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Abstract- Bayesian model-based reinforcement learning can be 

formulated as a partially observable Markova decision process 

(POMDP) to provide a principled framework for optimally 

balancing exploitation and exploration. Then, a POMDP solver can 

be used to solve the problem. If the prior distribution over the 

environment’s dynamics is a product of dirichlet distributions, the 

POMDP’s optimal value function can be represented using a set of 

multivariate polynomials. Unfortunately, the size of the polynomials 

grows exponentially with the problem horizon [3]. During machine 

learning agent required lots of training inputs of execution cycle. 

Due to this situation look up table contain huge amount of data 

base. In this paper, we observe the use of dynamic neural network 

tree search (DNNTS) algorithm for large POMDPs, to solve the 

Bayesian reinforcement learning problem. The keen idea of DNN 

tree search is to train agent and act as a NN classifier to help agent 

for taking self decision without prior knowledge of the system 

during data learning .We will show that such an algorithm 

successfully searches for a near-optimal policy and achieve goal. 

Experiments show that the used DNN methods improve 

performance of Bayesian reinforcement learning in the context of 

training episodes, reward and discount rate. 
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I. INTRODUCTION 

Reinforcement learning (RL) provides a structure for 

concurrently acting and learning in unknown environments [1, 

2]. To act well in such situations, reinforcement learning 

algorithm has to handle the exploration-exploitation trade-off-

it needs to balance actions that reduce its uncertainty about 

the environment with actions that exploit what it already 

knows. RL has had some remarkable practical successes in 

various areas, including learning to play checkers, 

backgammon job-scheduling, chess, dynamic channel 

allocation and others. Traditionally, RL algorithms can be 

divided into two major approaches: model-free and model-

based. Model free approaches attempt to directly learn the 

optimal policy by approximating the cost-to-go of each state, 

called a value function. These methods often have large 

variance and poor trade-off between exploration/exploitation. 

On the other hand, model-based approaches attempt to learn a 

model of the environment and then compute the optimal 

policy based on that learnt model. These approaches normally 

have better trade-off between exploration/exploitation. 

However both of them are impractical to learn online due to 

intensive computation and poor trade-off ability.  
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One approach to reduce this problem is to use DNN model 

based RL. Because it will trade-off searching/ utilization and 

uses less data required [4]. Bayesian reinforcement learning 

can be represented as a partially observable Markov decision 

process (POMDP) problem. Its policy is a mapping from the 

posterior distribution (or history of observations) to an action. 

This POMDP problem can be solved by an online planning 

algorithm. In addition, its policy at each step can be 

considered as a suggestion of the appropriate action for online 

Bayesian reinforcement learning. When representing 

Bayesian reinforcement learning as a POMDP, the posterior 

distribution of parameters given an observation is often 

conveniently represented in closed form as a product of 

Dirichlet distributions. It was shown [6, 3] in that the optimal 

value functions in Bayesian reinforcement learning. It can be 

represented using a set of multivariate polynomials. 

Unfortunately, the size of the polynomial set grows 

exponentially with the problem horizon, severely limiting the 

applicability of the method [3]. In this paper, we study a 

research and application of dynamic neural network based 

reinforcement learning [35], leaning agents take sequential 

actions with the goal of maximizing a reward signal, which 

may be time-delayed.  That much knowledge acquired by 

agent takes large repetitive loops in every episode. It may 

affect on discount rate and training time. For example, an 

agent could learn to play a game by being told whether it wins 

or loses, but is never given the ―correct‖ action at any given 

point in time. The RL structure has gained fame as learning 

methods have been developed that are capable of handling 

gradually more complex problems. RL research focuses on 

improving the speed of learning by exploiting domain 

expertise with varying amounts of human-provided 

knowledge. Common approaches include Q-learning, TDN 

and swarm learning rather than simple one-step actions; and 

efficiently abstracting over the state space [10-15], so that the 

agent may generalize its experience more efficiently. The 

insight behind dynamic neural network (DNN) is used to 

learning data memorization for look table to train the agent. 

Many papers were compared different methods among 

discount rate and training episodes [7, 8, 9].Dynamic neural 

network in RL is a vital topic to address at this time for three 

reasons. First, in recent years RL techniques have achieved 

notable successes in difficult tasks which other machine 

learning techniques are either unable or ill-equipped to 

address (e.g., TD Gammon Treasure 1994, job shop 

scheduling Zhang and Dietterich 1995, elevator control Crites 

and Barto 1996, helicopter 

control Ng et al. 2004 

Robot Soccer Keep away 

Stone et al. 2005). 
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Second, classical machine learning techniques such as rule 

induction and classification are sufficiently grown-up that 

they may now easily be leveraged to assist with DNN. Third, 

they can be very effective at speeding up learning [35]. In the 

following, we describe some related works. Then, we start 

with the Q learning formulation of RL in Sect. 2.1. Next, we 

describe the DNN algorithm in sect. 2.2 and DNNRL in Sect. 

3. Then, experimental results are presented in Sect. 4. Finally, 

we conclude with some discussions on the future research in 

Sect. 5. 

