
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3 Issue-5, November 2013

36

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E1864113513 /2013©BEIESP

Run Time Evaluation by using Object Oriented

Debugging Tool

Ashvini A. Patil, Swapnil V. Suryawanshi

Abstract: In the process of Software Development and

evolution, Developer has to answer multiple questions about how

the code or software behaves at runtime and already many

options available for debugging.

Debugging is an essential part of programming language and

what sets great programmers apart from average ones. Beginners

are often pleased if a bug/virus that was seen earlier inexplicably

disappears. Inexperienced programmers have a tendency to shy

away from error messages or be frightened by observable errors,

whereas skilled programmers rely heavily on error messages and

he is aware about fixing of bugs by using different debugging

tool. And programmer can easily detect and remove it at run

time. The traditional or classical debugger while debugging gives

developer bunch of breakpoints in the source code.

Object based debugging offer, interruption when a given or a

particular object is accessed or modified. Programmers, who try

to find violations in such source code, need new tool that allows

them to explore objects in the system effectively. The

implementation of the proposed debugging described here offers

programmers an effective tool which will allows searching of

objects even for programs that have huge number of objects.

Therefore Successful debugging tool involve efficient exploratory

ability and a proper understanding of troubleshooting in

programming code.

I. INTRODUCTION

As stated from traditional tools that, the complication of

object oriented system increases, as the number of different

objects in programs increases debugging becomes relatively

difficult. Developer needs a dedicated user interface for

object oriented programming.

Object based debugging tool able to detect and analyse the

relationship in between the objects during the runtime. So

the key behind this is to focus on a particular object instead

of the execution stack. Traditional debuggers are focused on
the execution stack which may create chance of bug

availability as well as time consuming process because

programmer has to spot the different object parts in code as

per their views and interest. We have to fix multiple

breakpoints accordingly. The software then runs until a

breakpoint is reached, and the developer can then inspect

and interact with the code and entities in the scope of the

breakpoint. Unfortunately developer may not be fix

breakpoints properly at run time. As a result, identifying the

right place to set breakpoints in the source code requires a

deep understanding of what happens during the execution.
Second, debugging operations are focused on the execution

stack, rather than on the objects. There exists therefore a

considerable conceptual gap between the interface offered

by the debugger and the questions of interest by the

developer [20] [21].

Manuscript Received November, 2013.

Ashvini A. Patil\, ME computer Engg. VBCOE, Ahmednagar, India.

Swapnil V. Suryawanshi, BE IT. VBCOE, Ahmednagar, India.

Object based debugging offer, interruption when a given or

a particular object is accessed or modified. Programmers,

who try to find violations in such source code, need new
tool that allows them to explore objects in the system

effectively. The implementation of the proposed debugging

actually offers programmers an effective tool which will

allows searching of objects even for programs that have

huge number of objects.

Object based debugging tool looks forward to analyse the

relationship in between the objects during the runtime. This

allows functioning operations directly on objects rather than

on the execution stack. Our tool can provide an interface to

programmer which will make easy different operations,

which going to perform on a particular object. Object based

operations directly act on objects by intercepting access to
runtime state; thus monitoring how objects interact and

Support interactions.

There exists therefore conceptual gap between the interface

offered by the debugger and the need of the developer,

hence to overcome or fill the gap; there is a need for object

based debugging tool which is helpful to have previous

object states and object reference flow information at hand

during debugging.

Our debugging tool is able to capture object state at runtime.

It also monitors object specific interactions and it support

live interaction that is at run time. For this we keep track the
relevant data that is it store object history information

together with the regular objects in the application memory.

II. RELATED WORKS [21]

For developing proposed work, we have gone through

different existing system to become better approach for

object oriented debugging tool. Following literature is study

about existing systems working and critically evaluated on

some evaluation method to find shortcomings from them.
In Query Based debugging approach user defines a query in

a higher-level language that is then applied to the data

Queries can test complex object interrelationships and

sequences of related events.

