of colors K, and then iteratively try to minimize the

number of conflicts for the candidate K .

Whenever a solution with zero conflicts has been found, K is

decremented by one and the procedure continues until were

each a K where the number of conflicts cannot be equal to

zero. As a result, the last legal K will be returned as the

best solution (4).

A Novel Presentation of Graph Coloring

Problems Based on Parallel Genetic Algorithm

Saideh Naderi, Masoud Jabbarian, Vahid Sattari Naeini

A Novel Presentation of Graph Coloring Problems Based on Parallel Genetic Algorithm

66

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C1604073313/2013©BEIESP

Genetic Algorithms (Gas) are categorized as global search

heuristics and are generally able to find good solutions in

reasonable amount of time.

A genetic algorithm is an iterative method that evolves a

population of elements, which are encoding strings

representing a possible selection for a given real-world

problem. GAs have been successfully applied to problems

that are difficult to solve using conventional techniques or

procedures. Common application areas are: scheduling

problems (1), graph coloring problems (4), traveling salesman

problem, optimization problems (5), network routing

problems for circuit-switched networks, financial marketing,

bio-informatics and genomics. Gas are easily parallelized

algorithms. Parallel genetic algorithms (PGAs) are parallel

implementations of GAs that can provide gain in terms of

computational performance and scalability. There exist two

major kinds of parallelism in genetic algorithms:

In the computation of the fitness functions of individuals and

2- in the application of genetic operators (selection, crossover

and mutation). An overview of theoretical advances,

computing issues, applications and future trends in parallel

genetic algorithms can be found in (6,9) A more detailed

discussion of parallel genetic algorithms can be found in (2).

A general framework for studying and analyzing PGAs was

proposed by Alba and Troya (5,10).

Recently, GAs can be applied for supervised and

unsupervised data mining sessions. For data mining purposes

we use population individuals as elements defined by

attributes and values. These elements or individuals represent

candidate production rules.

III. GRAPH COLORING PROBLEM

Given an undirected graph G = (V, E) and color class C = (1,2,

 , k0) , the GCP is to color each node in such a way that no

two nodes connected by an edge are colored with the same

color with a minimum number (the chromatic number). The

minimum number of colors (or the minimum color classes)

needed to color a specific graph G , is called the chromatic

number χ(G) . A coloring which used k colors is called a k −

coloring and can be regarded as the partition of the vertices of

the graph to distinct color classes. Given a specific coloring

assignment, if two adjacent vertices have the same color we

say that these vertices are in conflict and call the connecting

edge between them, a conflicting edge. Suppose V = {v1, v2

,… , vn} be the node set and E = {e1, e2 ,… , em} be the edge

set of graph G , we denote :

A(G) = (aij)n×n as the adjacent matrix of the nodes.

Aij= (2)

Hertz and De Werra (2) proposed a simple coding for GCP

and a natural 1-exchange neighborhood.

 In addition, they introduced a pre-processing technique

which removes some independent sets from a graph leading to

a reduced residual graph. Their algorithm, combined with this

preprocessing, has produced excellent results on random

graphs. Fleurent and Ferland investigated a tabu algorithm

and in particular a hybrid algorithm combining genetic

algorithm and tabu search (4).

 They replaced random mutation by tabu search and develop a

specialized crossover operator based on confliction nodes

(adjacent nodes having the same color).

The graph coloring problem can be regarded as the following

optimization problem: to determine a partition of V in a

minimum number (the chromatic number χ(G)) of color

classes such no conflicting edges existed.

 Therefore, the GCP is to optimize the two objectives: the

number of color classed and the number of the conflicting

edges. A optimal coloring of G is a k − coloring with the

chromatic number χ(G) . Therefore, the GCP can be

formulated as the following bi-objective programming

problem:

Min F(x) = (k(x), p(x)) （3）

where k(x) is the number of color classes of individual x ,and

p(x) is simply the number of the conflicting edges of

individual x .

 (4)

Optimizing k(x) means searching the chromatic number, and

optimizing p(x) means searching for the k(x) − coloring

assignment. Thus simultaneously optimizing both k(x) and

p(x) means looking for not only a k(x) − coloring assignment,

but also a χ(G) – coloring assignment. The goal of the

optimization process here is to minimize F(x) until k(x) =

χ(G) , p(x) = 0 , which corresponds to the optimal solution of

the GCP.

IV. PARALLEL GENETIC ALGORITHMS

Genetic Algorithms (GAs) (9) are evolutionary algorithms

based on the idea of natural selection and evolution. GAs have

been successfully applied to a wide variety of problems.

In GAs, there is a population of potential solutions called

individuals.

 The GA performs different genetic operations on the

population, until the given stopping criteria are met. The

Parallel Genetic Algorithm (PGA) is an extension of the GA.

