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Abstract—In this paper, parallel and digit-serial 

implementations of area-efficient 3-operand decimal adders are 

proposed. By using proposed analyzer circuits and the generation 

of correction terms with recursive schemes, our proposed decimal 

adders could perform efficient additions with three operands. Unit 

gate estimates and synthesis results show that our proposed adders 

are more area-efficient than those previously proposed decimal 

adders with three operands under the same delay constraints. Also 

the power consumptions for our decimal adders are lesser. In 

addition to parallel implementations, the digit-serial 3-operand 

adders are easily developed to increase the throughput and the 

operating frequency due to area efficiency. Our proposed decimal 

adders could be applied to ease the tremendous computation 

efforts for decimal computations such as multi-operand decimal 

additions, decimal multiplications and divisions. 

 

Index Terms—Computer arithmetic, Decimal additions, 

Parallel-prefix adders, VLSI design, 

I. INTRODUCTION 

Since the growth of decimal arithmetic in commercial, 

financial and internet-based applications, the use of hardware 

support for decimal arithmetic is becoming more and more 

important for the hardware designers and users. The decimal 

arithmetic is natural for human as we use ten fingers for 

counting numbers. In the past decades, although binary 

arithmetic is widespread used in the processors, there are 

some constraints in its use. For example, the binary numbers 

can not be used for the representations of some fractions, e.g., 

0.310=0.01001.….2, which will require infinite bits for 

representation. This is not suitable for exact decimal 

fractions, since the incorrect results for the approximate 

representation of inputs will lead to subsequent 

approximation errors and thus will degrade the accuracy for 

the entire computations.  

To remedy the drawback, the binary coded decimal (BCD) 

numbers is used as a common representation of decimal 

numbers, as BCD can recode each digit of decimal numbers 

from 0 to 9 using four bits 00002 to 10012, respectively. In the 

above example of the representation of 0.310, the BCD 

numbers can only be recoded as 0.0011 (BCD) in finite and 

exact representations. Recently, the specifications for decimal 

floating-point arithmetic have been included in the draft of 

IEEE-754r standard for floating-point arithmetic [1].  
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Hence, designs of efficient decimal hardware are helpful in 

the operations of decimal numbers; and in the past the 

processors that include the compatibilities of IEEE-754r have 

been presented in the designs of IBM Power 6, z9 and z10 

processors. However, the problems for using BCD numbers in 

decimal operations are the corrections of the digits when the 

range are greater than or equal to 10, the correction terms 

(01102) will be added to the digit and then producing the 

carries into the next digit so that may lead to long carry chain 

within the consecutive higher significant digits.  In previously 

reported literature, the fast BCD adders with two and multi- 

operands are proposed in [2-11], the software 

implementations supported for IEEE-754r was proposed in 

[12], and the methods of fast BCD multiplications/divisions 

are presented in [13-24]. As for the survey of decimal units 

which can be referred in [25]. 

Our focus here is to design a decimal adder with three 

operands. Although this is a subset case of the multi-operand 

decimal additions which are already given in [5-6]. In this 

paper, we will point out under some conditions, the correction 

terms are required by using the 3-operand decimal adders 

proposed in [6], and thus the corrected implementation of [6] 

will be given. To achieve area-efficient implementation, our 

design is to improve the known fast BCD adders with two 

operands to perform the fast additions with three operands. 

The implementation of our proposed decimal adders provides 

a more economical way to achieve high-speed decimal 

addition with three operands and is very suitable for 

digit-serial implementation to increase the throughputs. By 

adopting proposed analyzer circuits and the generation of 

correction terms with recursive schemes, our proposed 

decimal adders could perform fast addition with three 

operands of four and eight digits with up to 67.4% area 

savings under the same delay constraints. The area overhead 

of our proposed adders is also lower than that of the corrected 

implementations of multi-operand decimal adders proposed 

in [6]. 

The rest of this paper is organized as follows. In Section II, 

we will introduce the designs of previous decimal adders with 

three operands. Then our proposed parallel and digit-serial 

implementations of area-efficient 3-operand decimal adders 

are given in Section III. The CMOS VLSI implementation 

results and comparisons will be presented in Section IV, and 

Section V concludes our work. 

