
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-4 Issue-2, May 2014

4

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2170054214/2014©BEIESP

Soft Computing Based Approaches for Software

Testing: a Survey

Bipin Pandey, Rituraj Jain

Abstract- Software testing is the process of validation and

verification of the software product which in turn deliver the

reliable and quality oriented software product to users with lower

maintenance cost, and more accurate and reliable results.

Software testing effectiveness always depends on issues like

generated test cases, prioritization of test cases etc. These issues

demands on effort, time and cost of the testing. Many

academicians and researchers are using soft computing based

approached for better accuracy in testing. The aim of this

research paper is to evaluate and compare soft computing

approaches to do software testing and determine their usability

and effectiveness.

Index Terms: Black Box Testing, Fuzzy Logic, Genetic

Algorithms, Neural Network, Soft Computing, Software Testing,

Tabu Search, White Box testing

I. INTRODUCTION

For validating and verifying software system under

development, testing is the most important activity of

software development life cycle. It is the method to measure

how much software system is conforming to its

requirements specification specified by users and to

demonstrate its correct operation. However, software testing

is a time consuming and expensive task and almost 50% of

the software system development resources are consume for

software testing [1], [2]. Testing techniques are classified as

functional (black box) and structural (white box) testing.

Functional testing is based on functional requirements

whereas structural testing is done on code itself. Testing

tools are available to do the testing either manually or

automatically. It is found that automated software testing is

better than manual testing.

Random Testing is the commonly used search heuristics in

the industry for test case identification and design.

Evolutionary Testing, which are based on evolutionary

algorithms [3, 4] are now popular in the industry, is an

automatic test case generation technique based on the

application of evolution strategies [5], genetic algorithms [6,

7], genetic programming [8], or simulated annealing [9]. In

this research paper, a survey of different soft computing

approaches used for software testing techniques is

presented.

II. SOFT COMPUTING APPROACHES

Soft computing refers to a collection of computational

techniques which study, model, and analyze very complex

phenomena: those for which more conventional methods

have not yielded low cost, analytic, and complete solutions

[10]. The principal constituents of Soft Computing (SC) are

Fuzzy Logic (FL),

Manuscript received May 2014
Bipin Pandey, Department of Computer Sc. & Engg., Vyas Institute of

Engineering & Technology, Jodhpur, India.

Rituraj Jain, Department of Computer Sc. & Engg., Vyas Institute of

Engineering & Technology, Jodhpur, India.

Neural Computing (NC), Evolutionary Computation (EC),

and Machine Learning (ML) which are based on the

information processing in biological systems. Recognition

of surrounding, making prediction, and planning are the

basic tasks that can be performed by using the complex

biological information processing system [11].

A. Genetic Algorithm

Genetic Algorithms (GAs) are global optimization methods.

They are particularly useful for problems that involve

searching parameter spaces in which there are many local

minima. GAs operates on a population of potential solutions

applying the principle of survival of the fittest to produce

better and better approximations to a solution. GAs,

differing from conventional search techniques, start with an

initial set of random solutions called population. Each

individual in the population is called a chromosome,

representing a solution to the problem at hand. A

chromosome is usually, but not necessarily, a binary bit

string. The chromosomes evolve through successive

iterations, called generations. During each generation, the

chromosomes are evaluated, using some measure of fitness.

To create the next generation, new chromosomes, which

called offspring, are formed by merging two chromosomes

from current generation using a crossover operator or

modifying a chromosome using a mutation operator. A new

generation is formed by selecting, according to the fitness

values, some of the parents and offspring and rejecting

others so as to keep the population size constant. After

several generations, the algorithm converges to the best

chromosome, which hopefully represents the optimum or

sub-optimal solution to the problem [12] [13] [14] [15].

B. Fuzzy Logic

Fuzzy Logic (FL) processing the data by allowing partial set

membership rather than crisp set membership or non-

membership. Fuzzy Expert System consists of fuzzification

unit that converts crisp values into fuzzified input [16]. It

consists of inference engine that contains if then else rules

and a defuzzification unit to convert the result in a readable

form. FL incorporates a simple, rule-based IF X AND Y

THEN Z approach to a solving problem rather than

attempting to model a system mathematically [17].