Trace oriented Debugger: it is collected of a well-organized

instrumentation for incident making, a specific database for

scalable storage space, and support for partial traces to

reduce trace volume [2].

While this method has the advantage that nowhere data is

lost, its drawback is that it requires large hardware power,

which is not available for many developers today [6].
The why line debugging interface approach.

Why line tool which facilitate developer to ask, “Why did”

and “Why did not” questions regarding their program’s

output Why line tries to facilitate developer by applying

static as well as dynamic analyses and after that answer

Some of the developer

questions [7].

In Back-in-time debuggers

approach; these are

Run Time Evaluation by using Object Oriented Debugging Tool

37

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E1864113513 /2013©BEIESP

extremely useful tools for identifying the causes of bugs.

Compare to the “omniscient” approaches that try to

remember all previous states are impractical because they
consume too much space or they are too slow. So many

approaches to limit these penalties, but they ultimately end

up giving out too much relevant information. In this paper a

practical approach that attempts to keep track of only the

relevant data. In contrast to other approaches, it keeps object

history information together with the regular objects in the

application memory. This method has the effect that data not

reachable from current application objects that’s why not

useful further.

This approach, present idea which explains that memory

utilization stays in practical limits. Furthermore, the

performance penalty is significantly less than with other
approaches [1].

Back-in-Time Debugging:

Back-in-Time Debuggers are useful tool for identifying the

cause of errors, not the omniscient debugger which always

remembers all previous states.

To overcome this drawback of omniscient debugger back in

time debugger is developed. Omniscient Debugging: also

known as back-in-time debugging or reversible debugging.

These debuggers store the total history and execution trace

of a debugged program. Developers can explore the history

by simulating step-by-step execution both forward and
backward [1] [6].

In Auto Flow an automatic debugging approach; Aspect-

oriented programming (AOP) is gaining popularity with

adoption of languages such as AspectJ.

During AspectJ software evolution, when tests fail, it may

be lengthy or difficult for programmers to find out the

failure minimising changes by manually inspecting all code

editing.

To beat the costly attempt spent on debugging developed

AutoFlow, an automatic debugging approach for AspectJ

system. AutoFlow meets the potential of delta debugging

algorithm with the benefit of change impact analysis to slow
down the search for imperfect changes. It primary uses

change collision analysis to identify a subset of responsible

changes for a failed test, after this ranks these changes

according to proposed heuristic (indicating the likelihood

that they may have contributed to the failure), finally this

improved delta debugging algorithm to determine a minimal

set of faulty changes.

The important advantage of AutoFlow is that it can

automatically reduce a big portion of irrelevant change in an

early stage, eventually then locate not fixed changes

effectively [8].
NUDA a Non-Uniform Debugging approach.

This paper is proposed a novel non-uniform debugging

architecture (NUDA). This makes hardware-assisted

debugging both feasible and scalable for many-core

processing scenarios. Here, theme is to distribute the

debugging support structures across a set of hierarchical

clusters while avoiding address overlap. It allows the

address space to be monitored using non-uniform protocols

and propose approach to lockset-based race detection

supported by the NUDA. Here, page-based monitoring

cache in every NUDA node to keep track of footprints. The

union of all the caches know how to take in account as a
race detection probe without violating execution ordering.

[10].

 How helpful are automated debugging tools :

The Area of automated debugging, which is with the

automation of identifying and correcting a failure's root

cause, made tremendous advancements in the past years.
However, some of the reported progress may be due to

unrealistic assumptions that with the evaluation of

automated debugging tools.

These unrealistic assumptions concern the work process of

developers and their ability to detect wrong code without

explanatory context, or the size and arrangement of fixes.

Instead of trying to locate the fault, this proposes to help the

developer understand it, thus enabling her to decide which

fix they deems most appropriate.

This came to know the need to employ a completely

different evaluation scheme that bases on feedback from

actual users of the tools in realistic usage scenarios [9].
 “A Review of reverse debugging”

Reverse debugging is defined as of a debugger to stop after

a failure in a program has been observed and go back into

the history of the execution to find reason for the failure.

