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 

Abstract Undeniably application of Artificial Intelligence (AI) 

has grown increasingly through past years. Hydrology also has its 

portion of utilization of AI-based models. Among different parts 

of hydrology, Suspended Sediment Load (SSL) estimation plays 

an important role since SSL can cause trouble in water resources 

engineering and environmental procedures. Therefore, employing 

AI-based models would cause more precise consequences. 

Recently proposed hybrid models provided more accurate 

prediction. These models employ AI-based models too, but in 

comparison, hybrid models forecast phenomena more accurate 

than sole AI-based models. It is because hybrid models can deal 

with non-stationary data. In this paper, advantages and 

disadvantages of both AI-based and hybrid models in the field of 

SSL modeling are discussed in the details. 

Index Terms— Artificial Intelligence, Hybrid models, 

Suspended sediment load.  

I. INTRODUCTION 

Estimates of sediment load are required in a wide spectrum 

of hydro-environmental issues such as the design of dams, 

transport of sediment and determination of the effects of the 

watershed management and environmental impact 

assessment. The physical based models are created based on 

the simplified partial differential equations of flow and 

sediment flux as well as some unrealistic simplifying 

assumption for flow and empirical relationships for erosive 

effects of rainfall and flow. They are highly sophisticated and 

complex models that have the advantage of having 

components that correspond to physical processes and being 

theoretically capable of taking into account the spatial 

variation of catchment properties as well as uneven 

distribution of precipitation and evapotranspiration. The 

sophistication and complexity of the model should, however, 

be keyed to utilizable information about the catchment 

characteristics and density and frequency of the available 

input data. Sediment computation methods provide rough 

estimates since the sediment amount is not only dependent on 

flow condition but also some other factors like drainage basin 

characteristics. Therefore, the hydrologic conditions and 

basin characteristics change both temporally and spatially and 

difficulties arising in determination of their effects have 

encouraged the employment of other type of models such as 

black box models for estimating suspended sediment. Black 

box models are divided generally as linear and non-linear and 

in particular artificial intelligence-based (AI) methods are 

currently used as new generation of black-box models for the 

modeling non-linear hydrological processes like sediment. 

In this paper, some very commonly used AI-based approaches 

for prediction and forecasting river and watershed sediment 

load are addressed. The methods include Artificial Neural 
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Network (ANN), Genetic Programming (GP) and Support 

Vector Machine (SVM) as AI-based models, Adaptive 

Neuro-Fuzzy Inference System (ANFIS), WANN 

(Wavelet-ANN) and WNF (wavelet Neuro-Fuzzy) models as 

hybrid models. For this purpose, at first a brief description of 

each method is presented and thereafter the related conducted 

studies are cited. 

II. APPLICATION OF ANN FOR SEDIMENT 

MODELING 

An ANN is an information processing paradigm that is 

inspired by the way human brain processes information. The 

two major structural constituents of a brain are neurons and 

synapse. Neurons are information processing units and 

synapses are elementary structural and functional units that 

mediate the interaction between neurons. Haykin [1] defined 

ANNs as parallel distributed processors made up of simple 

processing units, which are capable of acquiring and storing 

experiential knowledge and making it available for use. There 

are different kinds of ANNs that are able to perform various 

tasks. Feed-Forward, Kohonen and Hopfield networks are 

some of the most recognized ANNs among others. A 

Feed-Forward ANN consists of information processing nodes 

or neurons organized in layers. There is no feedback between 

layers of a Feed-Forward ANN. Every neuron or node in a 

layer is connected to all nodes in the previous layer using 

synaptic or connection weights. Synaptic weights having 

different strengths encode the knowledge of a network [2]. 

ANNs have been developed as generalizations of 

mathematical models of human cognition or neural biology 

based on the assumptions that [2]: 

i. Information processing occurs at many simple structures 

called neurons. 

ii. Signals are passed between neurons over connection 

inks. 

iii. Each connection link has an associated weight, which, 

in a typical neural net, multiplies the signal transmitted. 

iv. Each neuron applies an activation function (usually 

nonlinear) to its net input (sum of weighted input signals) to 

determine its output signal. 

v. A neural network is characterized by: (a) its pattern of 

connections between the neurons (called its architecture), (b) 

its method of determining the weights on the connections 

(called its training, or learning algorithm), and (c) its 

activation function. 

