
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-4 Issue-2, May 2014

85

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2208054214/2014©BEIESP

Abstract - The current investigation presents an algorithm and

software to detect and recognize pre-printed mizo character

symbol images. Four types of mizo fonts were under investigation

namely – Arial, Tohoma, Cambria, and New Times Roman. The

approach involves scanning the document, preprocessing,

segmentation, feature extraction, classification & recognition and

post processing. The multilayer perceptron neural network is used

for classification and recognition algorithm which is simple and

easy to implement for better results. In this work, Unicode

encoding technique is applied for recognition of mizo characters

as the ASCII code cannot represent all the mizo characters

especially the characters with circumflex and dot at the bottom.

The experimental results are quite satisfactory for implementation

of mizo character recognition system.

Keyword: Character Recognition, Neural Network,

Multi-Layer Perceptron, and Unicode.

I. INTRODUCTION

Character Recognition is the electronic translation of images

of handwritten, typewritten or printed text (usually captured

by a scanner) into machine editable text. All OCR systems

include an optical scanner for reading text, and sophisticated

software for analyzing images. In OCR processing, the

scanned image or bitmap is analyzed for light and dark areas

in order to identify each alphabetic letter or numerical digit.

When a character is recognized, it is generally converted into

ASCII code for english language and Unicode for other

languages [8]. In this study, Unicode encoding technique is

applied for recognition of mizo characters as the ASCII code

cannot represent all the mizo characters. Unicode is an

expedition of Unicode Consortium to encode every possible

languages but ASCII only used for frequent American English

encoding. ASCII only supports 128 characters while Unicode

supports much more than 109000 characters.

With recent advancements in neural networks, many

recognition tasks have shown good capabilities in performing

character recognition. There are many algorithms based on

ANN to achieve OCR. In this paper, it has been achieved to

recognize mizo letters using Multi-Layer Perceptron (MLP)

neural network model.

II. PROPERTIES OF MIZO SCRIPT

Basic mizo character set comprises of 25 alphabets, 6 vowels,

and 10 numerical. The mizo script are mostly derives from

latin script and hence similar in nature except special

characters incorporated in mizo script such as Â, â, Ê, ê, Î, î,

Ô, ô, Û, û, Ṭ, and ṭ.

Manuscript received on May 2014.

Associate Prof. Jamal Hussain, Department of Mathematics &

Computer Science, Mizoram University, Aizawl - 796001, Mizoram, India.

Mr. Lalthlamuana, Department of Mathematics & Computer Science,

Mizoram University, Aizawl - 796001, Mizoram, India.

These special characters with their circumflex and dot at the

bottom are not available in english script. Therefore, mizo

fonts have been developed using unicode standard to enable

to generate all the mizo characters. In mizo script, there are

compound characters such as “AW”, “CH”, and “NG”. These

compound characters are treated as a single character in mizo

script. But for the purpose of recognition, the character „C‟

and „H‟ are treated as separate character. In this work, the

mizo characters are divided into four classes such as:

Capital letter: A AW B CH D E F G NG H I J K L M N O P R

S T Ṭ U V Z

Small letter: a aw b ch d e f g ng h i j k l m n o p r s t ṭ u v z

Numerals: 0 1 2 3 4 5 6 7 8 9

Vowels: Â â ÂW âw Ê ê Î î Ô ô Û û

The special characters with circumflex and dot at the bottom

have separate meanings and different pronunciation than the

characters without circumflex and dot at the bottom. Hence,

the special characters are very important characters in mizo

script while writing, reading and speaking.

III. METHODOLOGY

In this work, the entire process can be broken down into

optical scanning the document, preprocessing, segmentation,

feature extraction, and passing into MLP neural network for

training and simulation. These steps are visualized in fig 1.

1

Optical

Scaning

2

Pre

Processing

3

Segmentation

4

Feature

Extraction

5

Classification

Recognition

6

Post

Processing

Fig 1: Implementation methodology of Mizo character

recognition system

A. Optical Scanning

The proposed recognition system acquires a scanned image as

an input image. The image should have specific format such

as jpg, bmp, etc. This image is acquired through a scanner,

digital camera or any other suitable digital input device [5].

