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Abstract—The kinematic of serial manipulators comprises 

the study of the relations between joint variables and Cartesian 

variables. We distinguish two problems, commonly referred to 

as the direct and inverse kinematic problems. The former 

reduces matrix multiplications, and poses no major problem. 

The inverse kinematic problems, however, is more challenging, 

for it involves intensive variable-elimination and 

nonlinear-equation solving. In this work, we have used Support 

Vector Machine with Genetic Algorithm and and Multi Layer 

Perceptron (MLP) with Biogeography-Based 

Optimization(BBO) to solve the inverse problem on a 

manipulator arm, to determine its various articulations. The 

results of simulation are presented to show the validity of 

approaches suggested above.  

 

Index Terms—Support Vector Machine, Genetic Algorithm, 

BBO algorithm, MLP,  inverse kinematic, minimally invasive 

surgery. 

I. INTRODUCTION 

  Highlight a In robotics, to determine the various 

articulations of arm is significant and essential, which is 

even used for prediction of Protein’s structures [1]-[6].  The 

problem consists in finding the parameters, which bring the 

final point to a wished situation, being given a configuration 

of the arm with chains series and the final point. The problem 

is so difficult because it requires resolution of a system of 

nonlinear equations, and the difficulty increases with the 

number of bonds in the chained structure. There is not a 

general analytical method to circumvent this problem. 

Numerous solution strategies have been proposed for the 

Inverse Kinematic Problem, such as distance matrix 

completion [7], characteristic polynomial, dyalitic 

elimination, genetic programming, intelligent algorithm, 

and wavelet networks [2]. We present a new approach, 

Artificial Immune System, to solve this problem without 

constraint or restrictions on structure of arm. 

This work is organized as follows. Some concepts of the 

robotic are given first, after we construct the Artificial 

Immune System and finally we discuss the results of the 

application. 

II. ROBOT MANIPULATOR 

All A robot is a combined mechanical, electronic, and  

computer system that follows a simple cycle of commands  
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and task execution for operation. First, the computer learns 

environmental information from its sensors. Based on this 

information and the task to be accomplished, computer 

algorithms calculate appropriate commands for the motors. 

These commands are sent to the mechanical system, which 

executes the task, and the cycle repeats, all actions of the 

robot have to be continually monitored to correct deviations 

from the planned trajectory.  

The range of motion of each manipulator is called working 

space. The manipulator is normally connected to a base 

(floor, ceiling, operating table, etc) and composed of a 

succession of joints and links (appendages). The instrument 

with which the robot performs the desired task is attached to 

the last link of the arm and is referred to as the end-effector. 

An end-effector can be a needle, grasper, scalpel,…etc. 

Our model of robot is AESOP with 6 joints angles (Q1, Q2, 

Q3, …,Q6), and we must find them for a given position in 

Cartesian space[8]. Here is the pseudo code of it: 
Input: position to be reached (M) 

Output: values of the parameters of the 

articulations 

  Q= vector of model parameters 

           Q = (Q1, Q2, Q3, …,Q6) 

Find Q subject to: 

    f(Q)-M=0 

 which brings back us to min ||f(Q)-M||. 

III. GENETIC ALGORITHM (GA) 

Genetic Algorithm evolves a population of initial 

individuals to a population of high quality individuals, where 

each individual represents a solution of the problem to be 

solved. 

Each individual is called chromosome, and is composed of 

a predetermined number of genes. The quality of each rule is 

measured by a fitness function as the quantitative 

representation of each rule’s adaptation to a certain 

environment. The procedure starts from an initial population 

of randomly generated individuals. Then the population is 

evolved for a number of generations while gradually 

improving the qualities of the individuals in the sense of 

increasing the fitness value as the measure of quality. During 

each generation, three basic genetic operators are 

sequentially applied to each individual with certain 

probabilities, i.e. selection, crossover and mutation. The 

algorithm flow is presented in Fig. 1. Determination of the 

following factors has the crucial impact on the efficiency of 

the algorithm: selection of fitness function, representation of 

individuals and the values of GA parameters (crossover and 

mutation rate, size of 

population, threshold of 

fitness value). 
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Determination of these factors usually depends on the 

application.  

 Generate random population of n chromosomes 

(suitable solutions for the problem.  

 Evaluate the fitness f(x) of each chromosome x in the 

population.  

 Create a new population by repeating the following 

steps until the new population is complete. 

o Select the best chromosome or 

chromosomes to be carried over to the next 

generation.  

o Select two parents constitute stochastic 

evolutionary techniques whose research 

methods model some natural phenomena 

[8].  

