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New Numerical Treatment for the Generalized
Regularized Long Wave Equation Based on Finite
Difference Scheme

Talaat S. EL-Danaf, K. R. Raslan Khalid K. Ali

Abstract: In this paper, the generalized regularized long wave
(GRLW) equation is solved numerically using the finite
difference method. Fourier stability analysis of the linearized
scheme shows that it is unconditionally stable. Also, the local
truncation error of the method is investigated. Three invariants
of motion are evaluated to determine the conservation properties
of the problem, and the numerical scheme leads to accurate and
efficient results. Moreover, interaction of two and three solitary
waves is shown. The development of the Maxwellian initial
condition into solitary waves is also shown and we show that the
number of solitons which are generated from the Maxwellian
initial condition can be determined. Numerical results show also
that a tail of small amplitude appears after the interactions.

Keywords: Finite difference; generalized Regularized long
wave equation; Solitary waves; Solitons.

I. INTRODUCTION

The regularized long wave (RLW) equation of the form
Ug + Uy + &y — fllyyt =0, 1)

where ¢ and , are positive constants , was originally
introduced to describe the behavior of the undular bore by
Peregrine [1]. This equation is very important in physics
media since it describes phenomena with weak nonlinearity
and dispersion waves, including nonlinear transverse waves
in shallow water, ion- acoustic and magneto hydrodynamic
waves in plasma and phonon packets in nonlinear crystals.
In previous work [1-15], the RLW equation is solved by
various methods such as finite difference methods, finite
element methods including collocation method with
quadratic B-splines, cubic B-splines and recently septic
splines. The modified regularized long wave (MRLW)
equation of the form

Ut 4‘Ux*""Uzux—/“‘*'xxt:0 : 2
was considered by Gardner used B-spline finite element
[16], Khalifa et al, used finite difference methods [17],
Raslan and Hassan used Solitary waves for the MRLW
equation [18] , Khalifa et al, used collocation methods
with quadratic B-— splines and cubic B-splines [19],
recently Hassan and Alamery used quintic B-splines and
Sextic B- splines [20], methods. Indeed the RLW and
MRLW equations are special cases of the generalized long
wave (GRLW) equation which has the form
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Ug +Uy + P(Pp +DuPuy — sty =0, 3
where 4 is positive constants and p is a positive integer.
The GRLW equation is studied by few authors, Mokhtari
used Sinc-collocation [21], Kaya used a numerical
simulation of solitary wave solutions [22], El-Danaf et al,
used Adomian decomposition method (ADM) [23] and
Thoudam Roshan used a petrov-Galerkin method [25],
Mohammadi used the basis of a reproducing kernel space
[26]. The purpose of this paper is to present a conservative
finite difference scheme for the (GRLW) (3).Fourier
stability analysis of the linearized scheme shows that it is
unconditionally stable. Also, the local truncation error of the
method is investigated. The interaction of solitary waves and
other properties of the GRLW equation are studied.

Il. THEPROBLEM AND ANALYTICAL
SOLUTION

The GRLW (3) we can write it in this form [25]
Ut + Uy +auPuy — g =0 (4)

where &=p(p+1) and subscripts x and t denote
differentiation, is considered with the boundary conditions
u—>0asx—+wo . In this work, periodic boundary
conditions on the region a<x<b are assumed in the form:
u(a,t) =u(b,t) =0,uy(a,t) =uy(b,t)=0,
Uxx(a,t) =uxx(b,t) =0,
and then the analytical solutions of (3) take the form.[25]

_pl(P+2)c 3/ c _ _
u(x,t)_Fi/ 2 sech(2 y(c+1)(x (c+Dt-xg)), (6)

where xq is an arbitrary constant. Actually it is not always

available to get an analytic solution for nonlinear partial
differential equations, so we try to provide numerical
methods to solve such problems.

