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Abstract--Quality of software is dependent on various 

attributes such as testing, metric and prediction of bugs before 

deployment which will lead to effective maintenance. Software 

complexity and bugs again are interrelated. In this paper we are 

making a comparative study of defect prediction mechanisms. We 

propose few design ideas for empirical prediction of defect decay. 

Our research direction will be triggered by the design ideas we 

are going to propose. We intend to propose a holistic model for 

correct prediction of defect decay. We also want to perform 

empirical validation of our model and fine tune it so that its 

estimates are better than state-of-the-art.  

 

Keywords- Defect Prediction, defect decay, quality, testing, 

metrics. 

I. INTRODUCTION 

Software quality vis-à-vis product success is dependent on 

testing, code analysis and tackling code based vulnerabilities 

[19]. Software testing deals with finding errors and metrics 

collection follows testing [19]. As per ISO 9126[21] factors 

affecting quality are functionality, efficiency, usability, 

reliability, maintainability and portability [20]. Kshirasagar 

Naik et al say, “efforts to improve quality have centered 

around the end of the product development cycle by 

emphasizing the detection and correction of defects” [10]. 

Kshirasagar Naik et al further add “Software system may be 

defective due to design issues; certain system states will 

expose a defect, resulting in the development of faults 

defined as incorrect signal values or decisions within the 

system”[10].[14] quotes akiyama for indicating that total 

number of defects is sum of defects found during testing and 

found during two months after release.[14] quotes Ferdinand 

and says defects increase with increase in code segments. 

As per Stephen G. Eick et al, “Code is decayed if it is more 

difficult to change than it should be, as reflected by three 

key responses: (1) COST of the change, which is effectively 

only the personnel cost for the developers who implement it; 

(2) 

INTERVAL to complete the change the calendar/clock time 

required; and (3) QUALITY of the changed software” [4]. 

Stephen G. Eick et al further add, "Causes of Code Decay: 

Inappropriate architecture, Violations of the original design 

principles, Imprecise requirements, Time pressure, 

Inadequate change processes, Bad project management"[4]. 

As per A.Mockus et al, "code decay is the result of previous 

changes to the software"[2]. Defect prediction indicates 

predicting the defects in a system and is based on size and 

complexity metrics [14].  
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The objective is to design prediction models then 

empirically validate it by comparing different models using 

statistical analysis and estimation theory. The focus is on 

ED
3
M Model and try to extract design ideas from it’s future 

work [20].  

 

 
Figure 1. ED

3
M extracted from (Syed Waseem Haider et 

al, 2008) 

The organization of the paper is as followed: Section 1 

introduces the concepts quality, defect, defect decay and 

defect prediction, Section 2 presents the state-of-the-art 

about defect prediction techniques. In Section 3, we present 

our design ideas for defect prediction mechanism. In Section 

4, we present the required features for the prediction model 

which we intend to propose. Finally, Section 5 concludes the 

paper and discusses possible future works. 
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II. STATE OF THE ART 

Most of the defect prediction schemes use reliability, 

probability and Bayesian schemes. The approach to defect 

handling is through defect prediction, failure estimation, 

defect count and defect density. Statistical models, size and 

complexity are also used for defect prediction. In [20] “the 

focus is on characterizing the status of the software testing 

effort using a single key metric: the estimated number of 

defects in a software product. The availability of this 

estimate allows a test manager to improve his planning, 

monitoring, and controlling activities; this provides a more 

efficient testing process”. Features of ED
3
M

1
: Estimation of 

Defects based on Defect Decay Model (ED3M) takes defect 

count, an almost ubiquitous input, as the only data required 

to compute the estimates (historical data are not 

required).Second, the user should not be required to provide 

any initial values for internal parameters or expert 

knowledge; this results in a fully automated approach. 

Third, the technique should be flexible; it should be able to 

produce estimates based on defect data reported in execution 

time or calendar time. The only input is the defect data; the 

ED3M approach is fully automated. Issues mentioned in 

ED
3
M: there are defect prediction issues that are not 

addressed by it. For example, system test managers would 

benefit from obtaining a prediction of the defects to be 

found in ST well before the testing begins, ideally in the 

requirements or design phase. This could be used to improve 

the plan for developing the test cases. The ED
3
M approach, 

which requires test defect data as the input, cannot be used 

for this. Alternate approaches which rely on different input 

data (e.g., historical project data and expert knowledge) 

could be selected to accomplish this. However, in general, 

these data are not available at most companies. A second 

issue is that test managers may prefer to obtain the 

predictions for the number of defects on a feature-by-feature 

basis, rather than for the whole system. Although the ED3M 

approach could be used for this, the number of sample 

points for each feature may be too small to allow for 

accurate predictions. As before, additional information 

could be used to achieve such estimations, but this is beyond 

the scope of this paper. Third, the performance of the ED
3
M 

approach is affected when the data diverge from the 

underlying assumption of an exponential decay behavior. 

However, the results indicate the estimations are still useful 

under these conditions. Our approach takes guidance from 

this previous work, but is notably different by suggesting 

new prediction models and by using an information 

theoretic approach to measure the effectiveness of such 

models.
1
 

Overview of ED
3
M: “The only input to the ED

3
M model is 

the set of data observations; no additional a priori 

knowledge is required. The data contains the number of 

defects removed from the software under test; the data may 

be sampled using any given fixed period of time (e.g., daily, 

weekly, bi-weekly, etc.). The output of the ED
3
M model is 

an estimate of the total number of defects in the software, 

Rinitc . As additional data become available, the estimate 

                                                                 

Extracted from Syed Waseem Haider, Joa˜o W. Cangussu, Kendra 

M.L. Cooper and Ram Dantu,"Estimation of Defects Based on 

Defect Decay Model: ED3M",I EEE TRANSACTIONS ON 

SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE 

2008 

may be recalculated. The ED3M model has three main 

components: the Estimator, the λ1 λ2 Approximator, and the 

Error Correctionblock (refer to Fig. 1). The Estimator 

component is responsible for calculating an estimate of the 

total number of defects in the product. It requires the data 

observations and initial values for two constants, λ1 and λ2, 

as inputs.  