II. PREVIOUS PROPOSED 3-OPERAND DECIMAL 

ADDERS 

Before we introduce the designs of multi-operand decimal 

adders proposed in [5-6], we will describe two designs of 

previous decimal adders with two operands. Given two inputs 

of one digit BCD numbers X and Y, the conventional 

architecture of the decimal addition of X and Y is depicted in 

Fig. 1, After using 1 digit adder composed of 4 consecutive 
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full adders to sum up the values of X and Y, another 1 digit 

adder is used to produce the decimal sum of X and Y (i.e., 

Result[3:0]) with the correction value 0110, which is 

determined by the output of c   (S[3] · S[2])   (S[2] · S[1]), 

where   and  · are denoted as logical OR and logical AND 

operations, respectively, and c is the carry-out of the binary 

sum of X and Y. 

We can observe that the delay of Fig. 1 will become longer as 

the digit-width of the decimal inputs increases since it will 

take the delay of 8 full adders and extra logic circuits for 

determining the correction term to be added with one-digit 

summation.  

Cout 1 digit Adder

Y [3:0]X [3:0]

S[0]S[1]S[2]S[3]

Result

[3:0]

44

4

cout

1 digit Adder

00
·

c

 
Fig. 1: Conventional hardware for performing one-digit BCD addition [26]. 

 

In [9], the authors proposed a method for fast BCD addition, 

which the adder is known as a fast decimal adder and was 

been slightly improved in [29] with almost the same delay and 

area complexity for fixing a few incorrect cases; hence we 

only describe the architecture in [9], which is depicted in Fig. 

2 for four digit decimal addition with two operands X[15:0] 

and Y[15:0] and the carry-in Cin.  
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Fig. 2: The architecture of the reduced delay BCD adder proposed in [9]. 

 

In Fig. 2, it consists of three stages for fast BCD addition: in 

stage 1, two inputs are divided into four digits, and sent to the 

Adder+Analyzer hardware to produce the binary sums S[15:0] 

using four 4-bit carry lookahead adders (CLA). Also the Digit 

Propagate signals (i.e., DPi) and the Digit Generate signals 

(i.e., DGi) are produced for i=0 to 3. DPi and DGi signals are 

used to identify the conditions of the binary sums are equal to 

9 and greater than 9, respectively.  

 =  + ( [ 3] ( [ 2]+ [ 1]))

 = [ 3] [ 1]

outi

i

DG C S i S i S i

DP S i S i

   


  

                     (1) 

The logical expressions for DPi and DGi are denoted as Eq. 

(1), and the corresponding hardware is shown in Fig. 3. In 

stage 2, the signals DPi and DGi are sent to the Carry Network 

composed of parallel-prefix computation units to compute the 

real decimal carries Carry[i], i.e., 

Carry[i]=DGi+DPi˙Carry[i-1]. Then in the last stage, the 

correction values are parallel added to the binary sums 

produced by stage 1 to produce the real decimal sums 

Results[15:0] using four one-digit adders, and the carry-out 

for each one-digit adder can be discarded.  

 

CLA
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Fig. 3: The hardware of Adder+Analyzer for producing DGi and DPi 

proposed in [9]. 

 

Based on the methods in [26] and [9], the hardware for 

performing decimal addition with three 4-digit operands X, Y 

and Z can be developed straightforward. As the number of 

operands increases by 1, the hardware will be doubled. In 

addition, although the area consumption based on [26] is very 

lower compared to the one based on [9] for 3-operand decimal 

addition, the operation time for addition and correcting 

constitute to longer delays. On the other hand, the hardware 

based on [9] can perform parallel decimal additions, with 

larger area overhead than that of [26], which are composed of 

Analyzer and Carry Network. 

In [6], high-speed multi-operand decimal adders were 

proposed. The authors proposed three architectures to 

speed-up the multi-operand decimal addition, including 

single correction, double correction, and nonspeculative ones. 

Among these, nonspeculative adder can achieve the highest 

speed, thus we only introduce the architecture of 

nonspeculative adder and use it with the ones based on [9] and 

[26] for comparison metrics in section 4. 