C. Neural Computing

A neural network, more properly referred to as an 'artificial'

neural network (ANN), is a computing system made up of a

number of simple, highly interconnected processing

elements, which process information by their dynamic state

response to external inputs [18]. The representation of

knowledge is distributed over these connections and

"learning" is performed by changing certain values

associated with such connections, not by programming [19].

Soft Computing Based Approaches for Software Testing: A Survey

5

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2170054214/2014©BEIESP

III. SOFT COMPUTING IN WHITE BOX

TESTING

White-box testing or structural testing is a verification

technique to examine if code written for fulfilling the

required task works as expected or not. It can be done in the

form of data flow testing or path testing. Path testing is an

approach to ensure that every path through a program has

been executed at least once and finding the set of test cases

that will execute every path in this set of program path [20]

[21]. In data flow testing program’s control flow is under

tracking in order to explore sequences of events related to

status of data objects caused by creation, usage,

modification or destruction with the intention of identifying

any data anomalies [22]. So in data flow testing, the focus is

on the points at which variables receive values and the

points at which these values are used [23].

P.R. Srivastava and Tai [3] have developing variable length

Genetic Algorithms that optimizing software testing

efficiency and select the software path clusters which are

weighted in accordance with the criticality of the path. Their

approach uses a weighted CFG. Weights are assigned to the

edges of the CFG by applying 80-20 rule i.e. more weights

are assigned to critical edges. So 80 percentage of weight of

incoming credit is given to loops and branches and the

remaining 20 percentage of incoming credit is given to the

edges in sequential path. The selection of parents for

reproduction is done according to a probability distribution

based on the individual’s fitness values. More weight is

assigned to a path which is more “critical”. The crossover

technique used is one point crossover done at the midpoint

of the input bit string. Mutation is performed on a bit-by-bit

basis. To perform mutation, for each chromosome in the

offspring and for each bit within the chromosome, generate

a random real number r in the range [0, 1]; if r < pm then

mutate the bit. The summation of weights along the edges

comprising a path determines criticality of path. Higher the

summation more critical is path and therefore must be tested

before other paths. In this way by identifying most critical

paths that must be tested first, testing efficiency is increased.

Another test generation approach proposed by P.R

Srivastava is based on path coverage testing [24]. The test

data is generated for Resource Request algorithm using Ant

Colony Optimization algorithm (ACO) and GA. Resource

request algorithm is deadlock avoidance algorithm used for

resource allocation by operating system to the processes in

execution cycle [25]. The ACO algorithm is inspired from

behavior of real ants where ants find closest possible route

to a food source or destination. The ants generate chemical

substance called pheromones which helps ants to follow the

path. The pheromone content increases as more ants follow

the trail. The possible paths of CFG are generated having

maximum number of nodes. Using ACO, optimized path

ensuring safety sequence in resource request algorithm is

generated covering all edges of CFG. Using GA, suitable

test data set is generated which covers the need for each

process. The backbone of genetic process is the fitness

function which counts number of times a particular data

enters and continues the resource request algorithm. Higher

the value of count, higher is chances of avoiding a deadlock.

The test data with higher values of count is taken and

genetic crossover and mutation is applied to yield better

results. Simultaneously, poor test data is removed each time.

Girgis [26] has proposed a structural oriented automatic test

data generation technique that uses a GA guided by the data

flow dependencies in the program to search for test data to

cover its def-use associations. A Control Flow Graph (CFG)

is prepared for the program where each node represents a

block in a program and the edges depict the control flow of

the statements. Data flow analysis focuses on the

interactions between variable definitions (defs) and

references (uses) in a program. In his approach, GA accepts

instrumented version of the program under test, the list of

def-use sets to be covered, the number of input variables,

and the domain and the precision of each input variables as

an input. A binary vector is used to represent a chromosome.

The length of the input is determined by the domain and the

precision. Each chromosome represents a test case for a

program which is represented by a binary string of specified

length. Each chromosome (as a test case) is represented by a

binary string of length m. Initial population with m-bit

strings pop_size is randomly generated where pop_size is

the population size. Each chromosome is converted to k

decimal numbers representing values of k input variables x1,

…, xk (i.e. a test case). Selection is done by roulette wheel

selection and proposed random selection method. The

effective test cases then become parents of the new

population. If none is effective then all the individuals are

chosen as the parents. In the recombination phase, we use

two operators, crossover and mutation. Results of the his

approach are more effective as compared to the random

testing technique. The proposed selection method generates

better results than the roulette wheel selection method.

