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Abstract — In  coloring  graph  idealization  the  minimum  

number  of  required  colors  for  graphic  coloring  is  determined  

in  a way  that  no  contiguous  summit have  the  same  color  this  

number  is  called  chromatic  graph number. We  should decide  if  

then,  a color for a given  integral  number  M ,  so  we  use  that  

number  with  no  contiguous  summits  of  the  same  color  there  

have  been   presented  several  algorithms  for  decision  and  

idealization  manners  so  for  such as: reverse  counting  method 

,space  mood  counting  method and  etc…that  don’t  follow  multi  

statement  time.  

Here by in  this  paper  we  present  suitable  solutions  for  this  

problem  by  genetic  algorithm. In order to evaluate the 

performance of our new approach, we have conducted several 

experiments on GCP instances taken from the well  known 

DIMACS Website. The results show that the proposed approach 

has a high performance in time and quality of the solution 

returned in solving graph coloring instances taken from DIMACS 

website. The quality of the solution is measured here by 

comparing the returned solution with the optimal one.  

 
Index Terms:  Graph Coloring Problems (GCPs), Parallel 

Genetic Algorithms (PGAS), NP-hard, chromosome.  

I. INTRODUCTION 

The Graph Coloring Problem (GCP) is a well-known 

NP-complete problem. Graph coloring includes both vertex 

coloring usually refers to vertex coloring rather than edge 

coloring. Given a number of vertices, which form a connected 

graph, the objective is to color each vertex such that if  two 

vertices are connected in the graph (i.e. adjacent) they will be 

colored with different colors.  

Moreover, the number of different colors that can be used to 

color the vertices is limited and a secondary objective is to 

find the minimum number of different colors needed to color 

a certain graph without violating the adjacency constraint. 

That number for a given graph (G) is known as the Chromatic 

Number   (χ(G)) (1). 

If k = {1, 2, 3...} and P(G, k) is the number of possible 

solutions for coloring the graph G with k colors, then: 

χ(G) = min(k: P(G, k) > 0)                      (1) 

Graph coloring problems are very interesting from the 

theoretical standpoint since they are a class of NP- complete 

problems that also belong to Constraint Satisfaction Problems 

(CSPs) 
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 The practical applications of Graph Coloring Problems 

include but are not limited to: 

1. Map coloring (2) 

2. Scheduling (3) 

3. Radio Frequency Assignment (4) 

4. Register allocation (5) 

5. Pattern Matching 

6. Sudoku 

In this paper we demonstrate the use of genetic algorithms in 

solving the graph-coloring problem while strictly adhering to 

the usage of no more than the number of colors equal to the 

chromatic index to color the various test graphs. 

II. THE REVIEW OF PREVIOUS WORKS 

A great deal of research has been done to tackle the theoretical 

aspects of the Graph Coloring Problem in terms of its 

generalization as a Constraint Satisfaction Problem (8). The 

problem’s various applications and solutions have been 

discussed in detail in Porumbel’s  paper (9). 

Evolutionary computation and parameter control has been 

detailed in a number of papers including ones by Back, 

Hammel, and Schwefel (7) as well as work by Eiben, 

Hinterding and Michalewicz (10). Srinivas and Patnaik 

examined crossover and mutation probabilities for optimizing 

genetic algorithm performance (6). Genetic algorithms and 

evolutionary approaches have been used extensively in 

solutions for the Graph Coloring Problem and its applications 

(7,1). 

 The concept of utilizing a crowd of individuals for solving 

NP complete problems has also been the topic of various 

papers. Most notably the Wisdom of Crowds concept has 

been used in solving the Traveling Salesman Problem as well 

as the Minimum Spanning Tree Problem (2,10).  

There are generally three approaches to solve the Graph 

coloring problems ( GCP) (8, 9). The first one consists in 

directly minimizing the number of colors by working in the 

legal colors space of the problem. In the second approach, the 

number of colors is fixed and no conflict is allowed, thus, 

some vertices might not be colored. 