Fig. 4 shows the architecture of one-digit, 3-operand 

nonspeculative adder. Using carry save adder (CSA) to 

produce the carry and sum vectors first, then the carry and 

sum vectors are summed using a 5-bit carry propagate adder 

accepting the previous most-significant bit of carry (i.e., 

c’1[3]) to produce the intermediate sum z’[4:0] and to be 

corrected with g using another 4-bit carry propagate adder 

(CPA) to obtain the final sum Result[3:0]. The 

most-significant bit of carry vectors (i.e., c1[3]) is used with 

the values of z’[3:0] to generate the 4-bit correction terms g 

and the carry-out (i.e., cout) of the results using the circuit 

named as Sum and Carry Correction Logic, in which the 

corresponding function can be referred to [Table 4, 6]. 

According to [6], we have found that some incorrect digits 

will be produced in the final sum. Fig. 5 is the numerical 

example of 4-digit, 3 operand nonspeculative addition 
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adopted by [6]. We can observe that the final sum digits may 

be equal to or greater than 10; therefore, extra circuits for 

detecting incorrect digits, generation and the addition of 

correction terms (i.e., 01102) which are similar to Fig. 1 are 

required to produce the final correct sums as shown in Fig. 6, 

leading to time- and area-consuming due to cascaded carry 

propagations, where FA denotes a full adder. 

X[3:0] Y[3:0] Z[3:0]

CSA

s1 c1

CPA

Sum and Carry Correction Logic

c1[3]

CPA

z'[3:0]

Result[3:0]cout

z'[4:0]

g

c1[3]

c'1[3]

 
 

Fig. 4: One-digit, 3-operand nonspeculative adder proposed in [6]. 

 

 

 
Fig. 5: Numerical example of incorrect result adopted by the method in [6]. 
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Fig. 6: The corrected architecture in [6] for nonspeculative decimal addition with three 4-digit operands. 
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In order to achieve area-efficient implementation, we improve 

the fast known BCD adders with two operands [9, 29] to 

perform fast decimal addition with three operands. In the next 

Section, we will propose the parallel and digit-serial 

implementations of area-efficient 3-operand decimal adders. 

III. PROPOSED AREA-EFFICIENT 3-OPERAND 

DECIMAL ADDERS 

Similar to the method proposed in [9], our proposed parallel 

decimal adder shown in Fig. 7, which also consists of three 

stages. The first stage is to produce the binary sums and digit 

propagation and generation signals (i.e., DP and DG) using 

CSA+CLA+Analyzer circuit, then using a parallel-prefix 

Carry Network to generate the correction values for each digit. 

In the last stage the real decimal sums can be obtained by 

adding the binary sums and the correction values. 

Fig. 8 is our proposed architecture of one-digit 

CSA+CLA+Analyzer circuit. Since there are three operands, 

we use one CSA and CLA to compute the sums S[i+3:i] and 

the carry-out (Cout) first. The ranges of the sums are between 0 

and 27, that is to say, the real decimal carry-outs may be 0, 1, 

and 2. In the design of Analyzer part, we use the following 

signals to indicate the conditions of sums as shown in Table 1: 

the digit generation signal (i.e., DG) is composed of 2-bit 

signals, which identifies if the sums are greater than 9 or 19 or 

not; and the digit propagation signal (i.e., DP) is composed of 

4-bit signals, which identifies if the sums are equal to 8, 9, 18 

and 19 or not, since the decimal carry-ins from the digits with 

lower weight may be 0, 1 and 2. It should be noted that each 

bit of DG or DP is exclusive with each other, respectively, 

and the corresponding logic expressions of DG and DP are 

given in Eq. (2). 
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Fig. 7: The architecture of our proposed decimal adder with three 4-digit 

operands.  
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Fig. 8: One-digit hardware of our proposed CSA+CLA+Analyzer circuit. 

 

TABLE I: DIGIT GENERATION AND PROPAGATION SIGNALS FOR IDENTIFYING 

THE CONDITIONS OF SUMS IN EACH DIGIT. 

Signals Conditions of the sum in each 

digit 

[1]iDG  >9 

[2]iDG  >19 

[1]iDP  =9 

[2]iDP  =8 

[3]iDP  =19 

[4]iDP  =18 

[1]= +( [ 3] [ 2])+( [ 3] [ 1]) 

[2]= ( [ 3] [ 2])

[1]= [2] [ 1]

[2]= [ 3]

[3]= [4] [ ]

[4]= [ +1]

out

out

outi

i

i i

i

i i

i

DG C S i S i S i S i

DG C S i S i

DP DP S i

DP S i

DP DP S i

DP C S i

     


   

  



 




                  (2)        

Now we define C20[i] and C10[i] as the values of carry-outs 

which are equal to 2 and 1 produced by i-th digit, respectively. 