vi. Whatever distinguishes ANNs from other approaches to 

information processing provides an introduction to both how 

and when to use neural networks. ANN can be applied to a 

wide variety of problems, such as storing and recalling data or 

patterns, classifying patterns, 

performing general mappings 

from input pattern to output 

patterns, grouping similar 
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patterns, or finding solutions to constrained optimization 

problems. Each neuron has an internal state, called its 

activation or activity level, which is a function of the inputs it 

has received. Typically, a neuron sends its activation as a 

signal to several other neurons. It is ANN research stagnated 

after the publication of machine learning research by Minsky 

and Papert [3]; they discovered two key issues with the 

computational machines that processed neural networks: 

i. The first issue was that single-layer neural networks were 

incapable of processing the exclusive-or circuit.  

ii. The second significant issue was that computers were 

not sophisticated enough to effectively handle the long run 

time required by large neural networks.  

Also key in later advances was the back propagation (BP) 

algorithm which effectively solved the exclusive or problem 

[4]. Architecture of such a network is shown in Figure 1. 

 ANNs were employed by a number of diverse fields of 

engineering including water resources engineering. In the 

hydrological forecasting context, recent experiments have 

reported that ANNs may offer a promising alternative for 

rainfall-runoff modeling [5], [6], [7], [8], [9], streamflow 

prediction [10], [11], [12], reservoir inflow forecasting [13], 

as well as suspended sediment estimation [14], [15], [16], 

[17], [18], [19], [20], [21]. Jain [14] used a single ANN 

approach to establish sediment- discharge relationship and 

found that the ANN model could perform better than the 

rating curve. Tayfur [15] developed an ANN model for sheet 

sediment indicated that the ANN could perform as well as, in 

some cases better than, the physically based models. 

 
Fig. 1. A three-layered feed-forward neural network 

with BP training algorithm 

  

Cigizoglu [16] investigated the accuracy of a single ANN 

for estimation and forecasting daily suspended sediment load. 

Kisi [17] used three different ANN techniques for daily 

suspended sediment concentration prediction and indicated 

that multi-layer perceptron could show better performance 

than the radial basis neural networks and generalized 

regression neural networks. Kisi [18] developed an ANN 

model for modeling suspended sediment load and compared 

the ANN results with those of the rating curve and 

multi-linear regression methods. Cigizoglu and Kisi [19] 

developed some methods to improve ANN performance in 

suspended sediment estimation. Nourani [20] employed 

ANNs for sediment load forecasting of Talkherood River 

mouth. ANN was introduced as non-linear black box model 

interpolator tool that is used for modeling suspended 

sediment load. The obtained results were compared with the 

results of two other classic methods (i.e., linear regression and 

rating curve methods) in order to approve the efficiency and 

ability of the proposed method. Also, Nourani et al. [21] 

Proposed two semi distributed ANN-based models for 

estimation of suspended sediment load. In both models, a 

three-layer perceptron neural network was trained 

considering various combinations of input and hidden 

neurons and the optimum architectures of the models were 

selected. The obtained results demonstrated that the predicted 

sediment load time series by both models are in satisfactory 

agreement with the observed data. 

A common criticism of neural networks is that they require 

a large diversity of training for real-world operation. This is 

not surprising, since any learning machine needs sufficient 

representative examples in order to capture the underlying 

structure that allows it to generalize to new cases. 

III. APPLICATION OF ANFIS FOR MODELING 

SEDIMENT LOAD 

The Adaptive Neuro-Fuzzy Inference System (ANFIS), 

first introduced by Jang [22], is a universal approximator and, 

as such, is capable of approximating any real continuous 

function on a compact set to any degree of accuracy [23]. 

Thus, in parameter estimation, where the given data are such 

that the system associates measurable system variables with 

an internal system parameter, a functional mapping may be 

constructed by ANFIS that approximates the process of 

estimation of the internal system parameter. Since it integrates 

both neural networks and fuzzy logic principles, it has 

potential to capture the benefits of both in a single framework. 

Its inference system corresponds to a set of fuzzy IF–THEN 

rules that have learning capability to approximate nonlinear 

functions. Jang [22] introduced architecture and a learning 

procedure for the fuzzy inference systems (FIS) that uses a 

neural network learning algorithm for constructing a set of 

fuzzy if-then rules with appropriate membership functions 

(MFs) from the specified input-output pairs. There are two 

approaches for FIS, namely Mamdani [24] and Sugeno [25]. 