 The objective here is to maximize the number of colored 

vertices (3,5). The third approach consists of first choosing a 

number of colors K, and then iteratively try to minimize the 

number of conflicts for the candidate K . 

Whenever a solution with zero conflicts has been found, K is 

decremented by one and the procedure continues until were 

each a K where the number of conflicts cannot be equal to 

zero. As a result, the last legal K will be returned as the 

best solution (4). 
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Genetic Algorithms (Gas) are categorized as global search 

heuristics and are generally able to find good solutions in 

reasonable amount of time.  

A genetic algorithm is an iterative method that evolves a 

population of elements, which are encoding strings 

representing a possible selection for a given real-world 

problem. GAs have been successfully applied to problems 

that are difficult to solve using conventional techniques or 

procedures. Common application areas are: scheduling 

problems (1), graph coloring problems (4), traveling salesman 

problem, optimization problems (5), network routing 

problems for circuit-switched networks, financial marketing, 

bio-informatics and genomics. Gas are easily parallelized 

algorithms. Parallel genetic algorithms (PGAs) are parallel 

implementations of GAs that can provide gain in terms of 

computational performance and scalability. There exist two 

major kinds of parallelism in genetic algorithms: 

In the computation of the fitness functions of individuals and 

2- in the application of genetic operators (selection, crossover 

and mutation). An overview of theoretical advances, 

computing issues, applications and future trends in parallel 

genetic algorithms can be found in (6,9) A more detailed 

discussion of parallel genetic algorithms can be found in (2).  

A general framework for studying and analyzing PGAs was 

proposed by Alba and Troya (5,10). 

Recently, GAs can be applied for supervised and 

unsupervised data mining sessions. For data mining purposes 

we use population individuals as elements defined by 

attributes and values. These elements or individuals represent 

candidate production rules. 

III. GRAPH COLORING PROBLEM  

Given an undirected graph G = (V, E) and color class C = (1,2,  

 , k0 ) , the GCP is to color each node in such a way that no 

two nodes connected by an edge are colored with the same 

color with a minimum number (the chromatic number). The 

minimum number of colors (or the minimum color classes) 

needed to color a specific graph G , is called the chromatic 

number χ(G) . A coloring which used k colors is called a k − 

coloring and can be regarded as the partition of the vertices of 

the graph to distinct color classes. Given a specific coloring 

assignment, if two adjacent vertices have the same color we 

say that these vertices are in conflict and call the connecting 

edge between them, a conflicting edge. Suppose V = {v1, v2 

,… , vn} be the node set and E = {e1, e2 ,… , em} be the edge 

set of graph G , we denote : 

A(G) = (aij)n×n  as the adjacent matrix of the nodes. 

Aij=          (2) 

Hertz and De Werra (2) proposed a simple coding for GCP 

and a natural 1-exchange neighborhood. 

 In addition, they introduced a pre-processing technique 

which removes some independent sets from a graph leading to 

a reduced residual graph. Their algorithm, combined with this 

preprocessing, has produced excellent results on random 

graphs. Fleurent and Ferland investigated a tabu algorithm 

and in particular a hybrid algorithm combining genetic 

algorithm and tabu search (4). 

 They replaced random mutation by tabu search and develop a 

specialized crossover operator based on confliction nodes 

(adjacent nodes having the same color). 

The graph coloring problem can be regarded as the following 

optimization problem: to determine a partition of V in a 

minimum number (the chromatic number χ(G) ) of color 

classes such no conflicting edges existed. 

 Therefore, the GCP is to optimize the two objectives: the 

number of color classed and the number of the conflicting 

edges. A optimal coloring of G is a k − coloring with the 

chromatic number χ(G) . Therefore, the GCP can be 

formulated as the following bi-objective programming 

problem: 

Min F(x) = (k(x), p(x))  （3） 

where k(x) is the number of color classes of individual x ,and 

p(x) is simply the number of the conflicting edges of 

individual x . 