II. RELETED WORK 

Bayesian reinforcement learning has been studied many 

research works such as [24, 25–28,29, 30,31, 32,33, 34]. 

POMDP solver to find a policy that can then be used as a 

reinforcement learning algorithm   MCBRL algorithms 

represented larger transition matrices. While our algorithms 

used NN classifier, which scales up efficiently with problems 

having larger transition matrices.  Monte-Carlo tree search 

(MCTS) algorithm [3]. It also preferentially expands the 

search tree by maintaining hard upper and lower bounds on 

the values for each state and action so as to direct the rollouts: 

action is chosen greedily according to the upper bound, there 

is an alternative approach in RL, called PACMDP, Efficient 

in dealing with the trade-off between explorationand 

exploitation [5, 19, 20, 22, 23]. PAC-MDP algorithms use 

exploration actions gathering necessary information, and then 

later exploit this information to choose optimal or near-

optimal actions, which maximize the cumulative reward. 

Recently, Bayesian methods combined with PACMDP 

approach were also developed to build a better exploration 

model [21]. These methods were proved to give lower sample 

complexity bounds. The algorithm that we used in this paper 

is a modification of the Q learning algorithms (QA) method in 

[35]. 

A. Existing Approaches for Reinforcement Learning  

In this paper [15], we have discussed about a RL problem, 

whose environment is formulated as a state action Q(s,a) and 

try to find optimal policy, Q-learning can be formulated as 

follows:     Q(st,at)= rt+1+γmaxQ(st+1, a) 

R1=Rγ(x1, i)  

Where α is the learning rate and γ (0<γ<1) is discount rate. rt+1 

is the reinforcement signal in t+1 moment. Essentially, the 

estimate for Q (st,at ), the value of the state action pair at time 

t is updated using the best estimated value of the next state. At 

any state action pair Q (st ,at ) and single reward R1 and next 

state possible. Where X1 is the total steps that the agent move 

from initial state to the final reward state in episode. And i, is 

the count steps that the agent move from some initial state to 

the current state. γis 0.9 discount rate. R1is the reward agent is 

given when it achieve the goal state and it is expressed as a 

numeric value (credit) with parameter γ, X1, t. For each state 

action pair in the episode to learn more effective behavior 

(state action pair with large value).it is important that the 

policy is rational. Q learning usually stores Q value relative 

with every state action in a lookup table [16]. In Q-learning, 

there are sequences of episodes, learning steps repeat in every 

episode, in nth time.  

Step 1 generate randomly starting state (sn) 

Step 2 search available actions (an) 

Step 3 selects any one action randomly. 

Step 4 if checks previously taken same action then repeat 

from step one 

Step 5 now check for goal 

Step 6 if goal achieved than next episode 

Step 7 else, store (sn , an) in temp array 

Step 8 update Qn-1 (sn ,an) according to. 

R1=Rγ(x1-i) 

Step 9 now generate next state (sn+1), using state action  

Step 10 if goal achieve then next Step 11 else repeat above 

step until stop criterion is satisfied. In Mat lab, we have 

trained the agent in the form of state action pair or Q-table. In 

our Implementation had size of (100x4) for <10x10> grid 

world problem. Where α is the learning rate and γ (0<γ<1) is 

the discount factor that reduces the Influence of future 

expected rewards. So technically speaking, Q learning is 

evaluated in terms of q-value and rewards of each agent over 

every trial. 

B. DNN Approaches for Reinforcement Learning 

In this section, we had described about dynamic neural 

network algorithm.DNN is effective decision making unit as a 

NN classifier to take as an input/action label. Dynamic neural 

network reduced q-table and agent should learn during real 

time operation. Those algorithms are as follows. 

Step: 1 predict next state by NN 

Step: 2 if decision by NN and agent both are same 

(I) then predict next state is goal 

(ii) Exit (achieved goal) 

Step: 3 else (Both are not same) 

Step: 4Update NN 

C. DNN Development for Bayesian Reinforcement 

Learning 

Dynamic neural network (DNN) was introduced in [17, 18] 

for classification and learning continuous or large complex 

data sets. Here, we represent DNN with Q learning because 

for random policy generation, it has no knowledge beyond the 

search tree. Our algorithm is in terms of dynamic neural 

network Bayesian Reinforcement Learning (DNNBRL) as 

described. Each node of the search tree is labeled state action 

with a pair (sn ,an) of a current MDP history in the form of 

Q(st,at)=rt+1+γmaxQ(st+1, a) 

There are training algorithms for Bayesian RL as follows. 

Step: 1 generate random action an 

Step: 2 move to next state according to action 

Step: 3 if goal is not achieved 

Step: 4 go to step (1) 

Step: 5 update reward using R1=Rγ(x1-i) 

Step: 6 check for iteration limit 

Step: 7 if under iteration limit go to step (1) 

Step: 8 else train NN by state action table or look-up-table or 

q table    

 Step: 9 predict next state by NN                                                                                                                            

Step: 10 if decision by NN 

and agent both are same
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 (I) then predict next state is goal                       

 (ii) Exit (achieved goal)     

Step: 11 else (Both are not same)   

Step: 12 Update NN  

III. EXPERIMENTAL RESULT AND 

DISSCUSSION 

In this section, we evaluated the performance of DNNRL on 

simple problems from the previous problems as 6x6 Maze, 

and compare with MCBRL algorithms [3]. We have also 

performed training and testing phase in mat lab simulation as 

follows. 

