
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3 Issue-6, January 2014

164 Retrieval Number: F2034013614/2014©BEIESP

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Software Testing Optimization from Defect
Management Models

Raghvendra Omprakash Singh, Yuvraj B. Hembade, Rohit S. Kulkarni

Abstract--Quality of software is dependent on various

attributes such as testing, metric and prediction of bugs before

deployment which will lead to effective maintenance. Software

complexity and bugs again are interrelated. In this paper we are

making a comparative study of defect prediction mechanisms. We

propose few design ideas for empirical prediction of defect decay.

Our research direction will be triggered by the design ideas we

are going to propose. We intend to propose a holistic model for

correct prediction of defect decay. We also want to perform

empirical validation of our model and fine tune it so that its

estimates are better than state-of-the-art.

Keywords- Defect Prediction, defect decay, quality, testing,

metrics.

I. INTRODUCTION

Software quality vis-à-vis product success is dependent on

testing, code analysis and tackling code based vulnerabilities

[19]. Software testing deals with finding errors and metrics

collection follows testing [19]. As per ISO 9126[21] factors

affecting quality are functionality, efficiency, usability,

reliability, maintainability and portability [20]. Kshirasagar

Naik et al say, “efforts to improve quality have centered

around the end of the product development cycle by

emphasizing the detection and correction of defects” [10].

Kshirasagar Naik et al further add “Software system may be

defective due to design issues; certain system states will

expose a defect, resulting in the development of faults

defined as incorrect signal values or decisions within the

system”[10].[14] quotes akiyama for indicating that total

number of defects is sum of defects found during testing and

found during two months after release.[14] quotes Ferdinand

and says defects increase with increase in code segments.

As per Stephen G. Eick et al, “Code is decayed if it is more

difficult to change than it should be, as reflected by three

key responses: (1) COST of the change, which is effectively

only the personnel cost for the developers who implement it;

(2)

INTERVAL to complete the change the calendar/clock time

required; and (3) QUALITY of the changed software” [4].

Stephen G. Eick et al further add, "Causes of Code Decay:

Inappropriate architecture, Violations of the original design

principles, Imprecise requirements, Time pressure,

Inadequate change processes, Bad project management"[4].

As per A.Mockus et al, "code decay is the result of previous

changes to the software"[2]. Defect prediction indicates

predicting the defects in a system and is based on size and

complexity metrics [14].

Manuscript received January 15, 2014.

Raghvendra Omprakash Singh, Computer Engineering Department G.M

Vedak Institute of Technology,Tala Mumbai University India.

Mr.Rohit S. Kulkarni, Student of Master In Technology in CS Sobhasaria
Engineering College, Sikar Rajasthan Technical University, Kota –India.

Yuvraj B. Hembade, Department of Computer Engineering Dnyanganga
College of Engineering and Research Pune University. India.

The objective is to design prediction models then

empirically validate it by comparing different models using

statistical analysis and estimation theory. The focus is on

ED
3
M Model and try to extract design ideas from it’s future

work [20].

Figure 1. ED

3
M extracted from (Syed Waseem Haider et

al, 2008)

The organization of the paper is as followed: Section 1

introduces the concepts quality, defect, defect decay and

defect prediction, Section 2 presents the state-of-the-art

about defect prediction techniques. In Section 3, we present

our design ideas for defect prediction mechanism. In Section

4, we present the required features for the prediction model

which we intend to propose. Finally, Section 5 concludes the

paper and discusses possible future works.

