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Abstract. Software is ubiquitous in our daily life. It brings us 

great convenience and a big headache about software reliability 

as well: Software is never bug-free, and software bugs keep 

incurring monetary loss or even catastrophes. In the pursuit of 

better reliability, software engineering researchers found that 

huge amount of data in various forms can be collected from 

software systems, and these data, when properly analyzed, can 

help improve software reliability. Unfortunately, the huge volume 

of complex data renders simple analysis techniques incompetent; 

consequently, Studies have been resorting to data mining for 

more effective analysis. In the past few years, we have witnessed 

many studies on mining for software reliability reported in data 

mining as well as software engineering forums. These studies 

either develop new or apply existing data mining techniques to 

tackle reliability problems from different angles. In order to keep 

data mining researchers abreast of the latest development in this 

growing research area, we propose this Paper on mining for 

software reliability.  
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I. INTRODUCTION 

Software Reliability is defined as: the probability of 

failure-free software operation for a specified period of time 

in a specified environment. Although Software Reliability is 

defined as a probabilistic function, and comes with the 

notion of time, we must note that, different from traditional 

Hardware  

Reliability, Software Reliability is not a direct function of 

time. Electronic and mechanical parts may become "old" 

and wear out with time and usage, but software will not rust 

or wear-out during its life cycle. Software will not change 

over time unless intentionally changed or upgraded.  

Software Reliability is an important to attribute of 

software quality, together with functionality, usability, 

performance, serviceability, capability, installability, 

maintainability, and documentation. Software Reliability is 

hard to achieve, because the complexity of software tends to 

be high. While any system with a high degree of 

complexity, including software, will be hard to reach a 

certain level of reliability, system developers tend to push 

complexity into the software layer, with the rapid growth of 

system size and ease of doing so by upgrading the software. 

For example, large next-generation aircraft will have over 

one million source lines of software on-board; next-

generation air traffic control systems will contain between 

one and two million lines; the upcoming international Space 

Station will have over two million lines on-board and over 

ten million lines of ground support software; several major 

life-critical defense systems will have over five million 

source lines of software.  
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While the complexity of software is inversely related to 

software reliability, it is directly related to other important 

factors in software quality, especially functionality, 

capability, etc. Emphasizing these features will tend to add 

more complexity to software.  

II. SOFTWARE FAILURE MECHANISMS 

Software failures may be due to errors, ambiguities, 

oversights or misinterpretation of the specification that the 

software is supposed to satisfy, carelessness or 

incompetence in writing code, inadequate testing, incorrect 

or unexpected usage of the software or other unforeseen 

problems. While it is tempting to draw an analogy between 

Software Reliability and Hardware Reliability, software and 

hardware have basic differences that make them different in 

failure mechanisms. Hardware faults are mostly physical 

faults, while software faults are design faults, which are 

harder to visualize, classify, detect, and correct. Design 

faults are closely related to fuzzy human factors and the 

design process, which we don't have a solid understanding. 

In hardware, design faults may also exist, but physical faults 

usually dominate. In software, we can hardly find a strict 

corresponding counterpart for "manufacturing" as hardware 

manufacturing process, if the simple action of uploading 

software modules into place does not count. Therefore, the 

quality of software will not change once it is uploaded into 

the storage and start running.  

III. SOFTWARE RELIABILITY IMPROVEMENT 

TECHNIQUES 

Good engineering methods can largely improve software 

reliability. Before the deployment of software products, 

testing, verification and validation are necessary steps. 

Software testing is heavily used to trigger, locate and 

remove software defects. Software testing is still in its infant 

stage; testing is crafted to suit specific needs in various 

software development projects in an ad-hoc manner. 

Various analysis tools such as trend analysis, fault-tree 

analysis, Orthogonal Defect classification and formal 

methods, etc, can also be used to minimize the possibility of 

defect occurrence after release and therefore improve 

software reliability.  

To achieve the preceding goal, developers often want to 

reuse existing frameworks or libraries instead of developing 

similar code artifacts from scratch. The challenging aspect 

for developers in reusing the existing frameworks or 

libraries is to understand the usage patterns and ordering 

rules (specifications) among Application Programming 

Interfaces (APIs) exposed by those frameworks or libraries, 

because many of the existing frameworks or libraries are not 

well documented. Incorrect usage of APIs may lead to 

violated API specifications, 

leading to security and 

robustness defects in the 

software. Furthermore, usage 
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patterns and specifications might change with library re 

factorings, requiring changes in the software that reuse the 

library. To address these issues, we develop a technique 

(based on data mining) that automatically mine usage 

patterns and specifications, and detect re factorings from 

source code. Our techniques aid developers in productively 

reusing third party libraries to build reliable and secure 

software. We present three infrastructures based on mining 

source code to address the main issues faced by developers 

in reusing API libraries. The tracing infrastructure 

automatically mines API usage patterns and specifications 

from API client code in local source code repositories. The 

searching infrastructure expands the scope of mining to also 

include billions of lines of open-source API client code 

available on the web. The re factoring-detection 

infrastructure automatically detects re factorings in libraries 

by analyzing library API implementation code.  

3.1 Tracing Infrastructure 

A software system interacts with third-party libraries 

through various APIs. Using these library APIs often needs 

to follow certain usage patterns (how to use a given set of 

APIs for a particular task?). Furthermore, ordering rules 

(specifications) exist between APIs, and these rules govern 

the secure and robust operation of the system using these 

APIs. 