®)

III.  CONSIRVATION LAWS AND -2'k»FoR
THE GRLW EQUATION

The numerical solutions of the GRLW equation must
preserve the conservation laws during propagation as
discuss the three invariant conditions which correspond to
the conservation of mass, momentum and energy [25]
respectively.

b b b
Ilz_[udx, P =J‘(u2 +u)%)dx, I3=J(u4—u§)dx,
a a

)
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The accuracy of the method is measured using the following
error norms

N
hy f -ufy?, (8)
Loozmax‘u'jz—u'j\I , ©)

IV. FINITE DIFFRENECE SCHEMES FOR THE
GRLW EQUATION

We solve the GRLW equation by using finite difference
methods. We discuss three finite difference schemes for the
GRLW (4).

4.1- A weighted average approximation (1%t scheme) -
stability and error analysis

To apply the finite difference method for solving the GRLW
equation, firstly we present the following notations for the
derivatives

au (xj,t a0
W) = ()] = L,
ot k
n+1 n+1
Uil 1
(@+euPyuy)] = 61+ s(u 1)9)%+
) (10)
u? L —uf
a-0)a+ W)L,
2h
n+1 n+l n+1
" t)n:(uﬁl U+ Uy _1) (uJJr1 2u” +uJ 1)
o 2kh? ’
where u" is the exact solution at (xj.ta) ,0<@<1 and h, k

i
are the spatial and temporal step sizes respectively and,
Xj =Jhty=nk, and n=021,...,where superscript n denotes

a quantity associated with time level t, and subscript j
denotes a quantity associated with space mesh point x; .

Now, we assume that u’j1 is the exact solution ate the grid

point (xj,ty) and U? is the approximation solution at the

same point. Then the finite difference scheme for the (4)
becomes,

Un+1 n n+l _;n+l
iV n oypy_J+l " Yj-1
——= +0(+eU; _
" +0(L+ &( _1) ) oh +
yh
a- 9)(1+g(u“)|°)%_ (11)

n+1 n+1 n+1 n
ﬂ(qu 0T+l - U], -2u] +ujl)

2kh2
Then (11) can be written as,

(y+0—(1+g(U T DPOUTT - (2u+ h2)u T+ 4
(u—97(1+s(u P = (y—(1—9)7

@+eUH P - @u+h?ul ¢

(12)

(u+(@- (9)—(1+s(un)p))uJ+1

4.1.1- Stability of finite difference for (1% scheme)
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Lemma(1): The finite difference scheme (12) is
unconditional stable and if u(x,t) is smooth enough, then
the local truncation error Tjn of the scheme (12) is

0o(h? +k).

Proof. Using Fourier method, assuming that U in the
nonlinear term is locally constant. In case of applying the
Von Neumann stability theory, the growth of Fourier mode
takes the form

ufj=¢me (13)
where k is a mode number, h is the element size and
= jh,i = v—1 Now, substituting (13) into (12) yields

ol(u+QO)e M — (24 + h?) + (u—QB)eM
= (u-Q-0)e N~ (21 + h?) + (u+ Q)1 - 0)e",

ika’

(14)

n+1
WherEQZk—2h(1+8(U?)p) , g= ¢ el

then we can get the amplification factor in the form

_ A+i(l-0)B

A-iB
where A=2ucoskh—(2u+h?),B=2Qsinkh.
Now, we discuss the stability of this scheme

(1)For Crank-Nicholson scheme
Substituting the values of #=0.5 into (15) yields

, (15)

A+i£B
2

g= - (16)
A-i—B
2

Then we get
=1 17)

so we can say that the Crank-Nicholson scheme is

unconditional stable.

(2) The fully implicit scheme.