The two constants are generated by the λ1 λ2 Approximator. 

The estimator is based on an existing model for the software 

test process called the Defect Decay Model (DDM); this 

component calculates and outputs the estimate, ^Rinit. The 

λ1 λ2 Approximator component is responsible for finding 

two constants, λ1 and λ2; these are the rate and scale 

parameters for the defect curve over time. The inputs are the 

data observations. Two existing techniques are applied in 

this component: exponential peeling and nonlinear 

regression. The approximation approach is also based on the 

DDM for the software test process. This component 

calculates and outputs the values for λ1 and λ2.The Error 

Correction component is responsible for improving the 

estimate and, consequently, improving the convergence time 

for the ED
3
M model. The input is the estimate ^Rinit 

calculated by the Estimator component. The algorithm in 

this component calculates a mean growth factor using a 

history of previous estimates, where each growth factor 

value is the ratio of one estimate over a previous estimate. 

The mean growth factor is used to correct the current 

estimate; the corrected value is the output, ^Rinitc .The 

DDM [9] is a mathematical model capturing the dominant 

behavior of the system test phase. It is given by(1), where 

R(t) is the number of remaining errors at time t, R(t) is the 

error reduction velocity, and R(t) is the rate of change of 

error reduction velocity. The model parameters are viz., wf 

(the work force), sc (the software complexity),  (the overall 

quality of the test phase), and ζ and  are constants. 

          (1) 

A solution of (1) where Rinit is the initial number of defects 

present in the software at time t ¼ 0 and the error reduction 

velocity R(t) is zero at t ¼ 0 has a double exponential form 

given by 

 (2)”.
1 

As quoted by Syed et al: "Padberg [6] proposed an 

algorithm to find maximum likelihood estimates for 

Hypergeometric Distribution Software Reliability Growth 

Model (HGDM) to predict the number of defects initially 

present in the software. Note that some of the symbols used 

to explain Padberg’s approach may be the same as used 

earlier in this paper, but they represent different concepts 

here; the new definitions are provided. Padberg has shown 

that the growth quotient Q(m) of the likelihood function 

L(m) when greater than 1 indicates that the likelihood 

function is indeed increasing and provides maximum 

likelihood estimates: 



International Journal of Soft Computing and Engineering (IJSCE) 

ISSN: 2231-2307, Volume-3 Issue-6, January 2014 

166 Retrieval Number: F2034013614/2014©BEIESP 

Published By: 

Blue Eyes Intelligence Engineering 
& Sciences Publication  

 (3).” 

As quoted in Syed et al: “The Gompertz curve model given 

by (4) is based on the S-shaped behavior. In general, a 

nonlinear regression using the Gauss-Newton method is 

used to estimate the three parameters Rinit, b, and k, which 

characterizes the Gompertz curve. 

   (4) 

The use of SRGM based on the Gompertz curve can lead to 

accurate estimations of the number of defects. However, the 

results are heavily dependent on the initial values of the 

parameters used in the estimation. In real, ongoing projects 

where the actual number of defects is not known (i.e., in the 

absence of a reference point), it is very difficult to find the 

right initial values. In contrast, ED
3
M as pointed out is a 

turn-key solution that does not require any initial values.” 

 

Table 1. Defects found per testing approach extracted 

from (Grady 1992) 

 

Figure 2. The six quality characteristics of a software 

extracted from (21). 

III. DEFECT PREDECTION DESIGN IDEAS 

Correctly predicting defects is still open-ended. Our 

objective is to improvise on ED
3
M model and show higher 

convergence with lower error rate. There are variations in 

convergence rate of ED
3
M which we want to stabilize. We 

also want to evolve techniques which exhaustively predict 

defects at the defect saturation phase. Also during 

initialization phase convergence rate improvement 

methodology we intend to design. We would like to propose 

a sturdy model with a balanced behavior irrespective of 

variation in parameters. 

 

 

Figure 3. Different activities in Program testing 

extracted from (10). 

 

Table 2. ED
3
M Applied on case studies extracted from 

(Syed Waseem Haider et al, 

2008)   
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IV. PREDECTION MODEL FEATURES 

ED
3
M model uses estimation theory, estimates defects, 

predicts total number of defects and approximates defect 

decay through error correction model.  

Our goal is to use this predictive model as base model and 

improvise upon it. In the basic DDM model work force wf  

as well as complexity sc has variations with noise and error. 

ED
3
M model treated it as a constant. We would like to add 

increment/decrement mobility to the constant with noise and 

error. Other quality factors such as usability can also be 

considered for addition.  

V.  CONCLUSION  

Defect decay prediction model along with Bayesian models 

are visible efforts towards defect prediction. In this paper we 

discussed theory behind defect prediction as a product 

quality component. We resolved to use ED
3
M as a base 

model to propose our prediction model. We presented some 

design ideas and intended features for our prediction model. 

We hope our design ideas and features section in this paper 

will become a road map for our research journey.  
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