The size of the input image is as specified by the user and can

be of any length but is inherently restricted by the scope of the

vision and by the scanner software length.

Unicode Mizo Character Recognition System

using Multilayer Neural Network Model

J. Hussain, Lalthlamuana

Unicode Mizo Character Recognition System Using Multilayer Neural Network Model

86

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2208054214/2014©BEIESP

B. Preprocessing

Preprocessing consists of number preliminary processing

steps to make the raw data usable for segmentation. The

scanned image is first converted into grayscale image. The

gray scale image is again converted into binary image known

as binarization. Binarization separates the foreground (text)

and background information [1]. The most common method

for binarization is to select a proper threshold for the intensity

of the image and then convert all the intensity values above

the threshold to one intensity value (“white”), and all intensity

values below the threshold to the other chosen intensity

(“black”).

After determining the threshold value, each pixel in the image

is compared with the threshold value. If the value of the pixel

is less than the threshold, reset the pixel to one. Otherwise,

reset the pixel to zero as in Equation 1:

P(x,y) = (1)

Where, P(x, y) is the pixel of the image and the threshold

value 255 is the value between the dominant and the

maximum value. After applying the binarization algorithm on

the digital image, we obtain a binary image consisting of two

values 1 as black and 0 as white.

C. Segmentation

After pre-processing, the noise free image is passes to the

segmentation phase, where the image will be decomposed

into individual character. Segmentation is an integral part of

any text based recognition system. It assures efficiency of

classification and recognition. Accuracy of character

recognition heavily depends upon segmentation phase.

Incorrect segmentation leads to incorrect recognition.

Segmentation phase include segmentation of character lines

and segmentation of individual character. It is important to

obtain complete segmented character without any noise to

ensure quality feature extraction [9].

(1) Segmentation of character lines:

The character line in a character image is essential in

delimiting the bounds within which the detection can proceed.

Thus detecting the next character in an image does not

necessarily involve scanning the whole image all over again.

Algorithm:

1. start at the first x and first y pixel of the image

pixel(0,0), Set number of lines to 0

2. scan up to the width of the image on the same

y-component of the image

a. if a black pixel is detected register y as top of the first

line

b. if not continue to the next pixel

c. if no black pixel found up to the width increment y and

reset x to scan the next horizontal line

3. start at the top of the line found and first x-component

pixel(0,line_top)

4. scan up to the width of the image on the same

y-component of the image

a. if no black pixel is detected register y-1 as bottom of the

first line. Increment number of lines

b. if a black pixel is detected increment y and reset x to

scan the next horizontal line

5. start below the bottom of the last line found and repeat

steps 1-4 to detect subsequent lines

6. If bottom of image (image height) is reached stop.

(2) Segmentation of Individual Character:

This involves scanning character lines for orthogonally

separable images and divided into characters and saved in an

array. Again the main assumption is that no merge between

characters and no break points in the single character [2].

Algorithm:

1. start at the first character line top and first x-component

2. scan up to image width on the same y-component

a. if black pixel is detected register y as top of the first line

b. if not continue to the next pixel

3. start at the top of the character found and first

x-component, pixel(0,character_top)

4. scan up to the line bottom on the same x-component

a. if black pixel found register x as the left of the symbol

b. if not continue to the next pixel

c. if no black pixels are found increment x and reset y to

scan the next vertical line

5. start at the left of the symbol found and top of the current

line, pixel(character_left, line_top)

6. scan up to the width of the image on the same

x-component

a. if no black characters are found register x-1 as right of

the symbol

b. if a black pixel is found increment x and reset y to scan

the next vertical line

7. start at the bottom of the current line and left of the

symbol, pixel(character_left, line_bottom)

8. scan up to the right of the character on the same

y-component

a. if a black pixel is found register y as the bottom of the

character

b. if no black pixels are found decrement y and reset x to

scan the next vertical line

Fig. 2: Line and Character boundary detection

D. Feature Extraction

In feature extraction, the character images are represented by

a set of numerical features. These features will be used by the

classifier to classify the data. The numerical features of the

images could be height of the character, width of character,

and pixels in the various regions [7]. In this study, the

individual character image is represented by two dimensional

binary matrixes. All the pixels of the character are mapped

into the matrix to acquire all the distinguishing pixel features

of the character and minimize overlap with other characters.