Substituting the values of ¢ =1into (15) yields

A
= 18
9=""g5 (18)
Then we get
|9l <2 (19)
so we can say that the implicit scheme is unconditional

stable.
Now, to study the local truncation error of (12) we replace

UE‘ by u? =u(xj,ty) represents the analytical solution for

the (4) with independent variables x andt and let p=3,
(GRLW) equation, then substituting it into (12) gives

(y+6’—(l+5(uj ) ))U”+1 @u+h?)lt+
(- e—<1+s(u I = (u-a- e)—

(1+g(Uj) ))uj_l—(2y+h )Uj +

(20)

(u+ -0 @ el

SO using Taylor’s
expansion, it can be shown
that at point (xj,t,)
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3
Tjn = (u +(L+ev7)vy _ﬂUxxt)rJ] +

k 3 n h2 3 n (21)

E(Utt +20(1+ £07)oyt) | +F((l+ £V )0xxx) j»

but vis the solution of the differential equation ,so
(o1 + @+ 20*)oy — poxx)] =0, (22)

therefore, the principal part of local truncation error is

k h?
T e+ 20+ s0)oy)] + ?((1+ e ol (23)

hence the local truncation error is O(h? +k) .

4.2- First order, two level scheme (The ond scheme)-
stability and error analysis

To apply the finite difference method for solving the GRLW
equation, firstly we present the following notations for the
derivatives

- u?+1—
] =

ou (xj,ty) uf

it (up)

k
n+1

1 Ui j—1
1+£up u n ~_(1+ un p 4_',
(€ ) x)] 2( &( j—l) ) oh

n+1

Ny (24)
j+1 j-1
2h

+u’j1f%) —(u’j‘Jrl -2uf +u?71)

kh?

where u? is the exact solution at (xj,ty), hand k are the

e

n+l

n+l
j+1 U]

(u

(u xxt)r]] =

1

sizes
and

spatial and
Xj=jhty=nk

temporal step respectively and,
j=01 n=01 where
superscript Ndenotes a quantity associated with time level
t, and subscript j denotes a quantity associated with space

N js the exact

mesh point x;j .Now, we assume that Uj

solution ate the grid point (xj,ty) and UJr-‘ is the

approximation solution at the same point. Then the finite
difference scheme for (4) becomes,
n+l _yn+l
j+1 j-1 .
2h

Un+1_4Jn 1

i B B noyp
” +2(1+5(UJ,1) )

n n

i1 Yja

2h

—2u5‘+1+u]f‘j11)—(u

kh?2

1 v py
SV (25)

n+1
j+l

n n, N
jr— 2 +U )

u
Y7

SO,

n+1

kh
(u+= eV )P - @+ h?)u 4+

(= a0 )PIUT = (26)

eR R R THL)

n

kh
Ul - (u+ h2)U ]+ (u +o e HPput,,

4.2.1. Stability of finite difference for (The 2nd scheme)

Lemma(2): The finite difference scheme (26) is a
unconditional stable and if u(x, t) is smooth enough, then the

local truncation error Tjn of the scheme (26) isO(h +k) .
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Proof. Using Fourier method, assuming that U in the
nonlinear term is locally constant. In case of applying the
Von Neumann stability theory, the growth of Fourier mode
takes the form

Un =gne' 7
where k is a mode number, h is the element size and
Xj = jhi=v-1,
now, substituting (27) into (26) yields

010+ Q™ — 2u + h%) + (1~ Qe 28)

= (1~ Qe KN - 2+ h?) + (u + Qe
n+1
whereQ:ﬁ(u sUNP)g= o ,
4 gn
then we can get the amplification factor in the form
A+iB
= , 29
A-iB (29)
where A=2coskh—(2u+h?),B =2Qsinkh .
Then we get
lol=1, (30)

S0 we can say that The scheme is unconditional stable.
Now, to study the local truncation error of (26) we replace

UE‘ by u? =u(xj,ty) represents the analytical solution for
(4) with independent variables X and t .and let p=3,
(GRLW) equation, then substituting it into (26) gives

L S PO 3 O
(u 2 j-1 j-1 T \eH i

kh
(= Wr e Doy

(=S s, - @Y
@u+h?)ol +(u +k74h(1+ @],

so using Taylor’s expansion, it can be shown that at point
(vatn)

k
TJ-n =(u + @1+ gu3)ux - #Uxxt)r} +E(Utt +

. (32)
1+ e0 oy ~h = (0o,
but v is the solution of the differential equation ,so
(01 + A+ £0%)0y — poge)] =0, (33)
therefore, the principal part of local truncation error is
k 3
T =E(Utt+(1+6‘U3)Uxt_h?g(UUx)2)nn (34)

hence the local truncation error is O(h+k) .

