
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-4 Issue-2, May 2014

18

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2180054214/2014©BEIESP

Abstract- Floating point multiplier is one of the vital concerns

in every digital system. In this paper, the concepts of High speed

compressors are used for the implementation of a High speed

single precision binary Floating point multiplier by using IEEE

754 standard. Since compressors are special kind of adder which

is capable to add more number of bits at a time, the use of these

compressors makes the multiplier faster as compared to the

conventional multiplier. For Mantissa calculation, a 24×24 bit

multiplier has been developed by using these compressors. Owing

to these high speed compressors, the proposed multiplier obtains a

maximum frequency of 1467.136MHz. It is implemented using

Verilog HDL and it is targeted for Xilinx Virtex-5 FPGA.

Keywords- Compressors, Floating point multiplier, Mantissa,

IEEE754 standard, Verilog HDL.

I. INTRODUCTION

Floating point Multipliers are important components for

many high performance digital systems such as FIR/IIR

filters, microprocessors and digital signal processors. In this

paper single precision floating point multiplier is

implemented using different high speed compressors [1].

Introduction of high speed compressors leads to increase the

speed of multiplication. Inputs and output of multiplier are

single precision floating point number based on IEEE 754

standard [6].Single precision floating point representation is

given in fig1. The single precision floating point number is of

32 bit. Starting from MSB it has a one bit sign (S), an eight bit

exponent (E), and a twenty three bit mantissa (M) [6].

Fig1: Single Precision Floating Point Representation

 Floating point is used to represent numbers and do

arithmetic in computing machines, ranging from simple

calculators to computers. In general, floating point

representations are slower than fixed-point representations.

Good quality about floating point is that they can handle a

larger range of numbers [5].

Manuscript Received May 2014

Sunil Kumar Mishra, Department of Electronics Engineering,

Visvesvaraya National Institute of Technology, Nagpur-440010, India.

Vishakha Nandanwar, Department of Electronics Engineering,

Visvesvaraya National Institute of Technology, Nagpur-440010, India.

Eskinder Anteneh Ayele, Department of Electronics Engineering,

Visvesvaraya National Institute of Technology, Nagpur-440010, India.

Dr. S. B. Dhok, Department of Electronics Engineering, Visvesvaraya

National Institute of Technology, Nagpur-440010, India.

Expansion of the exponent component in floating point

leads to achieve this greater range. Floating point

multiplication is almost similar to integer multiplication.

Because floating-point numbers are stored in sign-magnitude

form, the multiplier needs to deal with unsigned integer

numbers and normalization. Higher order multiplier requires

a large number of adders for partial product addition. In this

paper the numbers of adders are reduced by introducing High

speed compressors logic. Compressors like 5-3, 6-3, 7-3, 8-4,

15-4 and so on are implemented for partial product addition

[1] [2]. Binary counter property is merged along with

compressor property for the implementation of higher order

compressors [1]. Generally, compressors do the simple

operation of addition that adds more number of bits at a time.

 The paper is organized as follows. Section II presents the

floating point multiplier algorithm. Section III contains the

theory of high speed compressors. Section IV describes

details of the proposed architecture and its implementation.

Experimental results and Comparison are given in Section V.

Finally, Section VI concludes the paper.

II. FLOATING POINT MULTIPLIER ALGORITHM

 According to IEEE754 standard, the representation of a 32

bit binary floating point number is consists of sign, exponent

and mantissa component. During calculation of floating point

multiplication different operations are performed on each

component. The detail algorithm is described as below [3],

[4] and [5].

1. Calculation of the sign bit; i.e. SA XOR SB.

2. Exponent is calculated by adding the exponent of EA

and EB. After that, bias the addition by 127 to get the

final exponent. i.e. EA+ EB-127.

3. Add 1 before the mantissa bit to make the 23 bit into 24

bit after that multiplies together the 24 bit to get 48 bit

result.

4. Normalizing the result, to get the required 23bit

mantissa for the final result.

5. Combine the calculated sign, exponent and mantissa

components to get the desired multiplication result.

A. Multiplication Operation

 The above algorithm can be better explained by

considering the multiplication of two floating point numbers

A and B as an example. Let’s consider A= -17.85, B=12.57.