Yeresime Suresh et. al [27] proposed an approach using

genetic algorithm for generating test data automatically

which is reducing the test effort and time of a tester. The test

data is referred to as population in GA. In initial population,

each individual bit string (chromosome) is a test data. This

set of chromosomes is used to generate test data for feasible

basis paths. The system for generating automated test data

for feasible basis paths using GA first randomly generates

the initial population, evaluates the individual chromosome

based on the fitness function value and applies the GA

operations such as elitism selection, two point crossover

operation and bit wise mutation to produce next generation.

This iterative process stops when the GA finds optimal test

data. After the generation of initial test data randomly, GA

was iterated for 500 generations as in practicality

computation time should be finite. This paper makes use of

a fitness function based on the condition of the predicate

node. The results of Yeresime Suresh et. al research are an

indication that GA is more effective and efficient in

generating automated test data rather than random testing.

Premal B. Nirpal et al. [28] proposed genetic algorithms

based approach that can automatically generate test cases to

test selected path. This algorithm takes a selected path as a

target and executes sequences of operators iteratively for

test cases to evolve. The evolved test case can lead the

program execution to achieve the target path. To generate

path-oriented test data for the program under test using GA,

there are five steps wiz, Control flow graph construction,

Target path selection, Fitness function construction,

Program instrumentation, Test data generation and the

instrumented program execution.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-4 Issue-2, May 2014

6

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2170054214/2014©BEIESP

The quality of test cases produces by genetic algorithms is

higher than the quality of test cases produced by random

way because the algorithm can direct the generation of test

cases to the desirable range fast. The of their research shows

that genetic algorithms are useful in reducing the time

required for lengthy testing meaningfully by generating test

cases for path testing.

Jasmine Minj et al. [29] propose a technique to generate test

cases from UML State diagram that is based on path

oriented approach. Genetic algorithm is used with stack

based approach to get the optimized feasible test cases.

Effectiveness of test cases generated from UML Statechart

is measured by state coverage, transition coverage and

transition pair coverage criteria. They present path-oriented

test data generation which aims to generate feasible test

cases that covers every possible path in the program. UML

Statechart is converted into intermediate graph. Then the

predicates found in the intermediate graph are represented in

the form of binary bits which is taken as chromosome.

Based on predicates, traverse the graph using DFS for test

sequence generation. Cost of each path is calculated using

McCabe’s formula of cyclomatic complexity formula.

Fitness function is calculated by the cost of path and stack

weight for each path. Selection is done using roulette wheel

method and the individual probability is calculated based on

the fitness of the individual. Then crossover operation will

be applied and recombines the selected pairs of individuals.

Bits are mutated which helps in introducing diversity into

the genetic pool. It adds new individuals randomly to the

population and thereby avoids solution being struck in the

local optima. Their results show that generated test cases

using these methods are effective, efficient and optimized.

Eugenia Díaz et al. [30] presented a tabu search

metaheuristic algorithm for the automatic generation of

structural software tests. The developed test generator has a

cost function for intensifying the search and another for

diversifying the search that is used when the intensification

is not successful. It also combines the use of memory with a

backtracking process to avoid getting stuck in local minima.

The proposed method (TSGen) has the goal of covering all

the branches of the program. Their method generates tests

(partial solutions) based on the test that is the Current

Solution (CS) and executes them as input for the program.

Using the Current Solution, TSGen generates a set of

neighboring test candidates and checks whether it is a tabu

test. A test is tabu if it is stored in the TSGen memory. If a

generated test is not tabu, the instrumented program under

test is executed to check which branches (nodes) it has

covered and the cost incurred by said test. However, if a

generated test is tabu, it will be rejected. During the search

process, the best solutions found are stored together with

their costs in the CFG. Thus, when an executed test has a

lower cost in a CFG node than the current cost stored in that

node, that test is stored as the best solution for that node.