 

 
Fig. 1: Genetic Algorithm Flowchart 

IV. SUPPORT VECTOR MACHINE 

Consider the following problem: we are given a data 

set   N

iii yxg
1

,


  obtained by sampling, with noise, some 

unknown function f(x) and we are asked to recover the 

function f , or an approximation of it, that has at most 

 deviation from the actually obtained targets  
iy  for all the 

training data g , and at the same time is as flat as possible. In 

other words, we do not care about errors as long as they are 

less than, but will not accept any deviation larger than this 

[9]. 

    .,0max: 


 xfyxfy                             (1) 

A. Linear Case 

We have: 

  .,,  bbxwxf                                 (2) 

Where .,. denotes the dot product in the space of the 

input patterns. Flatness in the case of (2) means that one 

seeks a small w. One way to ensure this is to minimize the 

norm. We can write this problem as a convex optimization 

problem [10]. 

.
2
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2
w                                                       (3) 
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The tacit assumption in (2) was that such a function 

actually exists that approximates all pairs  ii yx , that the 

convex optimization problem is feasible. 

Sometimes, however, this may not be the case, or we also 

may want to allow for some errors. One can introduce slack 

variables 
i to cope with otherwise infeasible constraints of 

the optimization problem (2).  

We define: 

  .,0max   iii xfy                                         (5) 
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 .,max  iii                                                          (7) 

Hence we arrive at the formulation stated in [11]. 

 .
2

1
min

2

  
i

iiCw                                          (8) 
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The constant C > 0 determines the trade-off between the 

flatness of f and the amount up to which ε deviations larger 

than are tolerated. 

In most cases the optimization problem (9) can be solved 

more easily in its dual formulation. Moreover, the dual 

formulation provides the key for extending SV machine to 

nonlinear functions. Hence we will use a standard 

dualization method utilizing Lagrange multipliers, as 

described [12,13]. 

 
Fig. 2: The soft margin loss setting. 

B. Dual Problem and Quadratic program 

The idea is to build a function of Lagrange by the objective 

function and its constraints by introducing a dual set of 

variables. It can be shown that this function has a saddle 

point with respect to the primal and dual variables at the 

solution. For details see e.g. [14]. We proceed as follow: 
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.0,,, ** iiiiwith    

And *

ii

*

ii η,η,α,α are the Lagrange Multipliers. 

The Lagrangian has to be minimized with respect to w, b 

and maximized with respect to α≥ 0. 

At point of optimality we have: 

  .0*   iib L                                                (11) 

  .0*   iiiw xwL 

                                    (12) 
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                                       (13) 

Substituting Eq.(11, 12,13) in eq.(10) we get: 

   .,
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jijjii xxL                                       (14) 
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       In deriving (10) we already eliminated the dual 

variables *

ii η,η  through condition (Eq.13) which can be 

reformulated as: 

 .αCη i

*

i                                                                     (16) 

Equation (12) can be written as follows: 

  .xααw i

*

ii                                                           (17) 

Thus; 

    .bx,xααxf i

*

ii                                        (18) 

What is called support vectors expansion i.e. w can be 

completely described as a linear combination of the training 

patterns. In a sense, the complexity of a function's 

representation by SVs is independent of the dimensionality of 

the input space, and depends only on the number of SVs. 

Moreover, note that the complete algorithm can be 

described in terms of dot products between the data. Even 

when evaluating  f ( x ) we need not compute w explicitly. 

C. Computing b 

b can be computed by exploiting the so called 

Krush-Kuhn-Tucker (KKT) conditions [15]. These state that 

at the point of the solution the product between dual variables 

and constraints has to vanish. 

  0.bxw,yζεα iiii                                    (19) 

And 

  .0ζαC ii                                                               (20) 

  0.ζαC i

*

i                                                               (21) 

For points which are apart from the band (ε-insensitive 

tubes) we have 

C.α(*)

i                                                                       (22) 

The points inside the band have 

0.α(*)

i                                                                        (23) 

The others 

C.α0 (*)

i                                                                 (24) 

The latter one has 

0.ζ                                                                            (25) 

Consequently b calculation as follows [13]: 

 .C0,αforεxw,yb iii                    (26) 

 .C0,αforεxw,yb *

iii                      (27) 

 

From Eq.(16) it follows that only for   εxfy   the 

Lagrange multipliers may be nonzero, or in other words, for 

all samples inside the ε- insensitive tube, they  vanish for 

  εxfy   the (*)

iα  has to be zero such that the KKT 

conditions are satisfied. Therefore we don’t need all the 

points to define w .The examples that come with non 

vanishing coefficients are called Support Vectors. 