The IEEE754 standard format representation of the two

operands A and B are given in Table-1 in view of single

precision format. Here MSB of the operand shows the sign

bit, the next 8 bit represent exponent, and the mantissa is

FPGA Implementation of Single Precision

Floating Point Multiplier using High Speed

Compressors

Sunil Kumar Mishra, Vishakha Nandanwar, Eskinder Anteneh Ayele, S.B. Dhok

31 30 23 22

Exponent Mantissa Sign

0

FPGA Implementation of Single Precision Floating Point Multiplier using High Speed Compressors

19

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2180054214/2014©BEIESP

represented by rest 23bit. The exponent is expressed in excess

127 bit.

Table-1: IEEE754 Standard Representation of the Two

Operands

Operand A B

Decimal

Value
-17.85 12.57

Sign 1 0

Exponent 10000011 10000010

Mantissa 00011101100110011001101 10010010001111010111000

 By computing the XOR operation on sign bit of operands A

and B, we obtain the sign bit of output. Here sign bit of output

is SA XOR SB. In this case sign bit get hold of is “1”. For

resultant exponent, the addition operation is used to add

exponent of both the operands. In this implementation 8 bit

ripple carry adder is used for addition of EA and EB. After

addition the result is again biased to decimal 127. For this

purpose 127 is subtracted from the addition result of EA and

EB. So the final resultant is ER=EA+EB-127. Where, EA and EB

are the exponents of operand A and B respectively. ER is the

final resultant exponent. For this typical example, ER

=10000110. In this paper the subtraction is implemented

using two’s complement method [9].

 Mantissa multiplication is done by using 24x24 bit binary

multiplier. Further the binary multiplier is implemented by

using high speed compressors. Before binary multiplication

the 23 bit mantissa is normalized to 24 bit by adding 1 at

MSB. In this illustration the normalized mantissas are

MA=100011101100110011001101

MB=110010010001111010111000

 The above two 24 bit normalized mantissa are multiplied

by using high speed compressors based binary multiplier and

the acquired result will be of 48 bit as

011100000010111111101111100110000011100101011000

 Now normalizing the resultant 48 bit into 23 bit mantissa is

done by simply ignoring the MSB and hence the final

mantissa, RM=11000000101111111011111.

 After combining the three results of sign, exponent and

mantissa components, the final obtained result is shown in

Table 2.

Table-2: Results of Sign, Exponent and Mantissa Component

Decimal

Value
Sign Exponent Mantissa

224.3748 1 10000110 1100000010111111101111

III. HIGH SPEED COMPRESSORS

In binary multiplication a large number of partial product

additions are carried out. In conventional multiplier full

adders are used for partial product addition [3]. With full

adder maximum of 3 inputs can be added at a time.

Accordingly to add all the partial products large numbers of

full adders are required. Hence, to reduce the number of

adders in this implementation High speed compressors are

introduced. Different compressors are developed based upon

the concept of binary counter property [1]. In 5-3 compressor,

maximum of five inputs can be added at a time wherein the

output is a three bit number [1]. Table-3 shows the counter

property of 5-3 compressor.

Table-3: Counter Property of 5-3 Compressor

Input Condition Out3 Out2 Out1
Decimal

Value

All inputs are zero 0 0 0 0

Any one input is one 0 0 1 1

Any two input are one 0 1 0 2

Any three input are one 0 1 1 3

Any four input are one 1 0 0 4

Any five input are one 1 0 1 5

A. Architecture of Different Compressors

 Some basic different compressors architecture are designed

and discussed by using the same logic in [1]. Fig. 2 shows the

block diagram of 4-3 compressor which is designed by using

one full adder and two half adder. 5-3 compressor is

implemented by using two full adders and one half adders as

shown in Fig.3.

Fig-2: Structural Design of 4-3 Compressor

Fig-3: Structural Design of 5-3 Compressor

 For the design of 6-3 compressor, two full adders are used.

Fig.4 shows the block diagram of 6-3 compressor [1]. For the

parallel addition purpose ripple carry adder as seen in Fig.5 is

used. Similarly for the design of 7-3 compressor in Fig.6, one

full adder and one 4-3 compressor are used. Its parallel

addition unit is given in fig.7.