However this strategy would imply maintaining and

processing a very large matrix (100x150 pixel image). Hence

a reasonable tradeoff is needed in order to minimize

processing time which will not significantly affect the

separability of the patterns.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-4 Issue-2, May 2014

87

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2208054214/2014©BEIESP

The project employed a sampling strategy which would map

the character image into a 10x15 binary matrix with only 150

elements. Since the height and width of individual images

vary, an adaptive sampling algorithm was implemented.

Algorithm:

1. Width of Character

a. Map the first (0,y) and last (width,y) pixel component of

the matrix

b. Map the middle pixel component (width/2,y) of the

matrix

c. subdivide further divisions and map accordingly to the

matrix

2. Height of Character

a. Map the first x,(0) and last (x,height) pixel components

of the matrix

b. Map the middle pixel component (x,height/2) of the

matrix

c. subdivide further divisions and map accordingly to the

matrix

3. Further reduce the matrix to 10x15 by sampling both the

width and the height

In order to be able to feed the matrix data to the neural

network, the matrix must first be linearized to a single

dimension. This accomplished with a simple routine with the

following algorithm:

1. start with the first matrix element (0,0)

2. increment x keeping y constant up to the matrix width

a. map each element to an element of a linear array

(increment array index)

b. if matrix width is reached reset x, increment y

3. repeat up to the matrix height (x,y) = (width, height)

These linear arrays are used as an input vector for the

Multi-Layer Perceptron (MLP) neural network for

classification.

E. Classification and Recognition

Classification is done using the features extracted in the

previous step, which corresponds to each character glyph.

These features can be analyzed using the set of rules and

labeled as belonging to different classes. There are three types

of classifiers such as (i) A typical rule based classifier; (ii)

Neural Network based classifier; (iii) Support vector machine

based classifier.

In this work, MLP network is chosen for classification

because of its simplicity and ease of implementation. The

Multi-Layer Perceptron (MLP) neural Network is perhaps the

most popular network architecture in use today [11]. The

MLP Network implemented for the purpose of this project is

composed of 3 layers, one input, one hidden and one output.

The input layer constitutes of 150 neurons which receive pixel

binary data from a 10x15 symbol pixel matrix [5]. The size of

this matrix was decided taking into consideration the average

height and width of character image that can be mapped

without introducing any significant pixel noise. The hidden

layer constitutes of 250 neurons whose number is decided on

the basis of optimal results on a trial and error basis. The

output layer is composed of 16 neurons corresponding to the

16-bits of Unicode encoding. To initialize the weights a

random function was used to assign an initial random number

which lies between two preset integers named ±weight_bias.

The weight bias is selected from trial and error observation to

correspond to average weights for quick convergence.

Fig. 3: Multi-Layer Perceptron (MLP) neural network

(1) Training:

Once the network has been initialized and the training input

space prepared the network is ready to be trained [11]. Some

issues that need to be addressed upon training the network are

(a) a chaotic input varies randomly and in extreme range

without any predictable flow among its members, (b)

Complexity of the patterns which are usually characterized by

feature overlap and high data size, (c) the number of iterations

(epochs) are needed to train the network for a given number of

input sets, (d) error threshold value must be used to compare

against in order to prematurely stop iterations if the need

arises. All these issues can be addressed by setting

appropriate values for Learning rate, sigmoid slope, number

of epoch and weight bias.