IV. SOFT COMPUTING IN BLACK BOX TESTING

Black box testing (also called functional testing) is testing

that focuses solely on the outputs generated in response to

selected inputs and execution conditions and ignores the

internal mechanism of a system or component and. With

black box testing, the software tester does not (or should

not) have access to the source code itself.

Francisca Eanuelle et al. [31] presented GA based technique

to generate good test plans for functionality testing. The test

plan or test sequence totally relies on the experts or the

people who understand the application well. The emphasis is

given on the fact that an error in a program may propagate

from the previous operations executed instead of the last

operation. They have chosen the operation of large

granularity so that the sequence of operation that leads

application to inconsistent state can be identified. The

objective is to find the sequence of operations which leads

the system in an inconsistent state. Fitness value is

calculated and larger the value of fitness function, better the

sequence is considered which is likely to take the

application to an inconsistent state. The results have shown

that the GA improves the quality of the test plans. Their

technique generates good test plans in an unbiased way but

this requires computer applications to be tested more

thoroughly. The approach does not use the structure of the

application or the program flow.

Mark Last et al. [32] proposed a new Fuzzy-Based Age

Extension of Genetic Algorithms (FAexGA) to generation

of effective test. The basic idea is to eliminate "bad" test

cases that are unlikely to expose any error, while increasing

the number of "good" test cases that have a high probability

of producing an erroneous output. The aim is to find

minimal set of test cases that are likely to expose faults

using mutated versions of the original program. In FAexGA

approach, crossover probability varies according to the age

intervals assigned during lifetime. Fuzzy logic controller

(FLC) is used for determining probability of crossover. The

FLC state variables include the age and lifetime of

chromosomes (parents). The fuzzification interface of FLC

includes variables that determine the age of an offspring.

FLC assigns every parent values Young or Middle-age or

Old. These values determine the membership for each rule

in FLC rule base. The test cases relate to the inputs of tested

software and are represented as a vector of binary or

continuous values. The test cases are initialized randomly in

the search space of possible input values. Genetic operators

are applied and the test cases are evaluated based on the

fault – exposing - capability using mutated versions of

original program.

Chartchai Doungsa et al. [33] proposed GA-based test data

generation technique to generate test data from UML state

diagram, so that test data can be generated before coding.

The test cases can be generated as per the specifications of

the software. Specifications can be in the form of UML

diagrams, formal language specifications or natural

language description. Sequence of triggers for UML state

diagram can be used as a chromosome. The sequence of

triggers is an input for the state diagram which acts as test

cases for a program to be tested. Test cases are selected

based on their fitness function. Test case with best fitness

value is selected as parents. Based on the fitness function the

selection operator is used to apply crossover and mutation

operator to the sequence of triggers. Crossover operator is

then applied to the sequence of triggers. This operator then

generates new states and transitions. After a new generation

is created, UML state diagram is then executed again to

check for new chromosomes. In this work, test cases are

generated from UML state diagram so that test data can be

generated before coding.

Soft Computing Based Approaches for Software Testing: A Survey

7

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2170054214/2014©BEIESP

The effectiveness of test cases generated from the proposed

fitness function is not evaluated with other test case

generation techniques from the UML.

V. SOFT COMPUTING IN REGRESSION TESTING

Regression testing is type of testing carried out to ensure

that changes made in the fixes or any enhancement changes

are not impacting the previously working functionality. It is

executed after enhancement or defect fixes in the software

or its environment. It gives assurance that newly added

features do not cause any problem or side effects in the

functioning of the system. This is generally performed in

maintenance phase of software development cycle.

Harsh Bhasin et. al [34] proposed Fuzzy Regression Expert

System (FRES) which comprises of three components

knowledge base, inference engine and user interface.

Knowledge base contains all the rules. Inference engine

takes the decision by checking which rules are satisfied by

facts, prioritize the rules that are satisfied and execute the

highest priority rules. The rules are to be prioritized based

on premise discussed in the section. Inference engine

processes the rules that are extracted and whose patterns are

satisfied by facts in contention. The user interface presents

the user available facts and other information as input.