 (4) 

Optimizing k(x) means searching the chromatic number, and 

optimizing p(x) means searching for the k(x) − coloring 

assignment. Thus simultaneously optimizing both k(x) and 

p(x) means looking for not only a k(x) − coloring assignment, 

but also a χ(G) – coloring assignment. The goal of the 

optimization process here is to minimize F(x) until k(x) = 

χ(G) , p(x) = 0 , which corresponds to the optimal solution of 

the GCP. 

IV. PARALLEL GENETIC ALGORITHMS 

Genetic Algorithms (GAs) (9) are evolutionary algorithms 

based on the idea of natural selection and evolution. GAs have 

been successfully applied to a wide variety of problems. 

In GAs, there is a population of potential solutions called 

individuals. 

 The GA performs different genetic operations on the 

population, until the given stopping criteria are met. The 

Parallel Genetic Algorithm (PGA) is an extension of the GA. 

The well-known advantage of PGAs is their ability to 

facilitate different subpopulations to evolve in diverse 

directions simultaneously (10). It is shown that PGAs speedup 

the search process and can produce high quality solutions on 

complex problems (1, 6, 8). 

There are mainly three different types of PGA (3). First, 

Master-Slave PGA in which, there is only one single 

population and the population is divided into fractions. Each 

fraction is assigned to one slave process on which genetic 

operations are performed. Second, Multi-Population PGA 

(also called Island PGA) that contains a number of sub 

populations, which can occasionally exchange individuals.  

The exchange of individuals is called migration. Migration 

is controlled using several parameters. Multi-population 

PGAs are also known as Island PGA, since they resemble the 

“island model” in population genetics that considers 

relatively isolated demes. Finally, the Fine-Grained PGA 

which consists of only one single population,  that is designed 

to run on closely linked massively parallel processing 

systems. 

A.  Models of parallel genetic algorithms 

There are many models of parallelism in evolutionary 

algorithms: master{slave PGA, migration based PGA, 
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 PGA with over lapin subpopulations, population learning 

algorithm, hybrid models etc. (7,5). 

The above models are characterized by the following criteria: 

_  number of populations : one, many; 

_  population types : disjoint, overlapping; 

_  population topologies : various graph models; 

_  interaction model : isolation, migration, diusion; 

_  recombination, evaluation of individuals, selection: 

distributed/local, centralized/global; 

_ synchronization on iteration level: synchronous/ 

asynchronous algorithm. 

The most common models of PGA are: 

- master-slave : one global population, global genetic 

operations, fitness functions computed by slave 

processors); 

_ massively parallel (cellular): static overlapping 

subpopulations with a local structure, local genetic 

operations and evaluation; 

_  migration (with island as a sub model): static disjoint 

subpopulations/islands, local genetic operations and 

migration; 

_  hybrid : combination of one model on the upper level and 

other model on the lower level (the speedup achieved in 

hybrid models is equal to product of level speed ups). 

V.  PROPOSED APPROACH 

Defect  of  the old  algorithms  is  convergence   speed  and  not  

finding  the  general  EXTERMEM  so  power  full  and  

efficient  algorithms  like  natural  idealization  methods  have  

been  created. 

Some  of  these  algorithms  are: genetic algorithm ,comparing  

heating, idealization  of  pieces  group,  used  idealization , 

and  finally  evolutionary   algorithms. All of  these  new  

algorithms  produce  new  places  in  the  searching  space  by  

doing  some  functions ,and  moves  to  the  idealized places  

gradually. 

 this   method  is  based  on  a  kind   of  intelligent  searching   

in  a big  but  limited  space ;and  unlike  the  old  ones ,these  

algorithms  don’t  need  any  derivatives   computation  so   

then  won’t  be  any  limitation   for  the   cost  unconnected  

function  and  also  connected  derivatives.  