The well-known advantage of PGAs is their ability to

facilitate different subpopulations to evolve in diverse

directions simultaneously (10). It is shown that PGAs speedup

the search process and can produce high quality solutions on

complex problems (1, 6, 8).

There are mainly three different types of PGA (3). First,

Master-Slave PGA in which, there is only one single

population and the population is divided into fractions. Each

fraction is assigned to one slave process on which genetic

operations are performed. Second, Multi-Population PGA

(also called Island PGA) that contains a number of sub

populations, which can occasionally exchange individuals.

The exchange of individuals is called migration. Migration

is controlled using several parameters. Multi-population

PGAs are also known as Island PGA, since they resemble the

“island model” in population genetics that considers

relatively isolated demes. Finally, the Fine-Grained PGA

which consists of only one single population, that is designed

to run on closely linked massively parallel processing

systems.

A. Models of parallel genetic algorithms

There are many models of parallelism in evolutionary

algorithms: master{slave PGA, migration based PGA,

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3 Issue-3, July 2013

67

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C1604073313/2013©BEIESP

 PGA with over lapin subpopulations, population learning

algorithm, hybrid models etc. (7,5).

The above models are characterized by the following criteria:

_ number of populations : one, many;

_ population types : disjoint, overlapping;

_ population topologies : various graph models;

_ interaction model : isolation, migration, diusion;

_ recombination, evaluation of individuals, selection:

distributed/local, centralized/global;

_ synchronization on iteration level: synchronous/

asynchronous algorithm.

The most common models of PGA are:

- master-slave : one global population, global genetic

operations, fitness functions computed by slave

processors);

_ massively parallel (cellular): static overlapping

subpopulations with a local structure, local genetic

operations and evaluation;

_ migration (with island as a sub model): static disjoint

subpopulations/islands, local genetic operations and

migration;

_ hybrid : combination of one model on the upper level and

other model on the lower level (the speedup achieved in

hybrid models is equal to product of level speed ups).

V. PROPOSED APPROACH

Defect of the old algorithms is convergence speed and not

finding the general EXTERMEM so power full and

efficient algorithms like natural idealization methods have

been created.

Some of these algorithms are: genetic algorithm ,comparing

heating, idealization of pieces group, used idealization ,

and finally evolutionary algorithms. All of these new

algorithms produce new places in the searching space by

doing some functions ,and moves to the idealized places

gradually.

 this method is based on a kind of intelligent searching

in a big but limited space ;and unlike the old ones ,these

algorithms don’t need any derivatives computation so

then won’t be any limitation for the cost unconnected

function and also connected derivatives.

We present a new method for coloring the graph below(fig

1) with four colors in a way that the contiguous graphs

are not of the same color .in order to solve the graph with

genetic algorithm we need to follow the below steps:

Fig.1: Graph coloring

Step1: turn it in to genetic software.

Step2: Then we consider gene for each chromosome with

the graph head numbers.

Step3: In this problem, graph has got seven heads, so for

each chromosome we consider seven genes. for each gene

we specialize a random color . The function of Insert

Matrix Color is as follows:

Algorithm1:The function of Insert Matrix Color () begin

readln (txtcolor);

L:=lenght(txtcolor);

Matrixcolor =Array[L];

For all i:=0 to L do

begin

matrixcolor(i):=copy(txtcolor, i+1,1);

end;

Step4: The oriinal population is a number of chromosome

which is regarded as 100 here in this paper we examine

seven chromosome of produced population .In figure.2,

people with the chromosome of this population are

shown.

Algorithm2:The function of Create Population()

begin

Randomize;

pop=random(100);

readln (vertis);

populate=Array[pop,vertis];

for all i:=0 to pop do

begin

for j:=0 to vertis do

begin

fork if j= vertis then

populate(i,j):=0

else

populate(i,j):=matrixcolor(r);

end;

end;

end;

Step 5:

if you reach to the chromosome or chromosomes ,which

can be the problem answer , algorithm will end in the

original population after random coloring of the

chromosomes ,algorithm examines them to know which

chromosome can be the answer .for example here we

examine chromosomes of (6).

Algorithm3:Thefunction of Calculate Fitness()

begin

answer=Array[pop,vertis];

k:=(vertis*vertis)-vertis;

for i:=0 to pop do

begin

forall j:=0 to vertis do

begin

fork for p:=0 to vertis do

begin

if (j<>p) then

begin

if (matrixvertis (j,p)=0) then s++ ;

if (matrixcolor(j,p)=1) and (populate(i,p)<>populate(i,j))

then s++;

end;

end;

end;

populate(i,vertis):=str(s);

A Novel Presentation of Graph Coloring Problems Based on Parallel Genetic Algorithm

68

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C1604073313/2013©BEIESP

if s=k then

begin

flag=flag+1;

;x:=i

forall n:=x to i do

begin

forall e:=0 to vertis do

begin

answer(n,e):=populate(n,e);

end;

end;

end;

s:=0;

end;

by examining seven chromosomes of the original

population we find out that chromosome number 1 and 5

can be chosen as the answer, because their random

received chromosomes in this example are the correct

answer. Here, by using chromosome 1 we color the graph as

below. For example if we choose chromosome 2as the

answer there would be failure in the problem because the

heads 5 and 3 one contiguous with red color(figure .3).