VI. NEURAL NETWORK FOR SOFTWARE

TESTING

Various blocks in a program are guarded by various branch

predicates and the execution of the block depends on the

predicate evaluations. Abhas Kumar [35] defined a function

for each of the branch predicate. The program is

instrumented so as to record the function evaluation for the

corresponding inputs. A large record of such mappings from

external inputs to the evaluation of branch functions can

then be modeled using a neural network. Once the code is

instrumented, data corresponding to the evaluation of branch

predicates and the external inputs to the program is done is

collected. He applies his approach to execute only a

particular block of code, given all other blocks of the code

have been executed considerable number of times. Within

short number of such inputs, the predictor is able to guess a

correct set of inputs which will execute the required

statement. To speed up the process of test case generation

inverse function was model by suing neural networks. He

constructs such models for each of the given statements and

found that the neural networks were able to learn fairly

quickly and predict accurate values which in turn provide a

good method to reduce the time required for test-data

generation. His method demonstrated the use of neural

networks in efficient test data generation.

VII. CONCLUSION

In this paper, applications of Soft Computing in different

types of software testing are discussed. It is found that by

using Soft Computing approaches for Software Testing, the

results and the performance of testing can be improved.

REFERENCES

1. Dr. Velur Rajappa, Arun Biradar, Satanik Panda "Efficient software
test case generation Using Genetic algorithm based Graph theory"

International conference on emerging trends in Engineering and

Technology, pp. 298-303, IEEE (2008).

2. Praveen Ranjan Srivastava and Tai-hoon Kim "Application of Genetic

algorithm in software testing", International Journal of software
Engineering and its Applications, vol.3, No.4, pp. 87-96 (2009).

3. André Baresel , Hartmut Pohlheim , Sadegh Sadeghipour, Structural

and functional sequence test of dynamic and state-based software with
evolutionary algorithms, Proceedings of the 2003 international

conference on Genetic and evolutionary computation: PartII, July 12-

16, 2003, Chicago, IL, USA
4. O. Buehler and J. Wegener. Evolutionary functional testing of an

automated parking system. In International Conference on Computer,

Communication and Control Technologies and The 9th International
Conference on Information Systems Analysis and Synthesis, Orlando,

Florida, USA, 2003.

5. H. P. Schwefel and R. Manner, editors, Parallel Problem Solving
From Nature, pages 176–185. Springer-Verlag, October 1990

6. D E Goldberg, “Genetic Algorithms in Search, Optimization and

Machine Learning”, Addison-Wesley, Reading, 1989.
7. J Holland, “Adaptation in Natural and Artificial Systems”, MIT Press,

Cabmridge, MA, 1975.

8. D Koza, “Genetic Programming, On the Programming of Computers

by Means of Natural Selection”, MIT Press, Cambridge, MA, 1992.

9. P von Laarhoven and E Aarts, “Simmulatd Annealing: Theory and

Applications, Mathematics and its Applications” Kluwer, Dordrecht,
1987.

10. http://www.softcomputing.net.in/ (Access on 15th Feb, 2014)

11. Chattopadhyay S (2006), “Soft Computing Techniques in combating
the complexity of the atmosphere-a review”, Arxiv preprint

nlin/0608052.
12. David E. Goldberg (1989)” Genetic Algorithm in Search,

Optimization and Machine Learning”, Pearson Education-India.

13. M. Melanie, “An Introduction to Genetic Algorithms, Massachusetts”,
MIT Press, 1999.

14. K. F. Man , K. S. Tang and S. Kwong "Genetic algorithms: Concepts

and applications", IEEE Trans. on Industrial Electronics, vol. 43,
no. 5, pp.519 -534 1996

15. S. Sabharwal, R. Sibal and C. Sharma, "Applying genetic algorithm

for prioritization of test case scenarios derived from UML diagrams",

International Journal of Computer Science Issues (IJCSI), vol. 8, No.

2, pp. 433-444, May 2011.

16. Radim Belohlavek and George J. Klir. “Concepts and fuzzy logic”,
Cambridge Mass. London: MIT Press, 2011

17. http://www.seattlerobotics.org/encoder/mar98/fuz/flindex.html,

(Access on 18th Feb, 2014)
18. [18] Maureen Caudill, “Neural networks primer, part I”, AI Expert,

v.2 n.12, p.46-52, Dec. 1987

19. Zupan, J. (1994) “Introduction to artificial neural network (ANN)
methods: what they are and how to use them” Acta Chim. Slov. 41,

327–352.