43- A Second Order, Three-Level scheme (The 3™
Scheme) - stability and error analysis

To apply the finite difference method for solving the GRLW
equation, firstly we present the following notations for the
derivatives
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au (X, tn) )" 'J-Hl—u'j‘_1
— " = (w) = —,
at ) 2k
n n
ut ., —us
1 -1
(@+auPuy) = (1+g(u’,—‘)9)%, (35)
1 1 1 -1 -1 -1
(u?j:l—ZurjPr +u?f1)—(u'j‘+1—2uﬁ1 +u'j1_1)

(Uxxt)rJ] =

1

2kh?2

where u" is the exact solution at (xj,tn) and h,k arethe
J

spatial and temporal step sizes respectively and,

Xj = ihty =nk, j=01.., and n=04,..,where superscript
n denotes a quantity associated with time level t_ and
subscript j denotes a quantity associated with space mesh
point X; . The scheme requires two initial time levels, so we
use the analytical solution (6) at t=0and t=k .

Now, we assume that u;-‘ is the exact solution ate the grid

point (xj,t,) and U? is the approximation solution at the

same point. Then the finite difference scheme for (4)
becomes,

yMl_yn-t r_ll
%_F(lﬁ_g(u?ﬂ)) =
n+l

j+1

n
U, -u
2h

n-1 n-1
-2Uj +Uj71) o

(36)
n+l n+l n-1
-2Uj +Uj71)_(uj+l

u
U
2kh?2

so, we can simplify as,

n+l _

1 2 1
yU?fl—(2y+h )U?+ —t-,uU]+1 =

n

T (37

—kh(@+ sUT)PYU Ty +kn(@+ s )PHU

-1 2 -1 -1
yU?_l —(u+h )UT +,uU?+1,

4.3.1- Stability of finite difference for (The 3™ Scheme)
Lemma(3): The finite difference scheme (37) is
unconditional stable and if U(X,t)is smooth enough, then
the local truncation error TJ-n of the scheme (37) is
O(h? +k?).

Proof. Using Fourier method, assuming that U in the
nonlinear term is locally constant. In case of applying the
Von Neumann stability theory, the growth of Fourier mode
takes the form

uf — e (38)
where K is a mode number, h is the element size and
Xj = jhi=v-1.

Now, substituting (38) into (37) yields
n+1
2 @)

where g is the growth factor, and from (37) and (38) we
get

g2 - 2igsin g—1=0, (40)
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Qsinkh

where, Q = kh(1+£(U])P), sing = S —
2ucoskh—2u—h

,yields

|o1] =|g2| =1, therefore the finite difference scheme is

unconditional stable.
Now, to study the local truncation error of (37) we replace

UE‘ by v} =u(xj.t) represents the analytical solution for

the Eq. (4) with independent variables X andt.and letp =3,
(GRLW) equation, then substituting it into (37) gives

n+l _

,Ju?jll ~@u+h?)ol - pw = —kh(@+ )

o +kh((L+ g7, + ,uu?:ll - (41)

]

@u+h?)oi ™+ pod

j+1
so using Taylor’s expansion, it can be shown that at point
(Xj ,tn)

k2
T = (0 + (@4 e0%)oy — poged)] = () +

(42)
?(( +EU7)oxxx) §»
but v is the solution of the differential equation ,so
(01 + 1+ £0%)0y — poge)] =0, 43)

therefore, the principal part of local truncation error is
2

%«uw?’)uxxx)?, (44)

n_ kK.
Tj =7 )y +
hence the local truncation error is O(h? +k?2) .

V. NUMERICAL TESTES AND RESULTS OF

GRLW EQUATION
It has been shown in Section 2 that the GRLW equation has
an analytical solution of the form (6). In this work, we
consider =1 and present some numerical experiments to

assign the numerical solution of single solitary wave, in
addition to determine the solution of two and three soliton
interactions at different time levels.