The differences between these two approaches arise from the 

consequent part. Mamdani’s approach uses fuzzy MFs, 

whereas Sugeno’s approach uses linear or constant functions 

(Fig.2). The ANFIS is functionally equivalent to fuzzy 

inference systems [23]. Below, the hybrid learning algorithm, 

which combines gradient descent and the least-squares 

method, is introduced and the issue of how the equivalent 

fuzzy inference system can be rapidly trained and adapted 

with this algorithm is discussed (Fig.3). As a simple example, 

a fuzzy inference system with two inputs x and y and one 

output z is assumed. The first-order Sugeno fuzzy model, a 

typical rule set with two fuzzy If-Then rules can be expressed 

as [26]: 

Rule 1: If )x(  is 1A  and )y(  is 1B ; then 

1111 ryqxpf                                         (1) 

Rule 2: If )x(  is 2A  and )y(  is 2B ; then 

2`222 ryqxpf                                    (2) 

The resulting Sugeno fuzzy reasoning system is shown in Fig. 

2. Here, the output z is the weighted average of the individual 

rules outputs and is itself a crisp value. The corresponding 

ANFIS architecture is shown in Fig. 2. Nodes at the same 

layer have similar functions. 

The output of the i th node in 

layer l is denoted as 
1

iO . 
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Layer 1: Every node i in this layer is an adaptive node with 

node function [26]: 

or

iforxAO ii 2,1)(1  
                   (3)    

4,3)(2

2   iforxBO ii                     (4) 

Where x (or y) is the input to the i th node and Ai is a linguistic 

label (such as “low” or “high”) associated with this node. In 

other words, 
1

iO is the membership grade of a fuzzy set                  

A (= 1A , 2A , 1B  , or 2B )  and it specifies the degree to 

which the given input x (or y) satisfies the quantifier A. The 

membership functions for A and B are generally described by 

generalized bell functions, e.g. [26]: 

   ib

ii

ii
acx

xAO
2
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/1
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       (5)

 
 

 

 

Where {ai, bi, ci} is the parameter set. As the values of these 

parameters change, the bell-shaped function varies 

accordingly, thus exhibiting various forms of membership 

functions on linguistic label Ai. In fact, any continuous and 

piecewise differentiable functions, such as commonly used 

triangular-shaped membership functions, are also qualified 

candidates for node functions in this layer (Jang, 1993). 

Parameters in this layer are referred to as premise parameters. 

The outputs of this layer are the membership values of the 

premise part. 

Layer 2: Every node in this layer multiplies the incoming 

signals. For instance [26]: 

2,1)()(2  iyBxAwO iiii 
     (6)                                                                          

Each node output represents the firing strength of a rule. 

Layer 3: In this layer, the nodes labeled N calculate the ratio 

of the i th rule’s firing strength to the sum of all rules’ firing 

strengths. The outputs of this layer are called normalized 

firing strengths [26]: 

2,1
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(7) 

Layer 4: This layer’s nodes are adaptive with node functions 

where w  is the output of layer 3, and { pi, qi, ri }are the 

parameter set. Parameters of this layer are referred to as 

consequent parameters [26]: 

 iiiiiii ryqxpwfwO 4

 
(8)                                                             

Layer 5: This layer’s single fixed node labeled Σ computes the 

final output as the summation of all incoming signals [26]: 




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
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                           (9)                                                                       

Thus, an adaptive network which is functionally equivalent to 

a Sugeno first-order fuzzy inference system is created. More 

information on ANFIS can be found in Jang [22]. Fuzzy 

membership functions can take many forms, but simple 

straight-line functions are often preferred. Triangular 

membership functions are often selected for practical 

applications. Two or three membership functions to the NF 

models were found enough for modeling suspended sediment 

and bed load sediment. Kisi [18] applied neuro-fuzzy and 

neural network techniques for estimating suspended 

sediment. Kisi [27] proposed evolutionary fuzzy models for 

suspended sediment concentration estimation. Cobaner et al. 

[28] applied ANFIS and ANN approaches to estimate 

suspended sediment load using hydro-meteorological data. 

Rajaee et al. [29] proposed hybrid wavelet and neuro-fuzzy 

model for daily suspended sediment modeling. Suspended 

sediment load estimated by this technique was closer to the 

actual data than the others. Also, the model could be 

employed to simulate hysteresis phenomenon, while sediment 

rating curve method was incapable of doing that. 

As a criticism, ANFIS is a complex method in comparison to 

other adaptive fuzzy systems, for this reason in some cases; it 

can not be easily used. In cases mentioned below application 

of the ANFIS can be recommended: 

i. Degree of Sugeno systems of zero or 1, 

ii. If only one output is concerned, 

iii. There must be no common rule, 

iv. Weights of the rules must equal to unit. 