We present a new method for  coloring  the  graph  below(fig 

1)  with  four  colors in  a  way  that  the  contiguous  graphs  

are  not  of  the  same  color .in  order  to  solve  the  graph  with 

genetic algorithm  we  need to follow the below steps: 

 
 

Fig.1: Graph coloring 

 

Step1:  turn it in to genetic software. 

Step2: Then  we  consider gene  for  each  chromosome  with  

the  graph  head  numbers.  

Step3: In  this  problem, graph  has  got  seven  heads, so  for  

each  chromosome  we  consider  seven  genes. for each  gene 

we  specialize  a  random  color . The function of  Insert 

Matrix Color is as follows: 

Algorithm1:The function of  Insert Matrix Color ( ) begin 

readln (txtcolor); 

L:=lenght(txtcolor); 

Matrixcolor =Array[L]; 

For all i:=0 to L do 

begin 

matrixcolor(i):=copy(txtcolor, i+1,1); 

end; 

Step4: The  oriinal  population  is  a  number  of   chromosome 

which  is  regarded  as 100 here  in  this  paper  we  examine  

seven  chromosome  of  produced  population .In  figure.2,  

people  with  the  chromosome  of  this  population  are   

shown. 

Algorithm2:The function of Create Population( ) 

begin 

Randomize; 

pop=random(100); 

readln (vertis); 

populate=Array[pop,vertis]; 

for all i:=0 to pop do 

begin 

for j:=0 to vertis do 

begin 

fork if j= vertis  then 

populate(i,j):=0 

else 

populate(i,j):=matrixcolor(r); 

end; 

end; 

end; 

Step 5: 

if  you  reach  to  the  chromosome  or  chromosomes ,which  

can  be  the  problem  answer , algorithm  will  end  in  the  

original  population  after   random  coloring  of  the  

chromosomes ,algorithm  examines  them  to  know  which  

chromosome  can  be the  answer .for  example  here  we  

examine chromosomes  of (6). 

Algorithm3:Thefunction of  Calculate Fitness() 

begin 

answer=Array[pop,vertis]; 

k:=(vertis*vertis)-vertis; 

for i:=0 to pop do 

begin 

forall j:=0 to vertis do 

begin 

fork for p:=0 to vertis do 

begin 

if (j<>p) then 

begin 

if (matrixvertis (j,p)=0) then s++ ; 

if (matrixcolor(j,p)=1) and (populate(i,p)<>populate(i,j)) 

then s++; 

end; 

end; 

end; 

populate(i,vertis):=str(s); 
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if s=k then 

begin 

flag=flag+1; 

;x:=i 

forall n:=x to i do 

begin 

forall e:=0 to vertis do 

begin 

answer(n,e):=populate(n,e); 

end; 

end; 

end; 

s:=0; 

end; 

by  examining  seven  chromosomes  of  the  original   

population  we  find  out  that  chromosome  number  1 and 5 

can  be  chosen  as  the  answer, because  their  random  

received chromosomes  in  this  example  are  the  correct  

answer. Here, by using chromosome 1 we color the graph  as  

below. For  example  if  we  choose  chromosome  2as  the 

answer  there  would  be failure  in the  problem  because  the  

heads  5 and 3  one contiguous  with  red  color( figure .3). 

 

 
Fig.2: chromosome display  and  specifying  random  

color. 

 

 
Fig.3: The graph  resulted  from  coloring 

 

A.  Chromosome cutting and generating  new child 

Below ,then is an example  of  producing  new  child, Just  

because  we  use this  form  in  the  project . cutting  cost  in  

this  project  is  regarded :cross =0.07, so all the parents are 

not  able  to  generate ,which  is  agreed  with  the  generating  

rules  also ,because  it  may  happen  in  the  nature  too. Here  

we  use  single  spot  method  in  order  to  produce  child. We  

divide two  chromosomes  in  half  and  produce  the  new  

child  by  mixing  the  results . 