Software Testing Optimization from Defect Management Models

165 Retrieval Number: F2034013614/2014©BEIESP

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication

II. STATE OF THE ART

Most of the defect prediction schemes use reliability,

probability and Bayesian schemes. The approach to defect

handling is through defect prediction, failure estimation,

defect count and defect density. Statistical models, size and

complexity are also used for defect prediction. In [20] “the

focus is on characterizing the status of the software testing

effort using a single key metric: the estimated number of

defects in a software product. The availability of this

estimate allows a test manager to improve his planning,

monitoring, and controlling activities; this provides a more

efficient testing process”. Features of ED
3
M

1
: Estimation of

Defects based on Defect Decay Model (ED3M) takes defect

count, an almost ubiquitous input, as the only data required

to compute the estimates (historical data are not

required).Second, the user should not be required to provide

any initial values for internal parameters or expert

knowledge; this results in a fully automated approach.

Third, the technique should be flexible; it should be able to

produce estimates based on defect data reported in execution

time or calendar time. The only input is the defect data; the

ED3M approach is fully automated. Issues mentioned in

ED
3
M: there are defect prediction issues that are not

addressed by it. For example, system test managers would

benefit from obtaining a prediction of the defects to be

found in ST well before the testing begins, ideally in the

requirements or design phase. This could be used to improve

the plan for developing the test cases. The ED
3
M approach,

which requires test defect data as the input, cannot be used

for this. Alternate approaches which rely on different input

data (e.g., historical project data and expert knowledge)

could be selected to accomplish this. However, in general,

these data are not available at most companies. A second

issue is that test managers may prefer to obtain the

predictions for the number of defects on a feature-by-feature

basis, rather than for the whole system. Although the ED3M

approach could be used for this, the number of sample

points for each feature may be too small to allow for

accurate predictions. As before, additional information

could be used to achieve such estimations, but this is beyond

the scope of this paper. Third, the performance of the ED
3
M

approach is affected when the data diverge from the

underlying assumption of an exponential decay behavior.

However, the results indicate the estimations are still useful

under these conditions. Our approach takes guidance from

this previous work, but is notably different by suggesting

new prediction models and by using an information

theoretic approach to measure the effectiveness of such

models.
1

Overview of ED
3
M: “The only input to the ED

3
M model is

the set of data observations; no additional a priori

knowledge is required. The data contains the number of

defects removed from the software under test; the data may

be sampled using any given fixed period of time (e.g., daily,

weekly, bi-weekly, etc.). The output of the ED
3
M model is

an estimate of the total number of defects in the software,

Rinitc . As additional data become available, the estimate

Extracted from Syed Waseem Haider, Joa˜o W. Cangussu, Kendra

M.L. Cooper and Ram Dantu,"Estimation of Defects Based on

Defect Decay Model: ED3M",I EEE TRANSACTIONS ON

SOFTWARE ENGINEERING, VOL. 34, NO. 3, MAY/JUNE

2008

may be recalculated. The ED3M model has three main

components: the Estimator, the λ1 λ2 Approximator, and the

Error Correctionblock (refer to Fig. 1). The Estimator

component is responsible for calculating an estimate of the

total number of defects in the product. It requires the data

observations and initial values for two constants, λ1 and λ2,

as inputs.

The two constants are generated by the λ1 λ2 Approximator.

The estimator is based on an existing model for the software

test process called the Defect Decay Model (DDM); this

component calculates and outputs the estimate, ^Rinit. The

λ1 λ2 Approximator component is responsible for finding

two constants, λ1 and λ2; these are the rate and scale

parameters for the defect curve over time. The inputs are the

data observations. Two existing techniques are applied in

this component: exponential peeling and nonlinear

regression. The approximation approach is also based on the

DDM for the software test process. This component

calculates and outputs the values for λ1 and λ2.The Error

Correction component is responsible for improving the

estimate and, consequently, improving the convergence time

for the ED
3
M model. The input is the estimate ^Rinit

calculated by the Estimator component. The algorithm in

this component calculates a mean growth factor using a

history of previous estimates, where each growth factor

value is the ratio of one estimate over a previous estimate.