Fig.2: chromosome display and specifying random

color.

Fig.3: The graph resulted from coloring

A. Chromosome cutting and generating new child

Below ,then is an example of producing new child, Just

because we use this form in the project . cutting cost in

this project is regarded :cross =0.07, so all the parents are

not able to generate ,which is agreed with the generating

rules also ,because it may happen in the nature too. Here

we use single spot method in order to produce child. We

divide two chromosomes in half and produce the new

child by mixing the results .

Algorithm4:The function of cross()

begin

newpop:=pop*0.7;

mutation:=newpop*0.01;

newpop:=newpop+mutation;

mid:=(vertis/2);

newpopulate=Array[newpop+mutation,vertis];

a:=pop-newpop;

while (i<pop-a) do

begin

for j:=0 to vertis do

begin

newpopulate(i,j):=populate(i+1,j);

newpopulate(i+1,j):=populate(i,j);

end;
i+=2;
End;

End;

Fig.4 : producing new child

B. Chromosome mutation method

mutation cost in this paper is 0.01 in order to have

mutation of one chromosome ,we choose two random

spots and change their places. This process is shown

below through an example.

Algorithm5:The function of Mutation()

begin

if mutation<>0

begin

while (i<mutation) do

begin

r:=rnd_next(0,pop);

L:=rnd_next(0,L);

u:=rnd_next(0,L);

temp:=populate(r,u);

populate(r,u):=populate(r,L);

populate(r,L):=temp;

forall j:=0 to vertis do

begin

mutationpop(i,j):=populate(r,j);

end;

i:=i+1;

end;

Fig. 5: Generate new child

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3 Issue-3, July 2013

69

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C1604073313/2013©BEIESP

VI. EXPERIMENT RESULTS AND ANALYSIS

In decision making problems like returning to the past the

answer is a collection of indexes which are chosen from

a wider collection of choices;

--
1http://mat.gsia.cmu.edu/COLOR03/
 or it’s a chain of decisions that find a final answer for

the given problem any way the collection of possible

choices or decisions is too vast and the time of related

algorithms is not sensible Returning to the past method

doesn’t have a positive effect on reduction of time ; but it

try s to approve the time of algorithm for the length of

the small data by reducing of examinable manners.

genetic algorithm uses natural selection method of draw

in to find a suitable formula for predicting and adjusting

of the sample actually genetic algorithm is a method of

searching for finding an ideal solution of the searching

problems.

The effectiveness of the proposed algorithm has been

experimented in this part.

Our proposed algorithm has been implemented using multi

pascal language (Fig.5) and has been applied to a variety of

graph coloring instances.

The GCP instances used in this section are from a

benchmarking website formally named DIMACS graphs
1
.

Fig. 5: Graph coloring by genetic coloring with

12vertices.

Next, we have compared our algorithm with the parallel

genetic-tabu algorithm (PGTA) designed to solve GCPs (10).

In terms of the resulting chromatic number, both algorithms

return the same result, except for the problem instancequeen7

7.col, that the PGTA returns 7 while the HPGAGCP returns 8.

Figure 6 shows the comparative results of our proposed

algorithm and PGTA with 24 processors in terms of runtime.

According to the figure, the results of our proposed algorithm

are much better in all cases.

Using this monitoring tool, the user can watch how many

CPUs are available, which of them are online, their average

load, etc.

Figures 7 and 8 show the computational performance of

various population sizes over various numbers of CPUs.

The population sizes are 5000, 10000individuals. Each data

set was executed 3 times. The times reported are the average

computation time, the average communication time and the

average total time.

Fig.6: Comparison of the proposed algorithm and PGTA

with 24 Processors.

Fig.7: Average total time (in seconds) for various

numbers of CPUs of population size 5000 individuals.

Fig. 8. Average total time (in seconds) for various

numbers of CPUs of population size 10000 individuals.

Looking at Table 1, comparing total time for 1 CPU and total

time for 35 CPUs, we can understand the big difference in

time, and how many times faster the results

occur with parallelization. To be more specific with 35 CPUs

and a population size of 5000 individuals, we can achieve a

speedup of 512 times (total time cpu [1]/total time cpu(5).

Figure 2 also shows something similar. For the

2ndexperiment, the sample was doubled, from 5000 to 10000.

