
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-4 Issue-2, May 2014

54

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2202054214/2014©BEIESP

Abstract—This paper presents Heterogeneous Parallel

Computing (HPC), which is a well-orchestrated and co-ordinated

effective use of a suite of diverse high performance machines to

provide super-speed processing for computationally demanding

tasks with diverse computational needs. GPUs are accoutered with

a much more throughput oriented design as compared to that of

the CPUs thus making them a powerful alternative to boast

overall performance. It is now used all the way from mobile

computing to supercomputing, like in Blue Star Super Computers.

Upcoming Exascale and Petascale systems have embraced even

heterogeneity in order to overcome power limitations. This paper

also illustrates programming example using CUDA C to

demonstrate the efficiency achieved in problems like matrix

multiplication using a more heterogeneous approach as

compared to that of sequential approach. It also explains how

Heterogeneous Parallel Programming is a plausible, novel

technique which allows to exploit inherent capabilities of a wide

range of computational machines to solve computationally

intensive problems that have several types of embedded

parallelism by breaking it into separate modules. This paper also

puts light on the challenges and concerns which exist when

programming in HPC environment and some techniques to

alleviate them.

Index Terms—About four key words or phrases in alphabetical

order, separated by commas.

I. INTRODUCTION

Heterogeneity has emerged as a prevalent characteristic of

parallel computing platforms. Heterogeneous parallel

platforms combine processing units (PUs) that have different

instruction set architectures or different micro-architectures,

e.g., multi- core processors, general-purpose graphics

processing units (GPGPUs) and other many-core accelerators

[1].The PUs that constitute a heterogeneous platform are

effectively optimized to serve different workload

characteristics (e.g., latency-sensitive vs. throughput-

sensitive, coarse-grained vs. fine-grained parallel, etc.).

Studies have argued for the fundamental benefits of

heterogeneity in parallel computing and demonstrated

speedups on heterogeneous platforms for a wide range of

application domains. However, programming heterogeneous

parallel platforms is commonly cited as a major challenge that

must be addressed before their potential can be realized for

mainstream computing. Progress has been made in raising the

level of abstraction at which many-core accelerators GPUs

are programmed—from low-level, domain-specific APIs to

high-level programming languages.

Manuscript Received on May 2014.

Rahul Ravindran, Computer Engineering, Mumbai University, India.

Riya Suchdev, Computer Engineering, Mumbai University, Mumbai,

India.

Yash Tanna, Computer Engineering, Mumbai University, Mumbai,

India.

While they cover much ground, these frameworks still leave

the programmer with the significant challenges of tuning the

accelerator code for performance, partitioning, mapping and

scheduling an application on the different PUs of a

heterogeneous platform, and managing the data transfers

between their (often distinct) memory hierarchies. Recent

research efforts address the challenge of providing the

programmer with a unified view of the ensemble of PUs and

their memory hierarchies on the one hand, while on the other

hand achieving good performance and performance

portability.

Conventional homogeneous systems usually use one mode of

parallelism in a given machine like Single Instruction

Multiple Data (SIMD), Multiple Instruction Multiple Data

(MIMD), or vector processing and thus cannot adequately

meet the requirements of applications that require more than

one type of parallelism. As a result, any single type of

machine often spends its time executing code for which it is

poorly suited. Moreover, many applications need to process

information at more than one level concurrently, with

different types of parallelism at each level. Thus there rises a

need to use a system that gives much more throughput which

would give much more efficiency to the already existent

system.

Our main objective is to study the various aspects of such an

environment and also show improvements with the help of

statistical data that we have established by performing the

simple task of matrix multiplication using CUDA C.

Heterogeneous parallel programming helps us to gather

effectively use the graphical processing unit in order to

achieve maximum throughput my using multiple cores i.e.

threading effectively.

Fig. I Heterogeneous Computing Environment

II. NEED FOR HETEROGENEOUS PARALLEL

PROGRAMMING

Conventional homogeneous systems usually use one mode of

parallelism in a given machine like SIMD,

Heterogeneous Parallel Programming

Rahul Ravindran, Riya Suchdev, Yash Tanna

Heterogeneous Parallel Programming

55

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2202054214/2014©BEIESP

MIMD or vector processing and thus cannot adequately meet

the requirements of applications that require more than one

type of parallelism. As a result, any single type of machine

often spends its time executing code for which it is poorly

suited.

Moreover, many applications need to process information at

more than one level concurrently, with different types of

parallelism at each level [2]. For such applications, users of a

conventional multiprocessor system must either settle for

degraded performance on the existing hardware or acquire

more powerful (and expensive) machines.

Each type of homogeneous system suffers from inherent

limitations. If the data distribution of an application and the

resulting computations cannot exploit these features, the

performance degrades severely.