Algorithm:

1. Form network according to the specified topology

parameters

2. Initialize weights with random values within the

specified ±weight_bias value

3. load trainer set files (both input image and desired

output text)

4. analyze input image and map all detected symbols into

linear arrays

5. read desired output text from file and convert each

character to a binary Unicode value to store separately

6. for each character :

a. calculate the output of the feed forward network

b. compare with the desired output corresponding to the

symbol and compute error

c. back propagate error across each link to adjust the

weights

7. move to the next character and repeat step 6 until all

characters are visited

8. compute the average error of all characters

9. repeat steps 6 and 8 until the specified number of epochs

a. Is error threshold reached? If so abort iteration

b. If not continue iteration

(2) Testing:

The testing phase of the implementation is simple and

straightforward.

Unicode Mizo Character Recognition System Using Multilayer Neural Network Model

88

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2208054214/2014©BEIESP

Since the program is coded into modular parts the same

routines that were used to load, analyze and compute network

parameters of input vectors in the training phase can be reused

in the testing phase as well.

Algorithm:

1. load image file

2. analyze image for character lines

3. for each character line detect consecutive character

symbols

a. analyze and process symbol image to map into an input

vector

b. feed input vector to network and compute output

c. convert the Unicode binary output to the corresponding

character and render to a text box

F. Post-processing

Post-processing stage is the final stage of the proposed

recognition system [3]. It prints the corresponding recognized

characters in the structured text form by calculating

equivalent Unicode value using recognition index of the test

samples.

IV. EXPERIMENT & RESULTS

The OCR is implemented in Microsoft .NET using visual C#.

The neural network has been trained and tested for a number

of mizo fonts such as Arial, Tohoma, Cambria, and New

Times Roman. The necessary steps involved preparing the

sequence of input character images in a single image file

(*.bmp), typing the corresponding characters in a text file

(*.cts) and saving the two in the same folder (both must have

the same file name except for their extensions). The

application will provide a file opener dialog for the user to

locate the *.cts text file and will load the corresponding image

file by itself [6]. A screen shot of the software is shown in Fig

4 below.

Fig. 4: A screen shot of Mizo OCR software

In this experiment, the MLP network is used with 3 layers

having one input layer constitutes of 150 neurons which

receive pixel binary data from a 10x15 symbol pixel matrix,

one hidden layer constitutes of 250 neurons whose number is

decided on the basis of optimal results on a trial & error basis

and one output layer composed of 16 neurons corresponding

to the 16-bits of Unicode encoding. The MLP network

parameters are sets with Learning rate = 108-180, sigmoid

slope = 0.014, weight bias = 30 (determining trial and error),

no of epochs = 400-700 (depending on the complexity of the

fonts types), mean error threshold value = 0.0007 (determined

by trial and error).

The network has been trained and tested for four types of

mizo fonts which are extensively used in Mizoram. It was

observed the number of wrong characters and percentage

error by variation of particular parameters keeping all other

constant. The experimental results have been found as below:

A. Result for variation in number of epochs (iterations)

No of characters = 77, Learning rate = 180,

Sigmoid slope = 0.014

Mizo Font

Type

400 700

No of

wrong

character

s

%

Erro

r

No of

wrong

characters

%

Error

Arial 0 0 1 1.30

Tahoma 1 1.30 1 1.30

Cambria 1 1.30 1 1.30

Times New

Roman

0 0 0 0

B. Result for variation in number of Input characters

No of epochs = 400, Learning rate = 180,

Sigmoid slope = 0.014

Mizo Font

Type

108 130

No of

wrong

character

s

%

Erro

r

No of

wrong

characters

%

Erro

r

Arial 0 0 0 0

Tahoma 1 0.93 1 0.77

Cambria 1 0.93 1 0.77

Times New

Roman

0 0 1 0.77

C. Result for variation in learning rate parameter

No of characters = 130, No of epochs = 500,

Sigmoid slope = 0.014

Mizo Font

Type

120 140

No of

wrong

character

s

%

Erro

r

No of

wrong

characters

%

Erro

r

Arial 0 0 2 1.43

Tahoma 1 0.83 1 0.71

Cambria 0 0 0 0

Times New

Roman

1 0.83 1 0.71

Effect of changing various parameters is studied and the

influence of each variation is as given below:

(1) Increasing the number of iterations has generally a

positive proportionality relation to the performance of

the network. However in certain cases further increasing

the number of iteration has an adverse effect of

introducing more number of wrong recognitions. This

phenomenon is known as overlearning.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-4 Issue-2, May 2014

89

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2208054214/2014©BEIESP

(2) The size of the input character is also another factor

influencing the performance. More number of input

character set result the network susceptible for error.