Applying ANFIS as an alternative approach to predict the 

functional relationships of sediment transport causes more 

accurate results. The results show that the recommended 

network can more accurately predict the measured bed-load 

and suspended load data when compared to an equation based 

on a regression method or ANN and other networks. 

Membership function parameters of the system are set using 

back propagation training method. 

 
Fig. 2. Two- input first- order Sugeno fuzzy model with 

two rules 
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Fig. 3. Equivalent ANFIS architecture 

IV. GP FOR SEDIMENT MODELING 

During recent decades, some black box models based on 

artificial neural networks have been developed but these type 

of models are implicit that can not be simply used by other 

investigators. Therefore it is still necessary to develop an 

explicit model for the discharge–sediment relationship. In 

artificial intelligence, genetic programming (GP) is an 

evolutionary algorithm-based methodology inspired by 

biological evolution to find computer programs that perform a 

user-defined task. Essentially GP is a set of instructions and a 

fitness function to measure how well a computer has 

performed a task. It is a specialization of genetic algorithms 

(GA) where each individual is a computer program. It is a 

machine learning technique used to optimize a population of 

computer programs according to a fitness landscape 

determined by a program's ability to perform a given 

computational task. In 1954, GP began with the evolutionary 

algorithms first used by Nils Aall Barricelli applied to 

evolutionary simulations. In the 1960s and early 1970s, 

evolutionary algorithms became widely recognized as 

optimization methods [30]. Later GP-related work grew out 

of the learning classifier system community, which developed 

sets of sparse rules describing optimal policies for Markov 

decision processes. The first statement of modern 

"tree-based" GP (that is, procedural languages organized in 

tree-based structures and operated on by suitably defined 

GA-operators) was given by Cramer; this work was later 

greatly expanded by John R. Koza, a main proponent of GP 

who has pioneered the application of GP in various complex 

optimization and search problems. GP is a generalization of 

genetic algorithms (GAs), starts with an initial population of 

randomly generated computer programs composed of 

functions and terminals appropriate to the problem domain 

[31]. The functions may be standard arithmetic operations, 

standard programming operations, standard mathematical 

functions, logical functions, or domain-specific functions. 

Depending on the particular problem, the computer program 

may be boolean-valued, integer-valued, real-valued, 

complex-valued, vector-valued, symbolic-valued, or 

multiple-valued. The fundamental steps of GP are 

schematically presented in Figure 4. 

 
Fig. 4. Flowchart of gene expression programming 

Five stages are employed in GP to solve a problem [30]: 

 

I. Initialize a population of programs,  

II. The randomly generated programs with the higher fitness 

will “win” and must be copied to the next generation. There 

are several different types of selection used in GP such as 

roulette-wheel selection, tournament, and ranking, 

III. The two winner programs (GP solution) are then copied 

and transformed probabilistically by exchanging parts of the 

winner programs with each other to create two new programs 

(crossover) and randomly changing each of the winner 

program to create new program. A function can only replace a 

function, a terminal can only replace a terminal and an entire 

sub tree can replace another sub tree (mutation), 

IV. Replace the “loser” programs in the population with the 

transformed “winner” programs. The winners of the selection 

remain in the population unchanged, 

V. Repeat steps 2-4 until a program is developed that predicts 

the behavior properly. The fitness function, fi, of an 

individual program, i is expressed by [39]: 

 



n

1j

j)ij(i TPRf

                         (10)                                                                       

Where R is the range of selection, P(ij) is the value predicted 

by the individual program i for fitness case j and Tj is the 

target value for fitness case j. 

Cousin and Savic [32], Drecourt [33], applied GP to 

rainfall-runoff modeling. Babovic et al. [34] applied GP to 

sedimentary particle settling velocity equations. Harris et al. 

[35] studied velocity predictions in compound channels with 

vegetated floodplains using GP. Dorado et al. [36] studied 

prediction and modeling of the rainfall-runoff transformation 

of a typical urban basin using ANN and GP. Giustolisi [37] 

determined Chezy resistance coefficient in corrugated 

channels using GP. Rabunal et al. [38] determined the unit 

hydrograph of a typical urban basin using GP. Nourani et al. 

[21] proposed a hybrid wavelet-Genetic programming model 

to optimize ANN modelling of rainfall-runoff process. 