The quest for higher computational power suitable for a wide

range of applications at a reasonable cost has exposed several

inherent limitations of homogeneous systems. Replacing such

systems with yet more powerful homogeneous systems is not

feasible. Case reports highlight how your research contributes

to the current knowledge in the field and mention the next

steps or what remains. Feel free to explain why your results

falsify current theories if that is the case. Make sure that your

discussion is concise and informative. If you ramble and

include a great deal of unnecessary information, your paper

will likely get rejected or at least be looked upon less

favorably.

III. IMPLEMENTATION

We consider two approaches to using the HC paradigm. The

first one analyzes an application to explore embedded

heterogeneous parallelism. Researchers must devise new

algorithms or modify existing ones to exploit the

heterogeneity present in the application. Based on these

algorithms, users develop the code to be executed by the

machines. In the second approach, an existing parallel code of

the application is taken as input. To run this code in an HC

environment, users must profile the types of heterogeneous

parallelism embedded in the code. For this purpose, code-

type profilers need to be designed. Figures 3 and 4 illustrate

these approaches. However, both approaches need strategies

for partitioning, mapping, scheduling, and synchronization.

New tools and metrics for performance evaluation are also

required. [3]

Fig. II Compiler Directed Approach

Algorithm design. Heterogeneous computing opens new

opportunities for developing parallel algorithms. In this

section, we identify the efforts needed to devise suitable

algorithms. The following issues must be considered by the

designer:

(1) The types of machines available and their inherent

computing characteristics,

 (2) Alternate solutions to various sub problems of the

application, and

(3) The costs of performing the communication over the

network. [4]

Fig. III User Directed Approach

Computation in HC can be classified into two types

1) Metacomputing:

Computations in this class fall into the category of coarse -

grained heterogeneity. Instructions belonging to a particular

class of parallelism are grouped to form a module; each

module is then executed on a suitable parallel machine.

Metacomputing refers to heterogeneity at the module level.

2) Mixed-mode computing:

In this fine grained heterogeneity, almost every alternate

parallel instruction belongs to a different class of parallel

computation. Programs exhibiting this type of heterogeneity

are not suitable for execution on a suite of heterogeneous

machines because the communication overhead due to

frequent exchange of information between machines can

become a bottleneck. However, these programs can be

executed efficiently on a single machine such as PASM

(Partitionable SIMD/MIMD) which incorporates

heterogeneous modes of computation. Mixed-mode

computing refers to heterogeneity

at the instruction level..

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-4 Issue-2, May 2014

56

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2202054214/2014©BEIESP

IV. IMPLEMENTATION USING PROGRAMMING

CUDA (formerly Compute Unified Device Architecture) is

a parallel computing platform and programming model

created by NVIDIA and implemented by the graphical

processing units (GPUs) that they produce. CUDA gives

developers access to the virtual instruction set and memory of

the parallel computational elements in CUDA GPUs. Using

CUDA, the latest NVidia GPUs become accessible for

computation like CPUs. Unlike CPUs, however, GPUs have a

parallel throughput architecture that emphasizes executing

many concurrent threads slowly, rather than executing a

single thread very quickly. This approach of solving

general-purpose (i.e., not exclusively graphics) problems on

GPUs is known as GPGPU. CUDA provides both a low

level API and a higher level API. The initial CUDA SDK was

made public on 15 February 2007, for Microsoft

Windows and Linux. Mac OS X support was later added in

version 2.0, which supersedes the beta released February 14,

2008. CUDA works with all NVidia GPUs from the G8x

series onwards, including GeForce, Quadra and

the Tesla line. CUDA is compatible with most standard

operating systems.

CUDA has several advantages over traditional

general-purpose computation on GPUs (GPGPU) using

graphics APIs:

 Scattered reads – code can read from arbitrary addresses

in memory

 Shared memory – CUDA exposes a fast shared

memory region (up to 48KB per Multi-Processor) that

can be shared amongst threads. This can be used as a

user-managed cache, enabling higher bandwidth than is

possible using texture lookups.

 Faster downloads and read backs to and from the GPU

 Full support for integer and bitwise operations, including

integer texture lookups

Fig. IV Processing Flow of CUDA

A. Using CUDA to solve Matrix Multiplication Problems

Fig. V Result of Matrix Multiplication 64X64

The figure above shows the execution time elapsed for a

matrix multiplication operation which involved two matrices

of the size 64X64.As shown in the figure above it only took

0.000055696 sec to perform the matrix multiplication. Thus

using the GPU i.e. NVIDIA CUDA processor a 10 fold

efficiency is achieved in the case of matrix multiplication

problem, the average time required to solve such a problem

using a traditional language like java is very high. Thus

programming in CUDA C i.e. using the GPU gives a great

efficiency in computation

Fig. VI Result of Matrix Multiplication 128X64

Computation time for a matrix multiplication problem of size

128X64 with a matrix of size 64X128 takes a computation

time of 0.00007854 sec.