 

Algorithm4:The function of cross( ) 

begin 

newpop:=pop*0.7; 

mutation:=newpop*0.01; 

newpop:=newpop+mutation; 

mid:=(vertis/2); 

newpopulate=Array[newpop+mutation,vertis]; 

a:=pop-newpop; 

while (i<pop-a) do 

begin 

for j:=0 to vertis do 

begin 

newpopulate(i,j):=populate(i+1,j); 

newpopulate(i+1,j):=populate(i,j); 

end; 
i+=2; 
End; 

End; 

 

 

Fig.4 : producing  new  child 

B. Chromosome  mutation  method 

mutation  cost  in  this  paper  is 0.01  in  order  to  have  

mutation  of  one  chromosome ,we  choose  two  random  

spots  and  change  their  places. This  process  is  shown  

below  through  an example. 

Algorithm5:The function of Mutation() 

begin 

if mutation<>0 

begin 

while (i<mutation) do 

begin 

r:=rnd_next(0,pop); 

L:=rnd_next(0,L); 

u:=rnd_next(0,L); 

temp:=populate(r,u); 

populate(r,u):=populate(r,L); 

populate(r,L):=temp; 

forall j:=0 to vertis do 

begin 

mutationpop(i,j):=populate(r,j); 

 

end; 

i:=i+1; 

end; 

 
Fig. 5: Generate new child 

 

 

 

 

 



International Journal of Soft Computing and Engineering (IJSCE) 

ISSN: 2231-2307, Volume-3 Issue-3, July 2013 

69 

 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: C1604073313/2013©BEIESP 

VI. EXPERIMENT RESULTS AND ANALYSIS 

In  decision  making  problems  like  returning  to  the  past  the  

answer  is  a  collection  of  indexes  which  are  chosen  from  

a  wider  collection  of  choices; 

-------------------------------------------------------------- 
1http://mat.gsia.cmu.edu/COLOR03/ 
 or  it’s  a chain  of  decisions  that  find  a  final  answer  for  

the  given  problem  any way   the collection  of  possible   

choices  or  decisions  is  too  vast  and  the  time  of  related  

algorithms  is  not  sensible Returning  to  the  past method  

doesn’t   have  a positive  effect  on  reduction  of  time ; but  it  

try s  to  approve   the  time  of  algorithm  for  the  length  of  

the  small  data  by  reducing  of  examinable  manners.  

genetic   algorithm  uses  natural   selection  method  of  draw  

in  to  find  a  suitable  formula  for  predicting  and  adjusting  

of  the  sample  actually  genetic  algorithm  is a  method  of  

searching  for  finding  an  ideal  solution  of  the  searching  

problems. 

The effectiveness of the proposed algorithm has been 

experimented in this part.  

Our proposed algorithm has been implemented using multi 

pascal language ( Fig.5)  and has been applied to a variety of 

graph coloring instances. 

The GCP instances used in this section are from a 

benchmarking website formally named DIMACS graphs
1
. 

 
 

Fig. 5: Graph coloring  by  genetic  coloring with 

12vertices. 

 

Next, we have compared our algorithm with the parallel 

genetic-tabu algorithm (PGTA) designed to solve GCPs (10). 

In terms of the resulting chromatic number, both algorithms 

return the same result, except for the problem instancequeen7 

7.col, that the PGTA returns 7 while the HPGAGCP returns 8. 

Figure 6 shows the comparative results of our proposed 

algorithm and PGTA with 24 processors in terms of runtime. 

According to the figure, the results of our proposed algorithm 

are much better in all cases. 

Using this monitoring tool, the user can watch how many 

CPUs are available, which of them are online, their average 

load, etc. 

Figures 7 and 8 show the computational performance of 

various population sizes over various numbers of CPUs.  