Full adder

Half adder

Half adder

A B C D

Out 3 Out 2
Out 1

A

Full adder

Full adder

Half adder

Out 3 Out 2 Out 1

B C E D

4-3 compressor Full adder

Parallel Addition

Out 3 Out 2 Out 1

B A C D E F

S1 S2 S3 S5

G

S4

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-4 Issue-2, May 2014

20

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2180054214/2014©BEIESP

Fig-4: Structural Design of 6-3 Compressor

Fig-5: Parallel Addition Unit for 6-3 Compressor

Fig-6: Structural Design of 7-3 Compressor

Fig-7: Parallel Addition Unit for 7-3 Compressor

 For the implementation of 15-4 compressor five full

adders, two compressors, and parallel adder unit are used

[2]. Fig.8 shows the block diagram of 15-4 compressor

and its optimized parallel adder is shown in fig.9

Fig-8: Architecture of 15-4 Compressor

Fig-9: Parallel Adder Unit for 15-4 Compressor

 By using the concept of adders all the compressors are

implemented. These compressors are used in the calculation

of partial product addition in different stages of binary

multiplication.

IV. PROPOSED ARCHITECTURE OF FLOATING

POINT MULTIPLIER

 The proposed architecture for Single Precision Floating

Point Multiplier using High Speed Compressors is given in

Fig.10.

Full adder Half adder

Out 3 Out 2 Out 1

S2 S4 S3 S1

C1

Half

adder

Full

adder

Out 1 Out 3 Out 2

S5 S1 S4 S2

C2 Half

adder

S3

C1

4-3 compressor

Parallel Addition

Out 3

B A C D

Full adder

F E G

Out 2 Out 1

S5 S4 S3 S2 S1

A

Full

adder

Full

adder

Full

adder

Full

adder

Full

adder

B C E F G H I J K L M N O D

D

5-3 Compressor 5-3 Compressor

Parallel Addition

S6 S5 S4 S3 S2 S1

Out 4 Out 3 Out 2 Out 1

Half

adder

Full

adder

Out 3 Out 4 Out 2

S6 S2 S5 S3

C2 Half

adder

S4

C1

S1

Out 1

FPGA Implementation of Single Precision Floating Point Multiplier using High Speed Compressors

21

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2180054214/2014©BEIESP

Fig-10: Proposed Architecture of Single Precision Floating

Point Multiplier

Fig-11: Eight-Bit Ripple Carry Adder

 From the calculation perspective whole floating point

multiplication is divided into four sections.

A. Sign section

B. Exponent section

C. Mantissa section

D. Normalization section

A. Sign Section

 In sign section, the sign bit for the final result is calculated.

The sign bit is calculated by performing XOR operation on

the sign bits of the two operands. The truth table for the XOR

operation is given in Table-4.

Table-4: Sign Bit Operation

EA EB Sign
0 0 0

0 1 1

1 0 1

1 1 0

B. Exponent Section

 In this section the two operands are added directly by using

8-bit ripple carry adder. Fig.11 shows the 8-bit ripple carry

adder. After addition, biasing is required to get the final

exponent. For biasing decimal value 127 is subtracted .Here

subtraction is done by using 2’s complement method [9].

C. Mantissa Section

 Mantissa calculation is the most important part of the

floating point multiplier. The whole performance of the

floating point multiplier is depending upon the mantissa

calculation section. In mantissa calculation 24x24 bit binary

multiplier is required to do the multiplication of mantissas of

two operands. In this paper binary multiplier is implemented

by using high speed compressors, which reduces the delay. In

single precision floating point number, mantissa is consists of

23 bit. So initially normalization is done in the mantissa by

adding 1 at the MSB.

 31 30 23 22 0

Sign Exponent Mantissa

 31 30 23 22 0

Exponent Mantissa Sign

XOR 8-bit ripple carry adder 24x24 binary multiplier using High speed

compressors

Biased to -127

Normalization Unit

31 30 23 22
0

Sign Mantissa Exponent

a0

s8

FA

b7 a7

s7

c7 FA

b6 a6

s6

c6 FA

b5 a5

s5

c5 FA

b4 a4

s4

c4 FA

a3

s3

c3 FA

b2 a2

s2

c2 FA

b1 a1

s1

c1 HA

b0

s0

b3

HA- Half adder

FA- Half adder

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-4 Issue-2, May 2014

22

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2180054214/2014©BEIESP

 After normalization the mantissa of each operand became 24

bit. After binary multiplication of the two normalized 24 bit

operands a 48 bit number will generate as a multiplication

output. Again this 48 bit number is normalized to 23 bit to get

the final mantissa.