Usually the complex and large sized input sets require a

large topology network with more number of iterations.

(3) Learning rate parameter variation affects the overall

network performance for a given iterations. The less

value of learning rate parameter results lower the value

of network updates its weights which will impact more

number of iterations required to reach its optimal state.

V. CONCLUSION

In the present work the ANN has been trained and tested for a

number of widely used fonts type in the mizo alphabet. The

Software has been developed in .NET framework

incorporating Multilayer Perceptron neural network which is

scalable to large scale production. The system developed

gives about 98.7% accuracy which is quite satisfactory for the

given four types of mizo fonts. In future, effort will be made to

increase the effectiveness of results by adding more number

of mizo fonts from typed language alphabet.

REFERENCES

1. Vivek Shrivastava and Navdeep Sharma, “Artificial Neural Network

based Optical Character Recognition”, Signal & Image Processing: An

International Journal (SIPIJ), vol.3, No.5, October, 2012.

2. Mohanad Alata and Mohammad Al-Shabi, “Text Detection and

Character Recognition using Fuzzy Image Processing”, Journal of

Electrical Engineering, vol.57, No.5, 2006, p258-267.

3. Pritpal Singh and Sumit Budhiraja, “Feature Extraction and

Classification Techniques in OCR Systems for Handwritten Gurmukhi

Script-A Survey”, International Journal of Engineering Research and

Applications (IJERA), vo.1, Issue 4, 2011, pp.1736-9622.

4. Seethalakshmi R, Sreeranjani T.R., and Balachandar T., “Optical

Character Recognition for Printed Tamil Text using Unicode”, Journal

of Zhejiang University Science, 2005 6A(11):1297-1305, September,

2005.

5. Pramod J Simha and Suraj K V, “Unicode Optical Character

Recognition and Translation Using Artificial Neural Network”,

International Conference on Software Technology and Computer

Engineering (STACE-2012), 22nd July 2012, Vijayawada, Andhra

Pradesh, India.

6. Kauleshwar Prasad, Devrat C. Nigam, Ashmika Lakhotiya, Dheeren

Umre, “Character Recognition using Matlab‟s Neural Network

Toolbox”, International Journal of u- and e- Service, Science and

Technology, Vol. 6, No. 1, February, 2013

7. Md. Mahbub Alam, Dr. M. Abul Kashem, “A complete Bangla OCR

System for Printed Characters”, International Journal of Computer and

Information Technology, Vol. 01, Issue 01, July, 2010.

8. Madhup Shrivastava, Monika Sahu, and Dr. M.A. Rizvi, “Artificial

Neural Network Based Character Recognition using Backpropagation”

International Journal of Computers & Technology, vol. 3, No. 1, Aug,

2012

9. Om Prakash Sharma, M.K.Ghose, Krihna Bikram Shah and Benoy

Kumar Thakur, “Recent Trends and Tools for Feature Extraction in

OCR Technology”, International Journal of Soft Computing and

Engineering (IJSCE), volume-2, Issue-6, January, 2013.

10. Mark Hudson Beale, Martin T. Hagan, Howard B. Demuth, The Neural

Network ToolboxTM 7 User‟s Guide. 3 Apple Hill Drive, Natick, MA:

The Mathwork Inc., 2010

11. S.N. Sivanandam, S. Sumathi, S.N. Deepa, Introduction to Neural

Networks using Matlab 6.0, Tata McGraw-Hill, 2006

http://en.wikipedia.org/wiki/Andhra_Pradesh
http://en.wikipedia.org/wiki/Andhra_Pradesh