20. Naresh Chauhan, “Software Testing: Principles and Practices”,
Oxford University Press, 2010.

21. Paul C. Jogersen, “Software testing: A craftsman approach” 3rd

edition, CRC presses, 2008.
22. http://khannur.com/stb6.2.htm (access date: 19th Feb, 2014)

23. Z. Bo and W. Chen, "Automatic generation of test data for path

testing by adaptive genetic simulated annealing algorithm," in
Computer Science and Automation Engineering (CSAE), 2011 IEEE

International Conference on, 2011, pp. 38-42.

24. Praveen Ranjan Srivastava et. al., “Generation of test data using Meta
heuristic approach” IEEE, 2008, pp.19 - 21.

25. Ribeiro, J. C. B., Zenha-Rela, M. A., and de Vega, F. F. (2008a), “A

Strategy for Evaluating Feasible and Unfeasible Test Cases for the
Evolutionary Testing of Object-Oriented Software” In Proceedings of

the 3rd international workshop on Automation of Software Test (AST

’08) , pages 85–92, Leipzig, Germany. ACM.
26. Girgis, “Automatic test generation for data flow testing using a

genetic algorithm”, Journal of computer science, 11 (6), 2005, pp. 898

– 915.
27. Yeresime Suresh et. al, “A Genetic Algorithm based Approach for

Test Data Generation in Basis Path Testing” The International Journal

of Soft Computing and Software Engineering, Vol. 3, No. 3, Special
Issue [SCSE’13], March 2013

28. Premal B. Nirpal and Kale K.V.(2010), “Comparison of Software

Test Data for Automatic Path Coverage Using Genetic Algorithm”,
Internal Journal of Computer Science and Engineering Technology,

Vol. 1, Issue 1.

http://www.softwaretestingclass.com/regression-testing-definition/

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-4 Issue-2, May 2014

8

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2170054214/2014©BEIESP

29. Jasmine Minj Lekhraj Belchanden, “Path Oriented Test Case

Generation for UML State Diagram using Genetic Algorithm”
International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 7, November 2013

30. Eugenia Díaz , Javier Tuya , Raquel Blanco , José Javier Dolado, “A
tabu search algorithm for structural software testing”, Computers and

Operations Research, v.35 n.10, p.3052-3072, October, 2008

31. Francisca Emanuelle et. al., “Using Genetic algorithms for test plans
for functional testing”, 44th ACM SE proceeding, 2006, pp. 140 -

145.

32. Mark Last et. al., “Effective black-box testing with genetic
algorithms”, Lecture notes in computer science, Springer, 2006, pp.

134 -148.

33. Chartchai Doungsaard, Keshav Dahal, Alamgir Hossain, and Taratip
Suwannasart, 2007, “An Automatic Test Data Generation from UML

State Diagram using Genetic Algorithm”, The proceedings of the

Second International Conference on Software Engineering Advances.
34. H. Bhasin, S. Gupta, M. Kathuria, “Regression testing using fuzzy

logic”, International Journal of Computer Science and Information

Technology (IJCSIT), 4(2), pp. 378-380, 2013.

35. Abhas Kumar, “Dynamic Test Case Generation using Neural

Networks”,

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.3110&re
p=rep1&type=pdf (Access on 20th Feb, 2014)

AUTHORS PROFILE

Bipin Pandey, is currently pursuing M. Tech. from
Jodhpur National University, Jodhpur. He is currently

working as an Assistant Professor at Vyas Institute of

Engineering & Technology, Jodhpur. He is OCJP
Certified. His main areas of research are the Genetic

Algorithms, Data Mining and Software Engineering.

Rituraj Jain, is currently pursuing Ph.D. from Pacific

University, Udaipur. He is currently working as an

Associate Professor & Head at Vyas Institute of

Engineering & Technology, Jodhpur. He is Life time
member of ISTE Chapter and also Cloud U Certified.

His main areas of research are the Genetic Algorithms,

Data Mining and Software Engineering. He has presented numerous papers
on these topics in International Journals and Conferences.