Reverse execution has become a practical technique

available in a number of free and commercial tools. This

article review the history and techniques of reverse

debugging, as researched, implemented, and used until

today [11].

There is a need to find or steer in area where programmers

actually face problems during debugging scenario [12].
This strategy works well, trying to understand the general

performance for objects. When addressing polymorphism or

delegation the performance of objects of same class changes

on their composition. In these scenarios need an object-

specified analysis and simple breakpoint strategy is not the

best option. In application development when programmers

require interrupting the execution of the application when a

particular code is evaluated, requires breakpoint strategy.

The programmer wants to locate the particular object he is

concerned. The programmer specifies a suitable condition to

recognize the particular object previously found, without

interacting with it. This approach may be practicable, if exist
few objects to analyze in given code [13].

2.1 Related work shortcoming

Studding and analysing different literature survey following

are the outcomes.

 Back in time debugging debugger have to remember
history of all previous states.

 There is pretty need of a useful and dedicated user

interface for debugging scenario.

 Developer comfortable with using object oriented

dedicated user interface for debug situations.

 Trace oriented debugger requires more hardware power,

which is practically not possible. Omniscient debugger

depend on more memory because, to store history of

last stages. Reverse debugging is to stop after a failure

in a program has been observed and go back into the

history of the execution to uncover the reason for the
failure.

 AutoFlow can automatically reduce a large portion of

irrelevant change in an early phase, eventually then

locate faulty changes effectively.

 After going through literature survey came to know

that developer faced

some kind of problems

while doing debugging.

Major problem is that

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3 Issue-5, November 2013

38

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E1864113513 /2013©BEIESP

developer cannot answers about objects. And after

taking view on problems faced by developer they do not

get answer to their question regarding object.
When complex object oriented system taken in account then

traditional debuggers fails to act on object related operations

and relationship between different objects. To eliminate

these problems new tool should be developed on object

based approach and useful dedicated user interface for it

[20].

III. MOTIVATION SCENARIOS:

The motivation for doing this project was primarily an
interest in undertaking a challenging project in an interesting

area of debugging. This gives opportunity to learn about

new area of software engineering. This area is possibly an

area that I might study at postgraduate level. As the

debugging area taken into account developer came across

different problems, which are faced by developer. The

traditional debugging technique used by programmer is

concentrated on stack orientation so developer face

problems regarding objects in the code given.

The debuggers not designed to answer many of the

questions that developer typically uses to ask after analysing
different papers related to approaches of debugging, found

that one can develop a debugging tool which is based on

objects, and possesses following some points to understand

runtime behaviour of the system. It will be helpful to

continue interacting with the runtime, applying operations

directly to objects without working with static representation

of the system. This is useful in to monitor communications

with entity objects without taking stepwise breakpoints [20]

[21].

So it is required to develop object based debugging tool that

facilitated with user interface which fulfil needs of

developer such as, different interruption related to objects or
keep watch on object interactions and do operations related

to objects using user interface telling suggestions.

3.1 System Description

Looking on problems faced by user or developer they do not

get answer to their question regarding object. When

complex object oriented system taken in account then

traditional debuggers fails to act on object related operations

and relationship between different objects. To overcome this

object based debugging tool is very helpful in this scenario.

In this tool Brifost reflection framework is being used. The

tool of object based debugging is built on top of the Bifrost
reflection framework. Bifrost offers fine grained

unanticipated dynamic structural and reflection through

meta-objects. Instead of providing different reflective

capabilities as an external mechanism integrate all deeply

into the environment. Explicit meta objects providing a

range of features, thereby evolving both application models

and the host language. Meta-objects provide a sound basis

for different coexisting meta-level architectures by giving

traditional object-oriented techniques to the meta-level. Our

proposed system answers to different users requirements

like;

 If user wants to find out when method is called during
the execution of code.