Hakimzadeh et al. [40] applied 

GP to simulate dam breach 

hydrograph and peak out flow 

discharge.  
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Different studies have been conducted for sediment modeling 

using GP approach. Babovic [41] used experimental flume 

data utilized by Zyserman and Fredsoe [42] and expressed a 

new formulation for bed concentration of suspended 

sediment. Kizhisseri et al. [43] used GP methodology to 

explore a better correlation between the temporal pattern of 

fluid field and sediment transport by utilizing two datasets; 

one from numerical model results and other from Sandy Duck 

field data. Aytek and Kisi [44] in their study proposed GP as a 

new approach for the expressed formulation of daily 

suspended sediment-discharge relationship. They compared 

expressed models obtained using the GP with rating curves 

and multi-linear regression techniques in suspended sediment 

load estimation. They used the daily stream flow and 

suspended sediment data from two stations on Tongue River 

in Montana as case studies. Their results indicated that the 

proposed GP formulation performed quite well compared to 

sediment rating curves and multi-linear regression models and 

was quite practical for use. Kisi and Guven [45] developed a 

machine code-based GP for suspended sediment 

concentration estimation. The accuracy of the GP was 

compared with those of the adaptive NF, ANN and rating 

curve models. The daily stream flow and suspended sediment 

data from two stations, Rio Valenciano and Quebrada Blanca, 

in USA were used for the model simulations. The comparison 

results indicated that the GP model performed better than the 

NF, ANN and rating curve models.  

V. APPLICATIONS OF SVM FOR MODELING 

SEDIMENT LOAD 

The original SVM algorithm was invented by Vladimir N. 

Vapnik and the current standard incarnation (soft margin) was 

proposed by Vapnik and Cortes [46].In machine learning, 

SVMs are supervised learning models with associated 

learning algorithms that analyze data and recognize patterns, 

used for classification and regression analysis. The basic 

SVM takes a set of input data and predicts, for each given 

input, which of two possible classes forms the output, making 

it a non-probabilistic binary linear classifier. Given a set of 

training examples, each marked as belonging to one of two 

categories, an SVM training algorithm builds a model that 

assigns new examples into one category or the other. An SVM 

model is a representation of the examples as points in space, 

mapped so that the examples of the separate categories are 

divided by a clear gap that is as wide as possible. New 

examples are then mapped into the same space and predicted 

to belong to a category based on which side of the gap they 

fall on. In addition to performing linear classification, SVMs 

can efficiently perform non-linear classification using what is 

called the kernel trick, implicitly mapping their inputs into 

high-dimensional feature spaces. 

The main relationship for statistical learning process is as 

follows [47]: 





M

1i

ii )X(W)X(W)X(fy 
        (11)                                                                 

Where the output of the model is the part of linear M and the 

converter is shown by the nonlinear model of φ(). This 

equation is converted as the below for using SVM model [47]: 

b)X,X(KW)X(fy
N

1i

ii 








 
             (12)                                                               

Here K is the Kernel function, Wi and b are parameters of the 

model, N the total number of learning patterns and Xi data 

vector for network learning and X is an independent vector. 

The parameters of the model are determined with maximizing 

the objective of function. The general structure of an SVM is 

shown in Fig. 5. SVM use some of the specific kernel 

functions which convert the input vector as the input data 

from nonlinear function in this model. Selection of an 

appropriate kernel function is a complex stage and often 

standard kernel function is used. 

 

 
Fig. 5. Structure of SVM model [48] 

 

Until now, many techniques have been proposed for 

prediction of SSL. However, due to the complexity of SSL 

transportation mechanism and non-linear behavior of 

effective hydrologic parameters, such techniques do not have 

enough precision [49]. Recent experiences concerning 

hydrological forecasts have shown that artificial neural 

networks and support vector machines can be proper 

alternatives to predict SSL carried by the river [16], [17], 

[18], [20], [50], [51], [52]. Bhattacharya et al. [53] and 

Azamathulla et al. [54] used machine learning approach to 

predict load transport. Jie and Yu [55] estimated suspended 

sediment load using ANN and SVM models in Kaoping river 

basin located in southern Taiwan. The result showed that 

SVM outperforms the ANN model. Cimen [56] used SVM 

with Gaussian radial basis function kernel in order to estimate 

suspended sediment concentration for two rivers located in 

the USA. Results indicated that SVM model can estimate 

sediment without producing negative values. Kisi [57] used 

Least Square Support Vector Machine (LSSVM) to model 

discharge-suspended sediment relationship. Results showed 

that the LSSVM model is able to produce better results than 

the ANN models. LSSVM and ANN models were found to be 

better than the SRC model for the upstream station.  
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For the downstream station, however, SRC model 

outperformed the LSSVM and ANN models. In the second 

part of the study, the models were compared to each other in 

estimation of downstream suspended sediment data using data 

from both stations. It was found that the LSSVM model 

performed slightly better than the ANN models and both 

models performed much better than the SRC model. 