5.1- Single Solitary Waves

In previous section, we have provided three finite difference
schemes for the GRLW equation, and we can take the
following as an initial condition.

_ol(p+2)c P
u(x,O)_F{/—Zp sech(2

c
u(c+1)
The norms Lpand L., are used to compare the numerical
results with the analytical values and the quantities 11,15
and I3 are shown to measure conservation for the schemes.
Now, for comparison, we consider a test problem where,
p=3c=01x=1h=0.1 xg=40, At=k=0.1, with range
[0,80]. The simulations are done up to t=1and the value of
0 in the first scheme is chosen to be 0.5.The invariants

11,1, and |, are changed by less than 6.61x10°

(x=x0)), (45)

4.28x102 and 3.3147x10™% , respectively in the computer

program for the first
scheme. And less than
6x10™% , 3.9x10™% and
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2.982x107°, respectively for the second scheme. The
invariants 1q,1, and I3 are approach to zero for third
scheme. Errors, also, at time 1 are satisfactorily small L,-

error = 2.0923x10~° and L, -error = 1.0287x107> for the
first scheme, are satisfactorily small L, -error =

2.44805x10% and L, -error = 1.56618x10~% for the second

scheme. And are satisfactorily small L, -error =

6.87621x10° and L., -error = 3.87296x10° for third

scheme. Our results are recorded in Table 1. These results
illustrate that the third scheme has a highest accuracy and
best conservation than other tow schemes. So we use it to
study the motion of single solitary waves and interaction
between two and three solitons.

Table 1 Invariants and errors for single solitary wave
p=3c=01 h=01 k=01 andxy=400<x<80

Sthemes | L I L L. -norm L. -wrm
0.0 | 406137 | 113381 OJo2eiTe 00 00
02 | 406124 | 113106 | OM0I7RLE | 4179T3E4 | 1B33HEA
Fit | 04 | 403801 | 113217 00826081 | B3338E4 | 303477E4
sheme | 06 | 4088 | LI31M| 00824311 | 128367E-3 | SOORISE4
g=ps | OB | 408727 | L1303%| 00911384 | L6TISTES3 | BIITHES4
L0 | 405598 | 112853 | OJ920833 | 20831E-3 | LO2ETIES
0.0 | 408157 | L1338 0J928311 0o 00
021 | 406243 | 113373 0029333 | 4T4TRIE-S | 3OTT4ES
Becond 04 | 406133 | L13367| 00929193 | Q.590R1E-S | G1BROIES
xhems 06 | 40621 | 113330 | 00029035 | L44081E-4 | BATTTES
0.8 | 406208 | 113331 | O00IBETE | LO4362E4 | 1247RE4
L0 | 406197 | 113343 | Q08171 | 244B03E-4 | LigglEE4
0.0 | 406137 | 113381 0J928308 00 00
02 | 406137 | L13381| 0929300 | 147T337ES | 2133633E4
04 | 406257 | L1338 0920311 | L.BOI41E-5 | LBMI2ES
Thed | 0.6 | 406257 | L13381| 00928311 | 429703E-§ | 1S101ES
gheme | 0.0 | 406137 | 113381 00929311 | 5.3803BE-5 | 32IBIES
L0 | 406257 | 113381 | 00928311 | GE7EILES | 3ATIO6ES

Now, we consider two different cases to study the motion of
single soliton.

Casel. In this case we study the motion of single soliton by
first, second scheme and third scheme. In this case, we
choose p=3c=0Lu=L,h=0.1xy=40,At=k=0.1 with
range [0,80]. The simulations are done up tot =5 .The
invariants 11,1, and Izare changed by less than 3.254x1072
, 2.101x102 and1.57323x10~> percent, respectively for the
first scheme. Errors, also, are satisfactorily small L,-error =
1.09547x1072 and L., -error = 6.07418x10~> for the first
scheme. And the invariants 11,15 and I3 are changed by
less than 3.03x107° , 1.93x10° and 1.4403x107%
respectively for the second scheme. Errors, also, are
satisfactorily small L, -error =1.38547x10~2and L -error
=8.223x107*, respectively for the second scheme. And the
invariants Iy, 1o and I3 are approach to zero for third
scheme. Errors, also, are

satisfactorily small L,-error =2.83131x10~*and L_ -error =

1.55714x107%, respectively for third scheme .Our results are

Retrieval Number: D2328094414 /2014©BEIESP
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recorded in Table 2 and the motion of solitary wave is
plotted at different time levels in Fig. 1.