The population sizes are 5000, 10000individuals. Each data 

set was executed 3 times. The times reported are the average 

computation time, the average communication time and the 

average total time. 

 
Fig.6: Comparison of the proposed algorithm and PGTA 

with 24 Processors. 

 

 
Fig.7: Average total time (in seconds) for various 

numbers of CPUs of  population size 5000 individuals. 

 

 
Fig. 8. Average  total time (in seconds) for various 

numbers of CPUs of population size 10000 individuals. 

 

Looking at Table 1, comparing total time for 1 CPU and total 

time for 35 CPUs, we can understand the big difference in 

time, and how many times faster the results  

occur with parallelization. To be more specific with 35 CPUs 

and a population size of 5000 individuals, we can achieve a 

speedup of 512 times (total time cpu [1]/total time cpu(5). 

Figure 2 also shows something similar. For the 

2ndexperiment, the sample was doubled, from 5000 to 10000. 

Even the result with 35 CPUs here took 4 times more 

compared with the results of the 5000 sample. Time for 1 

CPU was also increased, almost to 4 times. 
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Table 1.POPULATION SIZE 5000: TIME (IN 

SECONDS) 
 

 
 

Another thing to admire is that when the number of CPUs 

decreases, times don't decrease in the same frequency. From 8 

CPUs to 4, total time didn't increased by 2 times. From 28.50 

seconds rose up to 111.43, almost 4 times bigger. So when the 

number of CPUs was divided to 2, total time, as well a 

computational time, was quadrupled. Something similar 

happened from 4 CPUs to 2 CPUs. 

VII. CONCLUSION AND DISCUSSION AND FUTURE 

WORK 

It  seems  that genetic  algorithm  can  find  an  ideal  answer  

for  graph  coloring  while  it’s efficiency  depends  on  the  

way  of  encoding  crossover  and  mutation .  

It  seems  that  using  matrix  show  and  heuristic   is  better  

than  the  other  method  and closer  to  the  actual  answer. 

genetic  algorithm  is  better  than  the  other  methods  for  

graph  coloring. we  know  that  the  best  non genetic  

algorithm  is  presented  for  coloring  of  the  special  manners  

of  genetic  algorithm. 

In  this  paper  after  producing  a  child  its  value  is  examined  

immediately  and  kept  in  a  part  of  chromosome  then  after  

using  some  computation  on  the  graph  if  the  chromosome  

value  is  equal  to  graph  the  chromosome  is  chosen  as  the  

answer  and  the  algorithm  ends. 

Simulation experiments reported in the paper provide an 

evidence that parallel genetic algorithms can be efficiently 

used for a class of graph coloring problems. 

 Additionally, genetic algorithms are proved to be problems 

where parallel techniques can take place, and our results 

assure the above statement. These remarkable results are the 

consequence of the proper fitness function, which in our 

situation seems to be good enough. 

The importance of these results has to do with the data set. 

The algorithms described here can also be applied to the 

various subsets of the general GCP. High-performance 

computing still seems to be the discipline of computer science 

to find out solutions on such kind of problems. Using several 

real world data sets, scientists may come to important results. 

The  genetic  algorithm  provides  new  hypo  these  is  by  

continuous  changing  and  mixing  the  pieces  instead  of  

searching  general  to  specific  or  simple  to  complex  hypo  

these is in  each phase  a  collection of  hypo these is  which  is  

called  population  is  provided  by  replacing  a  part  of  

present  population  with  the  children  produced  from  the  

best  hypo these is. we  hope  that  by  presenting  more  ideal  

methods  for  mutation  crossover   encoding  then  would  be  

better  solutions for  graph  coloring  as  well. 

Using  PSO algorithm   is  a method  which  can  be  used   in  

the  future. This  method  is  evolutionary  ins pined  by  the  

social  behavior  of  the  bird  flocks  or  fish  groups. 
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