The mean growth factor is used to correct the current

estimate; the corrected value is the output, ^Rinitc .The

DDM [9] is a mathematical model capturing the dominant

behavior of the system test phase. It is given by(1), where

R(t) is the number of remaining errors at time t, R(t) is the

error reduction velocity, and R(t) is the rate of change of

error reduction velocity. The model parameters are viz., wf

(the work force), sc (the software complexity), (the overall

quality of the test phase), and ζ and are constants.

 (1)

A solution of (1) where Rinit is the initial number of defects

present in the software at time t ¼ 0 and the error reduction

velocity R(t) is zero at t ¼ 0 has a double exponential form

given by

 (2)”.
1

As quoted by Syed et al: "Padberg [6] proposed an

algorithm to find maximum likelihood estimates for

Hypergeometric Distribution Software Reliability Growth

Model (HGDM) to predict the number of defects initially

present in the software. Note that some of the symbols used

to explain Padberg’s approach may be the same as used

earlier in this paper, but they represent different concepts

here; the new definitions are provided. Padberg has shown

that the growth quotient Q(m) of the likelihood function

L(m) when greater than 1 indicates that the likelihood

function is indeed increasing and provides maximum

likelihood estimates:

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3 Issue-6, January 2014

166 Retrieval Number: F2034013614/2014©BEIESP

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

 (3).”

As quoted in Syed et al: “The Gompertz curve model given

by (4) is based on the S-shaped behavior. In general, a

nonlinear regression using the Gauss-Newton method is

used to estimate the three parameters Rinit, b, and k, which

characterizes the Gompertz curve.

 (4)

The use of SRGM based on the Gompertz curve can lead to

accurate estimations of the number of defects. However, the

results are heavily dependent on the initial values of the

parameters used in the estimation. In real, ongoing projects

where the actual number of defects is not known (i.e., in the

absence of a reference point), it is very difficult to find the

right initial values. In contrast, ED
3
M as pointed out is a

turn-key solution that does not require any initial values.”

Table 1. Defects found per testing approach extracted

from (Grady 1992)

Figure 2. The six quality characteristics of a software

extracted from (21).

III. DEFECT PREDECTION DESIGN IDEAS

Correctly predicting defects is still open-ended. Our

objective is to improvise on ED
3
M model and show higher

convergence with lower error rate. There are variations in

convergence rate of ED
3
M which we want to stabilize. We

also want to evolve techniques which exhaustively predict

defects at the defect saturation phase. Also during

initialization phase convergence rate improvement

methodology we intend to design. We would like to propose

a sturdy model with a balanced behavior irrespective of

variation in parameters.

Figure 3. Different activities in Program testing

extracted from (10).

Table 2. ED
3
M Applied on case studies extracted from

(Syed Waseem Haider et al,

2008)

Software Testing Optimization from Defect Management Models

167 Retrieval Number: F2034013614/2014©BEIESP

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication

IV. PREDECTION MODEL FEATURES

ED
3
M model uses estimation theory, estimates defects,

predicts total number of defects and approximates defect

decay through error correction model.

Our goal is to use this predictive model as base model and

improvise upon it. In the basic DDM model work force wf

as well as complexity sc has variations with noise and error.

ED
3
M model treated it as a constant. We would like to add

increment/decrement mobility to the constant with noise and

error. Other quality factors such as usability can also be

considered for addition.

V. CONCLUSION

Defect decay prediction model along with Bayesian models

are visible efforts towards defect prediction. In this paper we

discussed theory behind defect prediction as a product

quality component. We resolved to use ED
3
M as a base

model to propose our prediction model. We presented some

design ideas and intended features for our prediction model.

We hope our design ideas and features section in this paper

will become a road map for our research journey.

REFERENCES

1. Allen, J. F. Using Entropy for Evaluating and Comparing Probability
Distributions, available at:

http://www.cs.rochester.edu/u/james/CSC248/Lec6.pdf

2. A. Mockus, S. G. Eick, T. L. Graves, and A. F. Karr, "New roles for
change management data in software engineering", Technical Report,

National Institute of Statistical Sciences, 1999.

