
International Journal of Soft Computing and Engineering (IJSCE) 

ISSN: 2231-2307, Volume-3, Issue-5, November 2013 

50 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: E1878113513 /2013©BEIESP 

 

 

A Three Engine Application Level Firewall for 

Web Servers 
 

Gowtham Mamidisetti, T.Divya 
 

Abstract Due to insufficient checks on input data in many 

web applications web servers remain prone to external 

tampering. This paper proposes ALF (application level firewall) 

to protect web systems with three new mechanisms. First, ALF 

provides a fine grained access control policy. Second, ALF 

allows web application developers to specify the restriction on 

application running parameters. Finally, ALF collects web user 

behavior statistics. 

Index Terms—ALF (Application Level Firewall), Attack 

Signature, CGI (Common Gateway Interface) 

I.  NTRODUCTION 

To counter web attacks, most web servers enforce coarse-

grained access control to restrict the execution of web 

applications within a specified directory that CGI 

programs must reside. One can also deploy intrusion 

detection systems or vulnerability assessment systems with 
known attack signatures to detect malicious requests and 

vulnerabilities. 
Unfortunately, the above approaches leave a lot to be 

desired. Coarse grained access control mechanisms are not 

flexible enough and often leave loopholes to attackers. 

Most IDS systems and vulnerability assessment systems 

rely on known attack signatures to protect web systems. 

However, it is hard to keep the attack signature updated 

with respect to the large number of vulnerabilities 

discovered daily. This paper proposes ALF (application 

level firewall for web servers), as a supplement to existing 

solutions, to help combat web attacks.  

II. FOCUS ON CATEGORIES OF ATTACKS 

ALF primarily focus on two categories of attacks: 

1. Unauthorized accesses: Modern web systems usually 

provide coarse-grained access control to restrict that web 

applications can be invoked by web clients only if they 

reside in a specified directory (e.g., /cgi-bin). However, the 
coarse grained access control often gives attackers 

opportunities to exploit configuration error and 

compromise the web system. An example attack is what we 

will call the bypass execution attack. CGI programs that 

are invoked from user input by the web server often need to 

run helper scripts or programs internally.  

 

 
 

 

 

 

 

 

 

 

 

Manuscript received November, 2013. 
Gowtham. Mamidisetti is an assistant Professor in Information 

Technology at Shri Vishnu Engineering College for Women, 

Bhimavaram, West Godavari Dist, Andhra Pradesh, India.  

T.Divya is a student in Information Technology at Shri Vishnu 

Engineering College for Women, Bhimavaram, West Godavari Dist, 

Andhra Pradesh, India. 

 

The intent of the programmer is that the helper programs 

should not be invoked directly by a client. For example, a 

CGI program may authenticate a user and then invoke a 

helper perl script to access a database if the user is valid. 

Unfortunately, if the helper program is put in the same 
directory as the CGI program, it can be invoked by a 

malicious client directly (via the web server, but without 

going through the parent CGI program). Thus, attackers can 

bypass the user authentication and violate web server 

security.  

2. Abuse of CGI programs with parameters: 

CGI Developers are supposed to do input validation and filter 

out requests with invalid parameters, but they often fail to 

follow a sound security methodology and overlook the input 

error checking. Attackers can exploit the vulnerability of 

weak input validation to send CGI programs the parameters 

that do not meet the normal length or format restrictions and 

cause SQL injection or buffer overflow attacks. 
Many database systems, such as MySQL, allow users to 

insert multiple records in a line, this SQL command will 

allow the attacker to insert two records instead of one as 

expected. The reason of this SQL injection attack is a 

security bug: the user input validation is insufficient. 

III. LEVEL OF PROTECTION 

ALF helps to protect against a wide-range of common 

vulnerabilities with the following three mechanisms: 

1.  To prevent unauthorized access to web files, ALF 

provides fine-grained access control policy and enforcing 

it at the perimeter of a web server. With this web 

administrators can classify web clients into variety of 

roles and specify their access permissions to web objects 
at the granularity ranged from directories to files. In 

addition, rather than allowing all files in /cgi-bin 

directory to be executed by web clients, WSF allows a 

web application to be invoked only if it is explicitly 

specified as executable to web clients, which effectively 

prevents the bypass execution attack.  