In this paper 24 bit multiplier is proposed and implemented by

using the concept of high speed compressors. After

multiplication of 24x24 binary multiplier large numbers of

partial products are obtained. Further those partial products

are added by using different compressors at different stage. At

first stage of partial product addition, no need of any addition

because only one partial product is there. Which directly goes

as it is as LSB. At the second stage one half adder is required

because only two partial products are here. The sum bit taken

as output for that stage and carry will go to the next stage. At

third stage, partial products are increased to three and one

carry from previous stage and hence a total four partial

products are present. Addition of these four partial products is

done by using 4-3 compressor. In the next stages the number

of partial products goes on increasing. So, higher order

compressors are required for addition. Similarly in the4
th

stage 7-3 compressor, 5
th

stage 8-4 compressor, 6
th

 stage 9-4

compressor, and 7th stage 10-4 compressor are used. As the

stage increases higher order compressors are used. At 24
th

stage, partial products are increased 28 including the carry

from previous stages. For the partial addition of 24
th

 stage

28-5 compressor is used. After 24
th

 stage number partial

products are decreasing .So for the addition of those partial

products previously used compressors are used. This process

of addition of partial product is better explained by

considering a 4x4 binary multiplier as shown in Fig-12.

Fig-12: 4x4 Binary Multiplier

 In the first stage of partial product addition only one partial

product is at hand, R1 [0]. So it is directly taken as M [0]. For

the second stage of partial products addition one half adder is

used. Sum bit of half adder’s result is taken as M [1] and carry

is move to the next stage. In the 3
rd

 stage, four partial products

are present including the carry and one 4-3 compressors used

in this stage. Similarly in 5
th

 stage and 6
th

stage 5-3 and 4-3

compressors are used respectively for partial products

addition. In 7
th

 and 8
th

 stage less number partial products are

present so only one full adder and one half adder is required.

D. Normalization Section

In the Normalization section, normalization of exponent and

mantissa are performed. According to the 47
th

bit (result of the

24x24 bit binary multiplier) normalization is done.

i. When 47th bit of 24X24 bit binary multiplier is binary

one ,mantissa is normalized to 23 bit by taking 46th to

24th bit position number and exponent is increased by

decimal value one.

ii. When 47
th

 bit of 24X24 bit binary multiplier is binary

zero, mantissa is normalized to 23 bit by taking 45
th

 to

23
th

 bit position number and there is no increment in the

exponent value.

V. RESULT AND COMPARISON

 A test bench program is written for the implemented single

precision floating point multiplier and the results are verified.

The code is written and executed by Xilinx 14.2 .The

implemented design had been synthesized using synthesis

XST tool and it is targeted on Vertex-5 FPGA,

Device-XC5VLX20T, Package-FF323, speed-2.

 The comparison of implemented single precision floating

point multiplier with the other floating point multiplier has

been shown in table-5.

Table-5: Area and Frequency Comparison between the

Implemented Floating Point Multiplier with Others

Parameters

Implemented

Floating

Point

Multiplier

Floating

Point

Multiplier

by using

Dadda

Algorithm

[3]

Conventional

Floating

Point

Multiplier

LUT & FF

Pair Used
1122 1146 1110

CLB Slices 866 1149 1112

Maximum

Frequency

(MHz)

1467.136 526.857 401.711

 Table-6 and Table-7 shows the device utilization summary

and power supply summary of implemented floating point

multiplier respectively. In fig .13 RTL schematic of multiplier

is shown.

Table-6: Device Utilization Summary

Slice Registers 46

Slice LUTs 1110

LUT Flip Flop pairs 1122

IOB 98

Table-7: Power Supply Summary

Total Power

(W)
Dynamic Power (W)

Quiescent

Power (W)

0.258 0.011 0.247

A [1] A [0] A [3] A [2]

B [1] B [0] B [3] B [2]

R1 [1] R1 [0] R1 [3] R1 [2]

R2 [1] R2 [0] R2 [3] R2 [2]

R3 [1] R3 [0] R3 [3] R3 [2]

R4 [1] R4 [0] R4 [3] R4 [2]

M [1] M [0] M [3] M [2] M [1] M [0] M [3] M [2]

S1 S0

S2

S3

S4

S5

S6

S7

S8

S9

FPGA Implementation of Single Precision Floating Point Multiplier using High Speed Compressors

23

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2180054214/2014©BEIESP

Fig-13: RTL Schematic of Multiplier

VI. CONCLUSION

In this paper, single precision floating point multiplier based

on the IEEE-754 format is successfully implemented on

FPGA. The modules are written in Verilog HDL to optimize

implementation on FPGA. In this implementation the

obtained maximum frequency is 2.78 times more than that of

the multiplier implemented by using Dadda algorithm.