The values of C20[i] and C10[i] can be obtained by Eq. (3) 

which is performed by the Carry Network stage shown in 

Fig.8: 

10 10 20

20 10 20

[ ] [1] [1] [ 1] [2] [ 1]

[ ] [2] [3] [ 1] [4] [ 1]

i i

i i

C i DG DPi C i DP C i

C i DG DP C i DPi C i

      


                (3) 

It can be easily seen that C10 and C20 can be computed by two 

any independent parallel-prefix computation unit 

simultaneously. After producing the values of C10 and C20 for 

each digit, the correction values denoted as Corri[3:0] can be 

obtained by: 

20 10

20 10 20

20 10 20 10 20

20 10 20 20

[0]= [ 1] [ 1]

[1]=( [ ] [ ]) [ 1]

[2]=( [ ] [ ] [ 1]) ( [ ] [ ])

[3]=( [ ] [ ] [ 1]) [ ]

i

i

i

i

Corr C i C i

Corr C i C i C i

Corr C i C i C i C i C i

Corr C i C i C i C i

   


  


    


                        (4) 

In the last stage, the correction stage, the binary sums of the 

first stage can be added by the correction values for each digit 

to produce the correct decimal sums. Since each carry-out 

produced by the sums of each digit of X, Y and Z is used to 

compute the digit propagation and generation signals; 

therefore, in the correction stage, the carry-outs produced by 

the sums and the correction values can be discarded, thus we 

can limit the carry propagation delay within one digit in the 

correction stage, and it won’t cause longer carry propagation 

as [6] (corrected as shown in Fig. 6), [9] and [26]. Fig. 9 is the 

numerical example of our proposed decimal adders. 

Table II summarizes the delay and area costs of our proposed 

and previous 3-operand n-digit decimal addition architectures, 

in equivalent gates, all assuming the unit gate model [27]. We 

assume the parallel-prefix adders used in [9] and our 

proposed method both follow the Brent-Kung architecture 

[28]. In order to produce the correct sums for the architecture 

proposed in [6], extra digit-adders shown in Fig. 6 are 

required for every digit except the least-significant digit; 

therefore, the delay and area costs will increase than the 

original one proposed in [6]. We can observe that the 

delay/area efficiency of our proposed method can outperform 

the ones proposed in [6] (corrected), [9] and [26]. 
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In addition to parallel implementation of 3-operand decimal 

adders, we have also proposed the digital-serial adders as 

shown in Fig. 10, where clk denotes the clock cycle for 

completing the parallel implementation of n-digit 3-operand 

decimal addition. Since the area overhead for our proposed 

parallel design shown in Fig. 8 is much lower than that of 

previous proposed methods in [6] (corrected), [9] and [26], 

we can easily modify the parallel implementation into 

digit-serial ones to increase the throughput. In Fig. 10, the 

n-digit 3-operands are divided into n one-digits and sent into 

CSA+CLA+Analyzer from the least-significant digit first to 

the most-significant one. In every cycle, i.e., 1/n clk, the 

binary sum and the corresponding signals DP and DG are 

computed and output to the Carry Network to produce the 

correction terms with carry-in comes from the previous digit, 

and the carry-out and real sums are computed and stored in 

registers to be used in the next cycle. Since the Carry Network 

performs only 4-bit parallel-prefix computation, using CLA 

also has almost the same area and delay costs compared to 

using the parallel-prefix computation unit. As for the CMOS 

VLSI implementation results and comparisons will be given 

in the next Section. 

TABLE II AREA AND DELAY COSTS ACCORDING TO THE UNIT-GATE MODEL 

Architecture Delay Area 

[6] (corrected) 61.5n-34.5 157n-31 

[9] 4log2n+14 128n-2log2n-0.5 

[26] 68n+2 118n+3.5 

Proposed 2log2n+15 4log2n+88n-4 

IV. CMOS VLSI IMPLEMENTATION RESULTS AND 

COMPARISONS 

All 3-operand decimal adders (including the corrected adder 

in [6] and the ones in [9], [26] and ours) were described in 

Verilog HDL and synthesized and mapped into a TSMC 0.18 

m CMOS standard-cell library using typical process 

parameters. The average dynamic power estimations for all 

adders were obtained by applying 1,000,000 random input 

vectors at a 250-MHz frequency at each design netlist and 

measured using Primepower. Table III and IV show the delay 

and area estimations for our proposed and previous adders in 

[6] (corrected and shown in Fig. 8), [9] and [26] with three 

4-digit and 8-digit operands, respectively. The term N.A. 

denotes not available in the synthesis results. Table V shows 

the area and power consumptions under the minimum delays. 