2.  To prevent abuse of web applications, ALF proposes an 

input validity specification to allow developers to 
specify the valid input patterns instead of requiring 

enumeration of all possible malicious inputs, which 

substantially simplifies the input validation task.  

3.  ALF also collects user behavior statistics on a per-

user/per-IP basis. The behavior statistics can be used to 

detect abnormal web activities and heuristically change 

the access policy to proactively delay or block the 

requests from malicious users.  

IV. DESIGN OF ALF 

A. System Overview 

 

 



 

A Three Engine Application Level Firewall for Web Servers 

51 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: E1878113513 /2013©BEIESP 

 

 

 

 

 

 

 

 

 

 

 
Fig 1. The architecture of ALF 

 
 As shown in Fig 1, ALF consists of the input and output 

filters. Input filter deep inspects the incoming HTTP requests 

to reject invalid web accesses. Output filter collects the status 

of outgoing responses. Response status information helps 

infer user behavior patterns. 
ALF maintains a per-user security context. A security 

context in ALF is indexed either by the user’s IP address or 

by a user ID (if the user authenticated to the web service). 

The security context contains the user’s past behavior 

statistics, such as the number of invalid requests, the 
number of failed requests, and the number of requests 

during a specified time interval. All those behavior 

statistics are updated by the input and output filters. 

V. INPUT FILTERS 

The input filter deploys three engines: security context 

checking engine, access right checking engine, and CGI 

input validation engine. These engines check the incoming 
requests one by one. An incoming request will be 

forwarded to the protected web server only if it goes 

through the checks of the three engines. 

1. The Security-Context Checking Engine 

The security-context checking engine examines the user ID 

and the IP address of the request to see if requests from the 

IP address or the user ID should be blocked or delayed. 

Administrators can use the security-context checking 

engine to temporarily block a user’s access to the web 

server if their statistical behavior, recorded in the security 

context, violates specified limits (e.g., too many failed 

authentication requests within a short interval). Therefore, 
the security context essentially works as a “credit history 

report” to help ALF monitor a client’s abnormal behavior 

pattern. 

User Behavior Auditing 

 

 

 
Fig 2. ALF Security Context 

 

As a complementary mechanism, ALF also supports 

tracking and auditing of web user behaviors. ALF 

maintains a security context for each web client. 

The security context is indexed with the client’s user ID if 

the client is an authenticated user.. If the client is an 

anonymous guest, the security context is indexed with the 
client’s IP address. As Figure 2 shows, the ALF security 

context contains three parts of user security information: 

1. Index of the security context (User ID or IP address);  

2. Behavior statistics;  

3. Access control decision based on the behavior pattern.  

ALF uses the index of the security context, IP address for 
unauthenticated user and User ID for an authenticated user, to 

locate a user’s security context. 
The behavior statistics part contains cumulative user 

behavior patterns, measured over multiple configurable time-

intervals on a per-user/ IP basis: 

The number of received requests. This data is collected by 

the input filter.  

The number of bytes sent out. This data is collected by the 

output filter.  

The number of invalid requests. This data is collected by the 

checking engines in the input filter. Any request that violates 
ALF security policies will be counted as an invalid request.  

The number of failed requests. This data is collected by the 

output filter. Any request with the HTTP status code that 

does not fall into the period between 200 and 307 will be 

counted as a failed request. 

The number of failed authentication requests. The field 

helps to prevent brutal force password guessing attacks. It is 

collected by the output filter.  

The user behavior statistics help to detect abnormal 

behavior pattern and proactively adjust access control 

policies. For example, excessive authentication failures of a 
specific user may indicate that a hostile party is mounting 

brutal force password guessing attack or this user forgets the 

password. To thwart password guessing attack, web 

administrators can configure ALF to suspend this user’s 

further authentication requests for several seconds upon the 

number of failed authentications exceeding the specified 

threshold.  

2. The Access Right Checking Engine 

The access right checking engine checks the requested URI 

against the access right policy. With the access right control, 

ALF can limit authenticated or unauthenticated users to only 

specified web files/services and prevent unauthorized access 

to the sensitive files that are left accidentally in public web 

directories. The access right checking engine provides fine-

grained control, rather than standard access control imposed 

by web servers.  