 If user wants to find out where the instances of this

class created at runtime they can easily track it.

 In code, user defines different variables and wants to

trace these variable flows in program and wants to

know at different break point where these variables are

accessed.

 User can trace at different stages or at different break
point what is the values of the argument at runtime.

 User can easily trace out how data is passed to the

different object at different break point.

 User can easily trace out the relationship between

objects.

Figure: 1 system description of automatic object based

debugging

3.1.1 System Overview

The source code when debug using object based debugging

tool, particular object required by developer is searched and

made available to developer. Developer further acting on
object do the specified operation by using user interface

concentrated on objects. The code file taken into proposed

tool, then code parsing done for all particular objects. After

going through execution and isolates the points needed by

developer needs.

The parser extracted all objects from provided code file then

supplied or given to execution module. This parser also

converted it into intermediate forms which give response to

object related errors or bugs. In code generating module

there is code which gives object related error findings [20].

Finally execution step it operates on the code parsed taking

objects in consideration using a dedicated useful interface
for it. The stepwise execution is stated in system workflow.

Figure: 2 overview for object based debugging system

3.2 System Workflow:

System workflow of object

based debugging have

following steps in the
system workflow.

Run Time Evaluation by using Object Oriented Debugging Tool

39

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E1864113513 /2013©BEIESP

Step1: Input source code into object based debugging tool.

Step2: It finds out appropriate required object from given

input code.
Step3: It finds relationship like dependency, inheritance

between different objects.

Step4: Developer now acts on object.

Step5: Using user interface user do different operation on

object.

Step6: Trace out how data is passed to the different object

at different break point.

Step7: Trace at different break point what is the values of

the variables and different argument at runtime

Step8: Apply this procedure repetitively on whole Source

Code document for desired objects.

Step9: Object related operations performed.
Step10: Make changes in objects.

Step11: Prevent problems and so improve performance

[21].

IV. EXPECTED RESULT:

Understanding and debugging software systems is difficult.

Most used debuggers offer only a limited low-level view of

the program state. For the exploration of large data
structures, provided a system that allows programmers to

ask the program state, helping to check object relationships

in large object-oriented programs. This debugger combines

several original features.

A new approach to debugging is instead of exploring a

single object at a time, an object based debugger allows the

programmer to quickly get a set of interesting objects from a

potentially very large number of objects, or to check a

certain property cause for errors from a large number of

objects.

 A flexible tool conceptually, evaluates expression for all

members of the complex objects. This is simple to
understand and to learn, yet it allows a large range of

complexity of objects to be formulated concisely.

Debugging easier for programmers and facilitating the

development of more robust object-oriented systems [20].

 It performs object based debugging and it check for the

errors in code also.

 It finds relation between objects.

 It interacts with objects.

 It performs different operations related to objects.

V. CONCLUSION

In this paper we have presented new better approach

towards debugging, which is based particularly on objects.

Traditional debuggers focused on instances of class and

general code file. Developer face problems during

interrogating with object oriented arising questions. In this

paper Object based debugging tool have dedicated user

interface which having object specific dependent operations,

this are helpful in dealing with object related errors. In this
paper modified traditional debugging tool have stack

oriented state but there previous function are not violated,

and dedicated user interface is very helpful interacting with

the objects. Stack based debugging tool work on entire code

by pointed line by line, while object based debugging tool

works on desired objects doing operations directly on them.

When source code having huge number of objects in case of

problems related to objects this approach is useful. This

approach is helpful improving the performance of object

oriented software’s.

VI. ACKNOWLEDGMENTS

I am very thankful to the people those who have provided

me continuous encouragement and support to all the stages

and ideas visualize. I am very much thankful to the complete

VBCOE, Ahmednagar for open handed me all facilities and

work environment which enable me to complete my task. I

express my sincere thanks to HOD and PG Coordinator,

VBCOE, Ahmednagar who gave me their valuable and rich

guidance and help in presentation of this research paper.