B. Performance measurement

There are various methods that are used to measure the

performance of a certain parallel program. No single method

is usually preferred over another since each of them, as will be

seen later on, reflects certain properties of the parallel code.

1) Speedup

In the simplest of terms, the most obvious benefit of using a

parallel computer is the reduction in the running time of the

code. Therefore, a straightforward measure of the parallel

performance would be the ratio of the execution time on a

single processor (the sequential version) to that on a

multicomputer. This ratio is defined as the speedup factor and

is given as

Heterogeneous Parallel Programming

57

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2202054214/2014©BEIESP

where is the execution time on a single processor

and is the execution time on a parallel computer.

S (n) therefore describes the scalability of the system as the

number of processors is increased. The ideal speedup is n

when using n processors, i.e. when the computations can be

divided into equal duration processes with each process

running on one processor (with no communication overhead).

Ironically, this is called embarrassingly parallel computing!

In some cases, super linear speedup (S (n)>n) may be

encountered. Usually this is caused by either using a

suboptimal sequential algorithm or some unique specification

of the hardware architecture that favours the parallel

computation. For example, one common reason for super

linear speedup is the extra memory in the multiprocessor

system. The speedup of any parallel computing environment

obeys the Amdahl's Law. Amdahl's law states that if F is the

fraction of a calculation that is sequential (i.e. cannot benefit

from parallelisation), and (1 − F) is the fraction that can be

parallelised, then the maximum speedup that can be achieved

by using N processors is

.

In the limit, as N tends to infinity, the maximum speedup

tends to 1/F. In practice, price/performance ratio falls rapidly

as N is increased once (1 − F)/N is small compared to F.As an

example, if F is only 10%, the problem can be sped up by

only a maximum of a factor of 10, no matter how large the

value of N used. For this reason, parallel computing is

only useful for either small numbers of processors, or

problems with very low values of F:

so-called embarrassingly parallel problems. A great part of

the craft of parallel programming consists of attempting to

reduce F to the smallest possible value.

2) Efficiency

The efficiency of a parallel system describes the fraction of

the time that is being used by the processors for a given

computation. It is defined as

which yields the following

for example, if E = 50%, the processors are being used half of

the time to perform the actual computation.

3) Cost

The cost of a computation in a parallel environment is defined

as the product of the number of processors used times the total

execution time

The above equation can be written as a function of the

efficiency by using the fact that which yields

C. Limitations of CUDA

 Texture rendering is not supported (CUDA 3.2 and up

addresses this by introducing "surface writes" to CUDA

arrays, the underlying opaque data structure).

 Copying between host and device memory may incur a

performance hit due to system bus bandwidth and latency

(this can be partly alleviated with asynchronous memory

transfers, handled by the GPU's DMA engine)

 Threads should be running in groups of at least 32 for

best performance, with total number of threads

numbering in the thousands. Branches in the program

code do not impact performance significantly, provided

that each of 32 threads takes the same execution path;

the SIMD execution model becomes a significant

limitation for any inherently divergent task (e.g.

traversing a space partitioning data structure during ray

tracing).

 Unlike OpenGL, CUDA-enabled GPUs are only

available from NVidia

 Valid C/C++ may sometimes be flagged and prevent

compilation due to optimization techniques the compiler

is required to employ to use limited resources.

CUDA (with compute capability 1.x) uses a recursion-free,

function-pointer-free subset of the C language, plus some

simple extensions. However, a single process must run spread

across multiple disjoint memory spaces, unlike other C

language runtime environments.

V. CHALLENGES

 Machine Selection: An interesting problem appears in

design HPP environment is to find the most appropriate

suite of heterogeneous machines for a given collection of

application tasks subject to a given constraint such as

cost, execution time etc.

 With the rise of HPP, software cost has been increasing

more than hardware costs.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-4 Issue-2, May 2014

58

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2202054214/2014©BEIESP

Fig. VII Depicting rise in software costs

 Task synchronization and scheduling becomes more

challenging in comparison to homogenous systems.

 Inter-connectivity amongst heterogeneous machines adds

additional challenges.

 Applications may run faster or slower on multi-core

processors depending on the needs of the application.

 Multicore processors can hurt performance when

applications:

1) Cannot break apart their operations well because much

information must be held in memory at once.

2) Have many users doing the same thing at the same time,

such as accessing a database. [6]

VI. OVERCOMMING THE CHALLENGES

 Code profiling is used to categorize portions of

application code.

 Analytical Benchmarking is used to determine

appropriate machines.

It permits researchers to determine the relative effectiveness

of a given parallel machine on various types of computation.

Some experimental results obtained analytical benchmarking

show that SIMD machines are well-suited for operations such

as matrix computations and low-level image processing.