Unfortunately, API usage patterns and various API 

specifications are not well documented by the API-library 

developers. API patterns cut across procedural boundaries 

and an attempt to infer these patterns by manual inspection 

of source code (API client code) is often inefficient and 

inaccurate. Several problems exist even when the API 

specifications are known. API specifications (when known) 

can be formally written for third-party APIs and statically 

verified against a software system. But manually writing a 

large number of formal API specifications for static 

verification is often inaccurate or incomplete, apart from 

being cumbersome. Formal specifications are complicated 

and lengthy mainly due to the various API details (such as 

input/return type, error flags, and return values for APIs on 

success/failure) and language syntax considerations required 

for the specification to be accurate and complete. To address 

these issues, we present the tracing infrastructure that mines 

API details, patterns, and specifications by analyzing the 

source code (API client code). In this section, we present 

tracing infrastructure and the three tools based on the 

infrastructure,namely, API Pattern Miner, API Error 

Detector, and IDeaMiner (Section 3.2). The high-level 

overview of the tracing infrastructure is shown in Figure 1. 

The tracing infrastructure has four main components: trace 

generator, scenario extractor, miners, and pattern extractor. 

The trace generator uses compile-time push-down model-

checking (PDMC) to generate inter-procedural static traces, 

which approximate run-time API behaviors. The PDMC 

process verifies a property specified in the form of Finite 

State Machine (FSM) over a given program. Using Triggers, 

a form of FSM, we adapt the PDMC process to output static 

traces in the program involving APIs of interest. A single 

static trace from the model checker might involve several 

API usage scenarios, being often interspersed. The scenario 

extractor separates different usage scenarios from a given 

trace, so that each scenario can be fed separately to the 

miners, our next component. The miner component employs 

various data mining techniques on these static traces to 

output frequent partial orders or frequent sequences (based 

on the employed data-mining technique) among APIs. The 

miner output is then processed by the pattern extractor to 

output API details, patterns, and specifications. 

 
Figure 1:- Tracing Infrastructure  

 

3.2 API Pattern Miners 

API Pattern Miner employs the tracing infrastructure to 

mine usage patterns and specifications that involve multiple-

API sequences from the static traces. Previous approaches 

mine frequent association rules, item sets, or subsequences 

that capture API call patterns shared by API client code. 

However, these frequent API patterns cannot completely 

capture some useful orderings shared by APIs, especially 

when multiple APIs are involved across different 

procedures. API Pattern Miner summarizes API usage 

patterns as partial orders. Different API usage scenarios are 

extracted from the static traces by our scenario extraction 

algorithm and fed to a Frequent Closed Partial Order 

(FCPO) miner. The miner summarizes different usage 

patterns as compact partial orders. The usage patterns can be 

used as a recommender, which shows how to use a set of 

APIs for a particular task.  

3.3 API Error Detectors 

Incorrect handling of errors incurred after API invocations 

(in short, API errors) can lead to security and robustness 

problems, two primary threats to software reliability. 

Correct handling of API errors can be specified as formal 

specifications, verifiable by static checkers, to ensure 

dependable computing. But API error specifications are 

often unavailable or imprecise, and cannot be inferred easily 

by source code inspection. Based on our tracing 

infrastructure, we develop a technique called API Error 

Detector, for tactically mining API error specifications 

automatically from software package repositories, without 

requiring any user input. Similar to API Pattern Miner, API 

Error Detector employs the tracing infrastructure to 

approximate run-time API error behaviors with static traces. 

Frequent sequence mining is used on these static traces to 

mine specifications that define the correct handling of errors 

for relevant APIs used in the software packages. The mined 

specifications are then used to uncover API error-handling 

bugs.  

3.4 IDeaMiner 

Manually writing formal 

specifications for static 
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verification can be cumbersome. Based on the tracing 

infrastructure, we implement IDeaMiner, which infers API 

details such as return values on success/failure, error flags, 

and return value type from the static traces. IDeaMiner 

implements simple data-flow extensions to the PDMC 

process to infer API details. Based on these inferred API 

details and the language syntax (user-provided, as a one-

time AST database for a given language), Specifier tool 

translates user-specified generic API rules to concrete 

formal specifications verifiable by static checkers. Users can 

specify generic rules at an abstract level that needs no 

knowledge of the source code, system, or API details.  

IV. CONCLUSIONS 

Software reliability is a key part in software quality. The 

study of software reliability can be categorized into three 

parts: modeling, measurement and improvement.  

Software reliability measurement is naive. Measurement 

is far from commonplace in software, as in other 

engineering field. "How good is the software, 

quantitatively?" As simple as the question is, there is still no 

good answer. Software reliability can not be directly 

measured, so other related factors are measured to estimate 

software reliability and compare it among products. 

Development process, faults and failures found are all 

factors related to software reliability.  

Software reliability improvement is hard. The difficulty of 

the problem stems from insufficient understanding of 

software reliability and in general, the characteristics of 

software. Until now there is no good way to conquer the 

complexity problem of software.  

Complete testing of a moderately complex software 

module is infeasible. Defect-free software product can not 

be assured. Realistic constraints of time and budget severely 

limits the effort put into software reliability improvement.  

As more and more software is creeping into embedded 

systems, we must make sure they don't embed disasters. If 

not considered carefully, software reliability can be the 

reliability bottleneck of the whole system. Ensuring 

software reliability is no easy task. As hard as the problem 

is, promising progresses are still being made toward more 

reliable software. More standard components and better 

process are introduced in software engineering field.  
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