D. Non Linear Case 

This concept can be extended to the case when f is non 

linear. A non-linear mapping which maps the input data to a 

high dimensional space (also called the feature space) is 

introduced. We can then try to find a linear function in 

feature space. 

Thus we avoid translating the input data to feature space 

first and then finding their inner products. 

The difference in the linear case is that w is no longer 

given explicitly. Also note that in the nonlinear setting, the 

optimization problem corresponds to finding the flattest 

function in feature space, not in input space [16]. 

V. BIOGEOGRAPHY BASED OPTIMIZATION 

It is a method described by Dan Simon in 2008 [17], 

it projects the Biogeographic study to the optimization which 

aims at studying the distribution of the species in the 

biosphere (biological system) [18-20]. It is based on two 

fundamental concepts Immigration and Emigration of the 

species between islands, each island is a set of habitats.  

Each habitat is defined by [20]: 

1) Habitat Suitability Index (HSI) : According to some 

parameters, habitats are comfortable, advantageous 

highly habitable, and presents a strong attraction of the 

other species towards them we say that they have high 

Habitat Suitability Index(HSI), and if they present a 

weak attraction we say that they have low Habitat 

Suitability Index. Analogically with the evolutionary 

algorithms habitats with High HSI is a good solution and 

the other is a bad or poor solution. This comfort is 

defined by the fitness function. 

2) Suitability Index Variable (SIV): Or parameters leading 

to the comfort of the habitat. Biologically this 

comfort refers the diversity of the vegetation, surface, 

temperature… etc. 

3) The number of species:  is the number of Animals that 

the habitat comprises. Habitats with High HSI have 

several species, and then the number of species is 

proportional to HSI. 

4) The emigration rate: habitats with high HSI have high 

emigration rate. 

5) The immigration rate: Habitats with high HSI have low 

immigration rate, because habitats sature and do not 

accept new species.  

6) The largest number of species: Habitats have threshold 

to control the migration. 

BBO algorithm comprises three steps: migration, 

mutation, elitism; the mutation and elitism are not essentials 

in BBO and the migration algorithm is as follow: 

For each habitat 

Select 
iI  with probability based on

i   

If 
iI  is selected  

For each habitat 
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Select
jI   with probability based on 

j  

If 
jI is selected 

Randomly select a SIV x from
iI   

Replace a random SIV in
jI with x  

End  

End 

End 

End 

VI. EXPERIMENTAL RESULTS 

Simulation on the arm was made with a processor Pentium 

4 given frequency of 1.8 GHz, with HDD of 40 GO, a RAM of 

1 GO, and under Matlab 7. Above all, we present the result 

found with Wavelet network in 2006[21]:  
TABLE I.  MEAN SQUARE ERROR WITH WAVELET NETWORK 

 Errors (×10−3) 

Q1 0.2766 

Q2 0.1446 

Q3 0.0292 

Q4 0.2591 

Q5 0.1984 

Q6 0.1512 

      We design a genetic algorithm in order to learn the SVM 

parameters which are C, kernel function and its parameters, 

and the loss function. 

     We implemented GA-SVM with these parameters:   
TABLE II.  GA-SVM PARAMETERS 

Parameter  Generation  
mutation 

Probability  

Value  300  0.2  

We design a BBO algorithm in order to learn the MLP 

weights. 

We implemented MLP-BBO with these parameters:   
TABLE III.  MLP-BBO PARAMETERS 

Parameter  Generation  
mutation 

Probability  
  

Value  400  0.001  0.1  
TABLE IV.  GA-SVM AND MLP-BBO RESULTS  

Angles  
GA-SVM 

error *10-4 

BBO error *10-3 

Q1 0.28 0.11 

Q2 0.04 0.06 

Q3 0.14 0.078 

Q4 0.02 0.34 

Q5 0.03 0.021 

Q6 0.001 0.0218 

As we see GA-SVM has estimate angles with error better 

than BBO-MLP and wavelet algorithm. GA has learned the 

SVM parameters efficiently.BBO also has learned the MLP 

weights with error of 10-3 order. 

VII. CONCLUSION 

According to the experimentation made on AESOP, we 

notice that both BBO-MLP and GA-SVM used previously 

gave satisfying results by comparing it with Wavelet 

network.   

As a prospect, we suggest implementing it in the 

controllers of the robot.  

VIII. CONCLUSION 

A conclusion section is not required. Although a 

conclusion may review the main points of the paper, do not 

replicate the abstract as the conclusion. A conclusion might 

elaborate on the importance of the work or suggest 

applications and extensions.  
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