A. Training Phase 
In training phase fig.4.1, showed as the environment size 

10,once training episode 1000, single agent and state input, 

which we call state having the particular value  s and  action 

values a , both are presented for agent training. First of all, it 

will take random action from starting state and search 

available action take as an input from environment and 
achieve a new state. If previously taken state-action is equal 

to the current state then repeat and arrive starting state. Now 

examine goal state if goal achieved then update next episode. 

Otherwise, store state action pair (st at) in look-up-table 

.Again generated next state (st+1) using state-action pair.  If 

then goal achieved, then exit. Now let’s started train the agent 

in the form of state-action pair. Then click on train button as 

given fig. 4.1, after successful completion of training, click 

execute button and then show result as a fig. 4.2. You can also 

saw, learned agent travelling in grid world in the form of 

decision path. Now specify the inputs state S(1,1) and goal 
G(6,6). State-action pair (10x4) implemented for 10x10 maze 

problem. 

 

Fig. 4.1 10×10 Maze Problems with Agent Training Model 

B. Testing Phase 

In testing phase fig.4.2 showed, if action is possible then 

trained agent moved in the direction of, upwards, downwards, 

right side or left side. If the movement is not possible due to 

the border of the grid world, do nothing and decide the next 

action again at random. This would be repeated until the agent 
reaches the goal. The maximum number of steps should be 

determined depending on the size of the grid world or cell. 

Now we looked at the result of a random movementof agent 

in fig 4.2. It has actions to move into (x,y+1),(x,y-1),(x-1,y) 

and (x+1,y).some cell have walls at the boundaries with their 

adjacent cells, and the movement of the agent is blocked by 

the walls and the edge of the grid world. In addition, hereno 

roll back condition occurred in .Fig.4.2.In this section, we 

experimented with the 10×10 maze problem as in [3]. In this 

problem, we assume environment size as matrix 10x10 and 

there are 4 possible actions {L, R, U, D} where L is move left 

side, R is move right side, U is move upward and D is move 

downward.  Agent moves one step upwards, downwards, to 

the right, or to the left, if the action is possible. If the 

movement is not possible due to the border of the grid world, 

do nothing and decide the next action again at random. This 

would be repeated until the agent reaches the goal. The 
maximum number of steps should be determined depending 

on the size of the maze problem. We now look at the result of 

a random move by agent in a mentioned above. See the 

Figure. 4.2. Where an agent reaches the goal cell, it gains the 

reward 100.the value of discount rate parameter is set to be 

0.999. Comprehensive way to remove loops and find 

shortcuts from episode for speeding up convergence, While 

the start cell is (1, 1) and fixed, the goal cell (6, 6) and is 

determined at random. The agent perceives its own 

coordinates (x, y), and has four possible actions to take: 

moving up, moving down, moving left and moving right, that 

is to say, it has actions to move into (x,y+1),(x,y-1),(x-1,y) 
and(x+1,y).some cell have walls at the boundaries with their 

adjacent cells, and the movement of the agent is blocked by 

the walls and the edge of the grid world. In addition, there are 

no roll back condition occurred here. 

 

Fig. 4.2 Show as 10x10 Maze Problem, how Agent Travel 

Shortest Route During 50 Trials Over 500 Episodes. Agent 

Starting Moves from (1, 1) and Reached at the Goal Sate 

at (6, 6), without a-Priori Information 

 

Fig. 4.3 ΄Show, the Corresponding Performance Graph of 

Fig. 4.2, from the Shortest Route to the Goal, During 50 

Trials Over 500 Episodes 
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The results shown in fig 4.3, that DNN is more effective than 

MCBR, which can quickly learn and find the aiming goal as 

described in Fig. 4.2. The performance of DNN with MCBRL 

is effective in terms of discount rate vs. episodes. 

C. Cumulative Training Reward vs. Trials for 10×10 Maze 
In order to access, fig.4.4, we found that   our algorithms are 

better than MCBRL in the context of commutative reward vs. 

trials because DNN learn within 10 steps. 

 
Fig. 4.4 Cumulative Training Reward vs. Trials for 10×10 

Maze 

IV. CONCLUSION 

We studied the use of dynamic neural network for Bayesian 

reinforcement learning problems to machine intelligence. The 

use of dynamic neural network in Bayesian learning I found 

that agent did not required a lot of training input cycle during 

execution .Because it used NN classifier to classify and avoid 

repetitive or once learned data. The results that we have 

presented show that the algorithm is able to achieve superior 

performance in Bayesian reinforcement learning in fig.4.3 and 

fig 4.4, in the context of discount rate vs. steps and 

commutative reward vs. trials. Further research challenges 

and constraints of DNN are elaborated. Finally, in this section 
of paper we discussed some future research direction with 

conclusion of this work to intend that it helps to many 

researchers who are working for improvement in Bayesian 

reinforcement learning with SVM and others. 
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