Several solution have been proposed for code mapping, such

as Cluster-M. [7]

Fig. VIII Cluster-M based heuristic mapping

methodology

 Feund has proposed the Optimal Selection Theory

(OST) to choose an optimal configuration of machines

for executing an application task on a heterogeneous

suite of computers with the assumption that the number

of machines available is unlimited. It is also assumed that

machines matching the given set of code types are

available and that the application code is decomposed

into equal-sized modules.

 The Parallel Virtual Machine (PVM) is a software tool

for parallel network of computers.

PVM enables users to exploit their existing computer

hardware to solve much larger problems at less additional

cost. It is designed to allow a network of heterogeneous UNIX

and/or Windows machines to be used as a single distributed

parallel processor.

Fig. IX An overview of the Parallel Virtual Machine

system

VII. WHAT LIES AHEAD

Hybrid-core computing is the technique of extending a

commodity instruction set architecture (e.g. x86) with

application-specific instructions to accelerate application

performance It is a form of heterogeneous computing wherein

asymmetric computational units coexist with a "commodity"

processor. Hybrid-core processing differs from general

heterogeneous computing in that the computational units

share a common logical address space, and an executable is

composed of a single instruction stream—in essence a

contemporary coprocessor the instruction set of a hybrid-core

computing system contains instructions that can be dispatched

either to the host instruction set or to the application-specific

hardware. Typically, hybrid-core computing is best deployed

where the predominance of computational cycles are spent in

a few identifiable kernels, as is often seen

in high-performance computing applications. Acceleration is

especially pronounced when the kernel’s logic maps poorly to

a sequence of commodity processor instructions, and/or maps

well to the application-specific hardware. [8]

Heterogeneous Parallel Programming

59

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2202054214/2014©BEIESP

VIII. PUBLICATION PRINCIPLES

Computer systems will change in significantly the coming

decade and beyond. Although steadily improving compiler

technology will enable programmers to target more and more

different architectures using the same high-level source code,

there will always be important accelerators with little or no

sophisticated compiler sup- port that require expert-created

low-level modules. Enabling the easy integration of different

programming models and different processors, and the

efficient reuse of expert-developed code will be key to

navigating this on-going transition. In this paper we have

presented a pragmatic approach to use throughput devices i.e.

GPU cores to effectively increase performance, our aim is to

not use just the CPU but use the CPU in sequential

programming operations and whenever there is a need for

operations involving parallelism to make use of the GPU.

GPUs can be 10+X faster in such parallel parts and we

highlight these facts in the implementation using CUDA C,

where a simple problem of matrix multiplication is made

faster by effectively using the GPU cores. The CUDA threads

consists of arrays of thread which when initialized with the

matrices can perform operation of matrix multiplication in a

pipelined fashion leading to a great speed up in the

performance of the machine. Hybrid-core computing is used

to accelerate applications beyond what is currently physically

possible with off-the-shelf processors, or to lower power &

cooling costs in a data center by reducing computational

footprint. Thus to make use of CPU during sequential

operations and the GPU during parallel operations helps to

achieve more throughput than a standard machine that relies

only on the CPU for its operation.

REFERENCES

1. Jacques A. Piennar,Srimat Chakradar and Anand Ragunathan

―automatic generation of software peipeline for heterogeneous parallel

systems‖

2. Ashfaq A. Khokar ―Heterogeneous Computing:Challenges and

opportunities‖

3. T. Berg and H.J. Siegel, ―Instruction Execution Trade-offs for SIMD

vs. MIMD vs. Mixed-Mode Parallelism,’’ Proc. Int’l Parallel

Processing Symposium (IPPS), IEEE CS Press. Los Alamitos. Calif.,

Order NO. 2167. 1991, pp. 301-308.

4. A. Khokhar et al.. ―Heterogeneous Supercomputing: Problems and

Issues,‖ Proc. Workshop on Heterogeneous Processing, IEEE CS

Press, Los Alamitos. California Order No. 2702. 1992. pp. 3-12.

5. R. Freund. ―Optimal Selection Theory for Superconcurrency.‖ Proc. 89

Super- computing, IEEE CS Press, Los Alamitos, Calif., Order No.

M2021 (microfiche), 1989. pp. 13-17.

6. The Multi-core Dilemma white paper by CITO Research

7. Heterogeneous supercomputing: Problems and issues Ashfaq Khokhar,

Viktor Prasanna, Muhammad Shaaban, Cho-Li Wang

8. Instruction set innovations for the convey HC-1 by TM Brewer

AUTHORS PROFILE

 Rahul Ravindran is a third year Bachelors of

engineering student in VESIT, Mumbai-University

of Mumbai.

 Riya Suchdev is a third year Bachelors of

engineering student in VESIT, Mumbai-University

of Mumbai.

 Yash Tanna Y is a third year Bachelors of

engineering student in VESIT, Mumbai-University

of Mumbai.