Table 2 Invariants and errors for single solitary wave
c=0Lh=01 k=01 and xy=40,0<x<80

Schemey | t| L I: k L; -norm I mm
0| 408257 | LL3ED | D.00057% 00 00
L[ 40506 | L0053 | QOOMIB | 108D3IE3 107E3
Bt |1| 404030 | L3527 | QOPLID | 4200E-3 | LIT3TES
heme | 3| AQ4NE | LIIWOT | ODBGTI | 63T6B3E | 34LESES
=5 4| 403842 | L1L601 [ C.0033 | LEITISES LT3T6E3
S| 403003 | LIL2BL | ODROTIE | LOOMTE-D | G0TIRES
0 408257 | L13E0 | 0.060831 00 00
L[ 406187 | 113343 | QORNTIL | 244B03E4 | L36TM4E4
Scod | 1| 408137 | 113303 | D.0O7GAL | GQ3614E4 | 1ITESTES4
whame | 3| 406076 | 113266 | D.0O7144 | TEMGEE4 | 4BLTOE4
4| 408015 | LL3NE | D063 | LATIGIE [ G.MOMOE4
P 40034 | LI31B0 | OQORNIE | 130MTES | BINIIE4
0| 408257 | 138D | D.000306 00 00
| 40617 | 113382 | Q003N | GETEIIES 1RT208E-5
1| 408236 | LIBED | D007 | L33IIES4 6015685
Third | 3| 40613 | 113381 | O.00ME | 105734 1 13MIE4
whame | 4| 408134 | L13GED | D00DS4D | 1446DIEA4 L43124E4
§| 40611 | 113381 | OQ0RMGE | 1R13IE4 LISTIEA

The motion of solitary wave using third scheme is plotted
attimes t=0,t=5in Fig. 1

[

L

2 43 =0 =L
(A)

= ph p »
(B)

Fig. 1 Single solitary wave with c=0.,h=0.1, k=0.1
and xg=40,0<x<80, t=0,t=5

Case 2. In this case we study the motion of single soliton by
third  scheme. In this case, we  choose
p=3c=12u=1h=01xy =40,At =k =0.025 with range
[0,100]. The simulations are
done up tot=25. The
invariants 1y and Iy

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Exploring Innovation’



New Numerical Treatment for the Generalized Regularized Long Wave Equation Based on Finite Difference
Scheme

approach to zero and 13is changed by less than 3.34x107°
percent, respectively. Errors, also, are satisfactorily small
L, -error = 6.71998x107° and L, -error = 4.13724x107° ,

percent, respectively. Our results are recorded in Table 3
and the motion of solitary wave is plotted at different time
levels in Fig. 2.

Table 3 Invariants and errors for single solitary wave
c=12,h=01 k=0.025 and xg=40,0<x<100

t| L k b Lo | L -mrm
00| 379713 | 1R8] | 097343l 00 00
10376714 | 187872 | 0975108 | 1734Q1E3 | LO6T3IE-3

J 3774 18T | 0OTTT | 40447BE43 | 192657E4
W) 3774 | 287871 | DO75086 | 33TER4E-3 | 330MTE-3
150379703 | 287871 | OAT3INT [ GTIONRE-3 | 413TME-3

The motion of solitary wave using third scheme is plotted
attimes t=0,t=21in Fig. 2

|

0.6} "

0.2 -

L L L L
20 40 60 80 100
10

08} H

|

[ [
j J\
2‘0 4‘0 6‘0 8‘0 10‘0
(B)
Fig. 2 Single solitary wave withc=1.2,h=0.1, k =0.025
and xg =40, 0<x<100, t=0,t =2

In the next table we make comparison between the results of
third scheme and the results have been published in Search
[25].