VI. APPLICATION OF HYBRID AI-BASED MODELS 

FOR MODELING SEDIMENT LOAD 

Although AI methods have been used extensively as useful 

tools for prediction of hydrological variables, they may also 

include some drawbacks to deal with non-stationary data. 

Therefore, some hybrid modeling approaches which include 

different data-preprocessing and combine techniques have 

been also developed to increase generalization capability of 

sole AI-based methods. Approaches for dealing with 

non-stationary characteristics of data are not as highly 

generated, nor as well proved, as those for hydrological 

prediction problems. In the last years, there has been an 

interest in hybrid modeling techniques. Here, some of such 

hybrid models employed in sediment modeling are presented.  

Combined Wavelet-Artificial Neural Network (WANN) 

model has been widely used in recent years to forecast 

hydrological and hydrogeological phenomena. The 

neuro-wavelet models are obtained by combining two 

methods, ANN and wavelet transform. WANN models, based 

on wavelet analysis and ANN, have been proven effective for 

modeling nonlinear and non-stationary time series signals. A 

non-stationary signal can be decomposed into a certain 

number of stationary signals by wavelet transform. Then, 

ANN is combined with wavelet transform to improve the 

prediction accuracy [58]. During recent years, wavelet 

transform has become a useful method for analyzing such as 

variations, periodicities, trends in hydrological time series. 

Partal and Cigizoglu [50] used neuro-wavelet technique for 

forecasting river daily suspended sediment load. Kisi [59] 

proposed neuro-wavelet models for estimating daily 

suspended sediment estimation. The WANN was developed 

by combining two methods, ANN and discrete wavelet 

transform. The WANN and ANN models were tested by 

applying to different input combinations of daily streamflow 

and suspended sediment load data of two stations on Tongue 

river in Montana. The comparison results indicated that the 

discrete wavelet transform could increase the accuracy of 

ANN model in suspended sediment load estimation. Rajaee et 

al. [49] applied ANN and Wavelet conjunction model to 

predict River suspended sediment load. Nourani et al. [60] 

conjugated threshold based wavelet de-noising approach and 

ANN to forecast suspended sediment load. Results revealed 

that chosen mother wavelet and resolution level directly affect 

the prediction results. On the other hand, the threshold value, 

as well as so-called factors, is another challenging issue. 

According to obtained result high values of threshold didn’t 

mean accurate result and after a specific threshold value the 

reduction in performance of the model was occurred. Result 

presented that this procedure extensively enhanced accuracy 

when modeling streamflow-SSL process.  

Wavelet analysis, which gives information in both time and 

frequency domains of the signal, also presents considerable 

knowledge about the physical form of the data. Neuro-fuzzy 

modeling is another method that refers to the approach of 

applying deferent learning algorithms developed in the neural 

network literature to fuzzy modeling or a fuzzy inference 

system (FIS). Wavelet analysis and artificial intelligent 

approaches (such as FIS and NF) are indicated to be suitable 

when applied individually to environmental and water 

resources problems. Recently, there has been a growing 

interest in combining methods. Rajaee et al. [29] combined 

wavelet and neuro-fuzzy model to predict daily suspended 

sediment load. The cumulative suspended sediment load 

estimated by this technique was closer to the actual data than 

the other ones. Also, the model could be employed to simulate 

the involved hysteresis phenomenon, while sediment rating 

curve method was incapable with this issue. 

VII. CONCLUSION 

Recently, conducted studies in hydrology indicated that 

Artificial Intelligence-based models (AI) and hybrid models 

are efficient. Employing Artificial Neural Network (ANN) for 

modeling suspended sediment load leads to acceptable 

results, but in past few years more attentions are paid to apply 

hybrid models. Genetic Programming (GP) also eventuates 

applicable results, but most of studies show that ANN is more 

powerful tool than GP. Employing Support Vector Machine 

(SVM), shows accurate results than other approaches; 

especially, when using selected kernels. No coincidence, 

application of hybrid models leads to better results in 

comparison with sole AI-based models. Preprocessing of data 

and handling non-stationary data are the main reasons of such 

results.   
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