According to Tables III and IV, we can observe that the area 

savings for our proposed adders can achieve up to 58.7% and 

67.4% compared to the four-digit and eight-digit adders in [6], 

[9] and [26], respectively.  

CSA+CLA+Analyzer

X Y Z

4 4 4

Carry Network

DGiDPi

4 2

adder

4

register

Cin

Correct

s

Result

Cout 4

2

2

4

1/n clk

…

1/n clk2

 

Fig 10: The architecture of our proposed digit-serial 3-oprand, n-digit 

decimal adder. 

 
Fig. 9: Numerical example of our proposed methods. 

 

According to Table V, the minimum delay of our proposed 

adders with three operands for four and eight digits is 2.9 ns 

and 3.9 ns, respectively, which can outperform previous 

adders proposed in the corrected ones in [6] (4.3 ns for n=4 

and 8.9 ns for n=8), [9] (3.5 ns for n=4 and 4.1 ns for n=8) and 

[26] (7.4 ns for n=4 and 12.5 ns for n=8). 

Also we can obtain that our proposed adders could achieve up 

to 86.8% and 90.8% ADP (Area×Delay×Power) product  

savings over previous adders under n=4 and 8, respectively. 

The reasons for the ADP product efficiency achieved by our 

proposed adders are that we use two independent 

parallel-prefix computation units to compute the correction 

terms at the same time, and we limit the carry propagation 

delay of final correcting into one digit only. The minimum 

delay and the corresponding area (including extra registers) 

for our proposed digit-serial adder are 1.5 ns and 3,153 m
2
, 

respectively. In other words, the working frequency of our 

proposed digit-serial adder could be up to 666 MHz. 
 

TABLE III AREA COMPARISONS UNDER DIFFERENT DELAY CONSTRAINTS 

(3-OPERAND, 4-DIGIT ADDERS) 

Delay 

(ns) 

Area (m2) Area savings over (%) 

 [6] 

(corrected) 
[9] [26] Ours 

 [6] 

(corrected) 
[9] [26] 

7.4 9869 4960 8116 4071 58.7 17.9 49.8 

3.7 N. A. 9862 N.A. 4667 N.A 52.6 N.A. 

2.9 N. A N. A. N.A 7158 N.A N.A N.A 

 

TABLE IV AREA COMPARISONS UNDER DIFFERENT DELAY CONSTRAINTS 

(3-OPERAND, 8-DIGIT ADDERS) 

Delay 

(ns) 

Area (m2) Area savings over (%) 

 [6] 

(corrected) 
[9] [26] Ours 

 [6] 

(corrected) 
[9] [26] 

13.1 24239 9407 17051 7903 67.4 15.9 56.6 

4.1 N. A. 19702 N. A. 12067 N. A. 38.7 N. A. 

3.9 N. A. N. A. N. A. 14536 N. A. 
N. 

A. 
N. A. 

TABLE V AREA AND POWER CONSUMPTIONS UNDER THE MINIMUM DELAYS 
Architectures Area(m2) Delay(ns) Power (mW) 
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n=4 n=8 n=4 n=8 n=4 n=8 

[6] (corrected) 19273 38233 4.3 8.9 1.48 3.33 

[9] 10123 19702 3.5 4.1 1.67 2.95 

[26] 8432 19331 7.4 12.5 1.23 2.99 

Ours 7158 14536 2.9 3.9 0.78 1.84 

V. CONCLUSIONS 

 We have proposed parallel and digit-serial 

implementations of area-efficient 3-operand decimal adders. 

By using proposed analyzer circuits and the generation of 

correction terms with recursive schemes, our proposed 

decimal adders could perform fast addition of three operands 

with up to 67.4% area savings under the same delay 

constraints. Also the corrected hardware for multi-operand 

decimal adders in [6] is given. The proposed decimal adders 

could be applied to ease the tremendous computation efforts 

for decimal computations such as multi-operand decimal 

additions, decimal multiplications and divisions. 
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