REFERENCES

[1] Adrian lienhard, tudor Girba and Oscar Nierstrasz ”Practical Object

Oriented Back-In-Time Debugging”LNCS 5142, pp 592-615.

[2] Raimondas Lencevicius, Urs Holzle And Ambuj K. Singh, “Query-

based Debugging of Object-Oriented Programs” OOPSLA 97

Atlanta, USA.

[3] Mark Minas “Cyclic Debugging For pSather, a Parallel Object-

Oriented Programming Language” Jan 31 2002

[4] Tanja Mayerhofer,”Testing and Debugging UML Models Based On

Fuml” ICSE 2012.

[5] G. Pothier, E. Tanter, and J. Piquer, “Scalable omniscient

Debugging, “Proceedings of the 22nd Annual SCM SIGPLAN

Conference on Object-Oriented Programming Systems, Languages

And Applications (OOPSLA’07), vol. 42, no. 10, pp.535–552,

2007.

[6] C. Hofer,M. Denker, and S. Ducasse, “Design and implementation

of a backward-in-time debugger,” in Proceedings of NODE’06, ser.

Lecture Notes in Informatics, vol. P-88 (GI), Sep 2006, pp. 17-32.

[7] J. KO and B. A. Myers, “Designing the whyline: a debugging

interface for asking questions about program behaviour,” in

Proceedings of the 2004 conference on Human factors in computing

systems. ACM Press, 2004, pp. 151–158.

[8] Sai Zhang; Zhongxian Gu; Yu Lin; Jianjun Zhao “AutoFlow: An

automatic debugging tool for AspectJ software” ICSM 2008. IEEE

International Conference on 2008, pp. 470 – 471.

[9] Rossler, J. “How helpful are automated debugging tools?” User

Evaluation for Software Engineering Researchers (USER), 2012

IEEE Conference Publications, pp. 13 – 16.

[10] Chi-Neng Wen;shu-hsuan Chou;chih Chen ;tien-fu chen. ”NUDA: A

Non-Uniform Debugging Architecture and Nonintrusive Race

Detection For Many core system” IEEE transaction, vol.61, 2012,

pages.199-212.

[11] Engblom, J. ”A Review of Reverse debugging” System, Software,

SC and Silicon Debug Conference (S4D), 2012, pp. 1 – 6.

[12] Chris parnin and alessandro orso, “Are automated debugging

techniques actually helping programmers” ISSTA’ July 2011

[13] Jorge ressia, Alexandre Bergel and Oscar Nierstrasz “object centric

debugging” ICSE 2012

[14] Renee McCauley, Sue Fitzgerald, Gary Lewandowski, Laurie

Murphy, Beth Simon, Lynda Thomas and Carol Zander

“Debugging: a review of the literature from an educational

perspective” June 2008

[15] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan, G.

Nichols, D. Grant, G. Loihle, and G. Hunt, “Debugging in the large:

ten years of implementation and experience,” Proc. SOSP, 2009, pp.

103-116.

[17] Noor Fazlida Mohd Sani, Noor Afiza Mohd Arifin and Rodziah

Atan “Design of object-oriented debugger model using unified

modeling language” JCSSP 2013, pp 15-18.

[18] Potanin, A., Noble, J., Biddle, R.: Snapshot query-based debugging.

In: Proceedings of the 2004 Australian Software Engineering

Conference (ASWEC’04), Washington, DC, USA, IEEE Computer

Society (2004) 251

[19] P. Iyenghar, C. Westerkamp, J. Wuebbelmann, E. Pulvermueller, A

Model Based Approach for Debugging Embedded Systems in Real-

time, in 10th

[20] Jorge Ressia, Alexandre Bergel, Oscar Nierstrasz “Object-Centric

Debugging” ICSE 2012, IEEE, Zurich, Switzerland.

[21] D.M.Thakore, Tanveer S

Beg “An Automatic

Debugging Tool Extension

for Object Oriented

Software” IJSCE.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6330484
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6330484