Even the result with 35 CPUs here took 4 times more

compared with the results of the 5000 sample. Time for 1

CPU was also increased, almost to 4 times.

A Novel Presentation of Graph Coloring Problems Based on Parallel Genetic Algorithm

70

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C1604073313/2013©BEIESP

Table 1.POPULATION SIZE 5000: TIME (IN

SECONDS)

Another thing to admire is that when the number of CPUs

decreases, times don't decrease in the same frequency. From 8

CPUs to 4, total time didn't increased by 2 times. From 28.50

seconds rose up to 111.43, almost 4 times bigger. So when the

number of CPUs was divided to 2, total time, as well a

computational time, was quadrupled. Something similar

happened from 4 CPUs to 2 CPUs.

VII. CONCLUSION AND DISCUSSION AND FUTURE

WORK

It seems that genetic algorithm can find an ideal answer

for graph coloring while it’s efficiency depends on the

way of encoding crossover and mutation .

It seems that using matrix show and heuristic is better

than the other method and closer to the actual answer.

genetic algorithm is better than the other methods for

graph coloring. we know that the best non genetic

algorithm is presented for coloring of the special manners

of genetic algorithm.

In this paper after producing a child its value is examined

immediately and kept in a part of chromosome then after

using some computation on the graph if the chromosome

value is equal to graph the chromosome is chosen as the

answer and the algorithm ends.

Simulation experiments reported in the paper provide an

evidence that parallel genetic algorithms can be efficiently

used for a class of graph coloring problems.

 Additionally, genetic algorithms are proved to be problems

where parallel techniques can take place, and our results

assure the above statement. These remarkable results are the

consequence of the proper fitness function, which in our

situation seems to be good enough.

The importance of these results has to do with the data set.

The algorithms described here can also be applied to the

various subsets of the general GCP. High-performance

computing still seems to be the discipline of computer science

to find out solutions on such kind of problems. Using several

real world data sets, scientists may come to important results.

The genetic algorithm provides new hypo these is by

continuous changing and mixing the pieces instead of

searching general to specific or simple to complex hypo

these is in each phase a collection of hypo these is which is

called population is provided by replacing a part of

present population with the children produced from the

best hypo these is. we hope that by presenting more ideal

methods for mutation crossover encoding then would be

better solutions for graph coloring as well.

Using PSO algorithm is a method which can be used in

the future. This method is evolutionary ins pined by the

social behavior of the bird flocks or fish groups.

REFERENCES

1. A. Hertz , and D. de Werra, Using tabu search techniques for graph

coloring, Computing, vol. 39, no. 4, pp. 345-351, 1987.

2. E. Burke and S. Petrovic, Recent research directions in automate

timetabling, European Journal of operation research, vol. 140, no.

2,pp. 266-280, 2002.

3. Glass, C. A.|Prugel-Bennett, Genetic algorithm for graph coloring:

Exploration of Galinier and Hao's algorithm, J. Combinatorial

Optimization, pp,. 229-236, 2009.

4. D. Lim, Y-S. Ong, Y. Jin, B. Sendhoff and B-S. Lee, Efficient

hierarchical parallel genetic algorithms using Grid computing, Future

Generation Computer Systems, vol. 23, pp. 658-670, 2010.

5. Z. Konfrst, Parallel genetic algorithms: Advances, Computing trends,

Applications and Perspectives, Proc. of the 18th International Parallel

and Distributed Processing Symposium (IPDPS’04), 2011.

6. Ashby, Leif H., and Yampolskiy, Roman V. , Genetic Algorithm and

Wisdom of Artificial Crowds Algorithm Applied to Light Up, The 16th

International Conference on Computer Games: AI, Animation, Mobile,

Interactive, Multimedia, Educational & Serious Games, Louisville,

KY, USA: pp. 27-30, 2011.

7. J. Chen, E. Antipov, B. Lemieux, W. Cedeno, and D. H. Wood, DNA

computing implementing genetic algorithms. In L. F. Landweber, E.

Winfree, R. Lipton, and S. Freeland, editors, Evolution as

Computation, pages 39--49, New York, Springer Verlag, 2008.

8. Burke, E., Newall, J, A Multi-stage Evolutionary Algorithm for the

Timetable Problem. IEEE Trans. Evol. Comput, pp. 63–74, 2007.

9. Carter, M., Laporte, G., Lee, S.Y, Examination Timetabling:

Algorithmic Strategies and Applications. J. Oper. Res. Soc. 47 , pp.

373–383, 2006.

10. B. B. Mabrouk, H. Hasni, and Z. Mahjoub, On aparallel genetic-tabu

search based algorithm forsolving the graph colouring problem.

European Journalof Operational Research, 197(3):1192–1201, 2009.