3. Basili, V. R., and Perricone, B. Software errors and complexity: An
empirical investigation. Communications of the ACM, 27(1):42 – 52,

1984.

4. Eick, S. G., Graves, T. L., Karr, A. F., Marron, J.S., and Mockus, A.
Does Code Decay? Assessing the Evidence from Change

Management Data. IEEE Trans. on Software Engineering, 27(1):1–

12, 2001.
5. Eick, S.G., Graves, T.L., Karr, A.F., Mockus, A., Schuster, P.

Visualizing Software Changes, IEEE Trans. on Software Engineering,

vol. 28, no. 4, pp. 396-412, April, 2002.
6. F. Padberg, “Maximum Likelihood Estimates for the Hypergeometric

Software Reliability Model,” Int’l J. Reliability, Quality, and Safety

Eng., July 2002.
7. Graves, T. L., Karr, A. F., Marron, J. S. and Siy, H. P. Predicting fault

incidence using software change history. IEEE Trans. on Software

Engineering, 26(7):653–661, 2000.
8. J.D. Musa, A. Iannino, and K. Okumoto, Software

ReliabilityMeasurement, Prediction, Application. McGraw-Hill,

1987.Models" ,Centre for Software Reliability.
9. Ostrand, T. J., Weyuker, E. J., Bell, R. M. Predicting the Location and

Number of Faults in Large Software Systems. IEEE Trans. Software
Eng. 31(4): 340-355 (2005)

10. Pareto Law: http://www.it-cortex.com/Pareto_law.htm

11. Perry, D. E. and Evangelist, W. M. An Empirical Study of Software
Interface Faults — An Update. In Proceedings of the 20th Annual

Hawaii International Conference on Systems Sciences, pages 113–

136, Hawaii, USA, January 1987.
12. Perry, D. E. and Steig, C.S. Software Faults in Evolving a Large,

Real-Time System: a Case Study’. In Proceedings of the 4th European

Software Engineering Conference, Garmisch, Germany, September
1993.

13. Rajesh Kulkarni, P. Padmanabham & M. S. Namose, "Improving

Software Quality Attributes of PS using Stylecop",Global Journal of
Computer Science and Technology Volume XIII Issue VIII Version

I,2013

14. Syed Waseem Haider, Joa˜o W. Cangussu, Kendra M.L. Cooper and
Ram Dantu,"Estimation of Defects Based on Defect Decay Model:

ED3M",IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,

VOL. 34, NO. 3, MAY/JUNE 2008
15. http://www.issco.unige.ch/en/research/projects/ewg95//node1.html

AUTHORS PROFILE

 MR. Raghvendra Omprakash Singh, received his
bachelor‘s degree in Computer Science & Engineering

from Solapur University. He is currently Persuing

Mtech in Computer Engineering from Rajasthan
Technical University and also working as an Assistant

Professor with the Department of Computer

Engineering, G.M Vedak Institute of technology-Tala
,Mumbai University India. His research interests mainly

focused on Software Testing ,Defect Decay Models, and Quality.

MR. Yuvraj B. Hembade, received his bachelor‘s

degree in Computer Science & Engineering from Solapur

University. He is currently Persuing Mtech in Computer
Engineering from Rajasthan Technical University and

also working as an Assistant Professor with the

Department of Computer Engineering, Dnyanganga
College of Engineering and Research (DCOER)Pune

university. His research interests mainly focused on Software Testing .

MR. Rohit Shashikiran Kulkarni, recived his
bachelor’s degree in Computer Science &
Engineering from Solapur university, He is
currently doing Mtech in Computer Science
Engineering from Rajasthan Technical
University. He was Lecturer at BVIT Navi
Mumbai.

http://www.cs.rochester.edu/u/james/CSC248/Lec6.pdf
http://www.it-cortex.com/Pareto_law.htm
http://www.issco.unige.ch/en/research/projects/ewg95/node1.html