Access Control Policy 

ALF defines an access control policy language to allow 

administrators to explicitly define the access rights to web 

entries, including normal data files and CGI programs. 

An access   rule   is   a   mapping   as   follows: 

Web_Entry → Web_User: Access_Right 

The web entry defines the object on which the access rule 
should apply. It can be a specific file, a class of files with a 

wildcard pathname or a directory. The web user defines the 

subject that is allowed to access the web entry. It can be a 

specific user or a web group. The access right defines the 

authorization under which a web user can access a web entry. 

The access right mapping means: the “web_entry” can and 

only can be accessed by the “web_user” under the 

“access_right” authorization. 

An access policy usually includes three parts: 

1. Definition of valid user set and user groups  

2. Definition of default 
accessible file types  

3. Definition of access 

right rules of web entries  



International Journal of Soft Computing and Engineering (IJSCE) 

ISSN: 2231-2307, Volume-3, Issue-5, November 2013 

52 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: E1878113513 /2013©BEIESP 

The first part defines the valid user set and user groups. 

The second part contains the default accessible file types 

(i.e. *.html and *.jpg files) for the web system. The 

accessible file types can be defined by file type extensions 

or certain file name patterns. By default, only common web 

file types are included, which helps prevent unauthorized 
accesses to sensitive files, such as “creditcard.dat”, that are 

left in the public web directory. 

The third part specifies the access right of users to web 

entries. An access right policy may include multiple access 

rules. Each rule defines the access right of one URI entry. 

A URI entry can be defined as a specific file, a class of 

files with a wildcard pathname or a directory. Wildcards 

are allowed and only allowed in file name to represent 

multiple files with similar name pattern. If an access rule 

defined for a directory, this access rule applies to all files 

and sub-directories under this directory if they are not 
associated with access rules. In other words, if no access 

rule is defined for a directory or a file, permissions are 

inherited from the parent directory. The access right rules 

are prioritized as follows: 

 

root directo ry → sub -directory(level1 ) → 

 

sub - directo ry(level2 )... → a class of files → single file 

 

The access rule of root directory has the lowest priority 

and access rules of single files have highest priority. Rules 

with higher priority have precedence in policy 
enforcement. 

3. CGI Input Validation Engine 

The CGI input validation engine checks the parameters 

carried in the CGI request against the input validity 

specifications. Only requests with valid inputs can be sent 
to the web server. The CGI input validation helps mitigate 

many buffer overflow attacks and SQL injection attacks 

that compromise web systems via sending malicious 

parameters to CGI programs.  

CGI Input Validity Specification 

Because the inputs to CGI programs are complex, fixed 

attack signatures are often not flexible enough to tell a 

valid input from invalid ones. 

To deal with this problem, ALF provides a fine-grained 

way to specify constraints on inputs of CGI programs. We 

use an example to describe how validity specification 

works: suppose we have a user login script /cgi-
bin/login.cgi, it only allows parameter transferred with 

POST method; the expected input at the user name field is 

a string composed by 3-8 letters or digits and the expected 

valid password is a string composed by 6-15 letters and 

digits. No special character is allowed in the username and 

password parameters. The validity specification can be 

defined as follows: 

 

< Rule>  

 

<URI> /cgi-bin/login.cgi <\URI>  
 

< Method> POST <\ Method>  

 

< Parameter>  

 

<Name> username </Name> <Value> 

 

^[a-zA-Z0-9]{3,8}$ </Value> 

 

</ Parameter> 

 

< Parameter>  

 
< Name> password </Name>  

 

< Value> ^[a-zA-Z0-9]{6,15}$ 

</Value> </ Parameter>  

 

<SIG_CHECKING> NO </SIG_CHECKING>  

 

</Rule> 

 

The URI section contains the URI of the CGI program. 

 
The Method section configures which methods are allowed 

for this URI. The methods that are often used are GET and 

POST. Other HTTP methods like PUT, TRACK must be 

used carefully as they may bring vulnerabilities like cross site 

script attack. 