Different compressors are used to speed up the multiplication

process. Since the main idea behind this implementation is to

increase the speed of the multiplier by reducing delay at every

stage using the optimal compressors design, it gives the

advantage of less delay in comparison to other method. The

results obtained using the proposed algorithm and

implementation is better not only in terms of speed but also in

terms of hardware used.

REFERENCES

1. A. Dandapat, S. Ghosal, P. Sarkar, D. Mukhopadhyay, “A

1.2-ns16×16-Bit Binary Multiplier Using High Speed Compressors”,

International Journal of Electrical and Electronics Engineering, 2010.

2. Shubhajit Roy Chowdhury, Aritra Banerjee, Aniruddha Roy,

Hiranmay Saha,”Design, Simulation and Testing of a High Speed Low

Power 15-4 Compressor for High Speed Multiplication Applications”,

First International Conference on Emerging Trends in Engineering and

Technology, 2008.

3. B. Jeevan, S. Narender, Dr C.V. Krishna Reddy, Dr K. Sivani,”A High

Speed Binary Floating Point Multiplier Using Dadda

Algorithm”,IEEE,2013.

4. Loucas Louca, Todd A. Cook, William H. Johnson, “Implementation

of IEEE Single Precision Floating Point Addition and Multiplication

on FPGAs”, IEEE,1996.

5. Shaifali, Sakshi, “ FPGA Design of Pipelined 32-bit Floating Point

Multiplier”, International Journal of Computational Engineering &

Management, Vol. 16, 5th September 2013.

6. IEEE 754-2008, IEEE Standard for Floating-Point Arithmetic, 2008.

7. Mohamed Al-Ashrafy, Ashraf Salem, Wagdy Anis, “An Efficient

Implementation of Floating Point Multiplier”, IEEE, 2008.

8. Guy Even, Silvia M. Mueller, Peter-Michael Seidel,” A dual precision

IEEE floating-point multiplier”, INTEGRATION the VLSI journal,

pp167-180, 2000.

9. M. Morris Mano, “Digital Design”,3rd edition, Prentice Hall,2002

AUTHORS PROFILE

Mr. Sunil Kumar Mishra is 4th semester

student of M.Tech in VLSI Design of

Electronics Engineering department at

Visvesvaraya National Institute of

Technology, Nagpur, Maharashtra. He

obtained his B.Tech degree from Biju

Patnaik Univesity of Technology,

Rourkela, Odisha. His research interests

area are Digital Design & Signal

Processing.

Miss. Vishakha Nandanwar is 4th

semester student of M.Tech in VLSI

Design of Electronics Engineering

department at Visvesvaraya National

Institute of Technology, Nagpur,

Maharashtra. She obtained her B.Tech

degree from Samrat Ashok Technological

of Institute, Vidisha, Bhopal (M.P). Her

research interest domain is Digital Image

Processing.

Eskinder Anteneh Ayele received his

B-Tech degree in electrical engineering

from DEC, Ethiopia and M-Tech degree

in Control and Instrumentation from IIT,

Madras, India in 2001 and 2005

respectively. Currently, he is a PhD

scholar in the Department of electronics

engineering, VNIT, Nagpur, India. His

area of interests is Signal and Image

Processing, Electronic Instrumentation,

and Control Systems.

Dr. S. B. Dhok is Associate Professor in

Electronics Engineering Department at

Visvesvaraya National Institute of

Technology, Nagpur (INDIA). He has

done his PhD from VNIT Nagpur. He is a

member of IEEE society. He has

published many research papers in

national and international journals and

conferences. His area of interest includes

Signal Processing, Image Processing,

Data Compression, Wireless Sensor

Networks and VLSI Design.