The Parameter section defines the validity specifications for 

parameters of this CGI program. Each possible parameter 

must have a Parameter definition. The validity specification 

of each parameter consists of two parts: parameter name and 

parameter value. The parameter name field is the parameter 

name to be checked while the parameter value field shows 

the valid parameter value pattern. The valid parameter value 
pattern is defined with regular expression. If there is no 

restriction on a parameter, the valid parameter value pattern 

can be empty. Based on the configured validity pattern, the 

input validation checking engine can then check whether the 

user inputs carried in a CGI request is valid or not. Note that 

only parameters listed in this section will be regarded as valid 

and checked against the corresponding validity specification. 

For those parameters whose names are not on the valid 

parameter list, the input validation engine will directly regard 

them as malicious. This mechanism effectively prevents 

many buffer overflow attacks. 
The above example shows, the rule clearly defines what 

inputs are expected by the programmer developers. The CGI 

program, at a minimum, must take care of inputs that satisfy 

the above specification. Any other unexpected inputs will be 

blocked by this specification directly at the firewall. This 

mechanism does not require developers to enumerate all 

possible invalid input patterns. Instead, web application 

developers only need to express their intention of valid inputs 

with regular express, which substantially simplify the input 

validation procedure. 

VI. OUTPUT FILTERS 

The output filter checks the status of outgoing replies and 

updates the behavior statistics in the security context. In 

addition, the output filter also helps the input filter to track 

the user information and generate the user tracking tag for 

each source. 

VII. CONCLUSION 

ALF proposes a policy-based framework to provide perimeter 

security for those web 

services. With proper 

policies, ALF can help to 

thwart unauthorized accesses 



 

A Three Engine Application Level Firewall for Web Servers 

53 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: E1878113513 /2013©BEIESP 

 

 

to system sensitive files and achieve flexible, role-based 

access control. To prevent attackers from sending allows 

administrators to explicitly define the input validity 

specification for each accessible CGI program. Instead of 
inferring all possible attacks from known attack signatures, 

ALF checks incoming requests against the input validity specification, 

which simplifies the procedure to determine whether a use 

input is valid or not. In addition, ALF collects user 

behavior statistics, which helps web administrators to 

detect abnormal user behaviors and proactively adjust the 

access control maliciously manipulated requests to CGI 

programs, ALF policies. 

REFERENCES 

1. Scott, D. and R. Sharp. Abstracting Application-Level Web Security. 

in Proceeding of the eleventh international conference on World 

Wide Web (WWW'2002). 2002.  

2. 2003 ACM Press: Washington D.C., USA p. 251-261. 

3. CERT Center, Microsoft Internet Information Server (IIS) 

vulnerable to cross-site scripting via HTTP TRACK method, 2004. 

CERT Advisory, "Code Red" Worm Exploiting Buffer Overflow In 

IIS Indexing Service DLL, 2001. 

4. Anley, C., Advanced SQL Injection In SQL Server Applications, 

2002. 

5. SAINT Corp., SAINT vulnerability scanner. Nikto, Nikto 1.32. 

Symantec Corp., Symantec NetRecon.  

6. Kruegel, C. and G. Vigna, Anomaly detection of web-based attacks 

in Proceedings of the 10th ACM conference on Computer and 

communications security. 

7. Ristic,I.,Introducingmod_security,2003. 

http://www.onlamp.com/pub/a/apache/2003/11/26/mod_ 

security.html  

8. Vigna, G., et al. A Stateful Intrusion Detection System for World-

Wide Web Servers. in Proceedings of the 19th Annual Computer 

Security Applications Conference. 2003. 

9. Nessus, NESSUS Scanner, 2004. Forristal, J. and G. Shipley, 

Vulnerability Assessment Scanners. 

AUTHOR PROFILE 

 

Gowtham.Mamidisetti is an assistant Professor in 

Information Technology at Shri Vishnu Engineering 

College for Women, Bhimavaram, West Godavari 

Dist, Andhra Pradesh, India. 

 

 

       

                           

T.Divya is a student in Information Technology at 

Shri Vishnu Engineering College for Women, 

Bhimavaram, West Godavari Dist, Andhra Pradesh, 

India. 

 

 

                      
 

 

 
 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

  