Table 4 Invariants and errors for single solitary wave
c=12,h=0.1 k=0.025 and xp =40, 0<x<100, Time=2

Method I k L L__.mm L: o
Ambvtical | 379713 LEATD | 0473 00 00
Owscheme | 379713 | TOTRTD | Q07088 | 5376MES 1M

4] IV 100D ) OTREE| LIMES L4THIE3

The results of two numerical methods and the analytical
schemes are similar.
5.2- Interaction of two solitary waves:

Retrieval Number: D2328094414 /2014©BEIESP

The interaction of two GRLW solitary waves having
different amplitudes and traveling in the same direction is
illustrated. We consider GRLW equation with initial
conditions given by the linear sum of two well separated
solitary waves of various amplitudes

u(x,0) = If{/wsec hE |G
2p

(x=x7)), (46)

2\ pu(ci +1)
where, i=12, x and c; are arbitrary constants. In our
computational work, we choose
€1 =1cy=05x =15x9=35 ,u=1h=01k=01 with
interval [0, 80]. In Fig.3 the interactions of these solitary
waves are plotted at different time levels. We also, observe
an appearance of a tail of small amplitude after interaction
and the three invariants for this case are shown in Table 5.
The invariants 11,1, and I3 are changed by less than

3.65x1073, 1.06x1072 and 9.51x10~3 percent, respectively
for the third scheme.

Table 5 Invariants of interaction two solitary waves of
GRLW equation (third scheme)

¢ =1cp =0.5x =15x =350<x<80

t I I I

o T.35500 451982 1.15571
2 T.36000 452078 115111
4 T.36001 452021 1.15022
& T.35884 521081 115008
g T.35584 S200T 115005
10 T.35025 4 5201 115084
12 T.35825 521046 1.15243
14 T.35835 52035 115333
16 T.35783 52008 115514
18 7.35711 45105E 115875
0 T.35634 451876 1.16523

The motion of interaction two solitary waves using third
scheme is plotted at times t =0,t =20in Fig.3

0.8 -

L L
20 40 60 80

(A)

A i

L L L
40 60 80

20
B
Fig. 3 interaction two
solitary waves with
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¢p=1cy =0.5% =15x =350<x<80, t=0,t =20
5.3 -Interaction of three solitary waves:
The interaction of three GRLW solitary waves having
different amplitudes and traveling in the same direction is
illustrated. We consider the GRLW equation with initial
conditions given by the linear sum of three well separated
solitary waves of various amplitudes:

u(x,0) = F{/Msech(B ¢
2p

(x=xi))  (47)

2\ u(c+2)

where, i1=12,3, x; and C; are arbitrary constants. In our
computational work, we choose ¢; =1,cy =0.75,¢c3 =0.5,
xq =15,xo =35, x3 =45with interval [0, 80]. In Fig. 4 the

interactions of these solitary waves are plotted at different
time levels. We also, observe an appearance of a tail of
small amplitude after interaction and the three invariants for
this case are shown in Table 6. The invariants 11,1, and I3

are changed by less than 3.492x1071, 7.392x1072 and
9.45x10~2 percent, respectively for the third scheme.

Table 6 Invariants of interaction three solitary waves
of GRLW equation (third scheme)

€1 =1cp =0.75,c3 =0.5,% =15,Xo =35,x3 =450<x<80

t In I= E

L 11025 625174 1. 77286
2 11 0 6. 252101 1. T T
4 11 0225 6. B5204 1.7ToR2
& 110022 685211 1. 78224
2 11 022 6 .B5230 1. 7TR500
10 110218 685258 1.78618
12 1103211 6 B5173 1.7ETID
14 11.0201 & 252000 1. 78455
16 110157 625218 1. 78203
12 109854 & B5203 1.77E42
20 106735 6.7 77 1.E6T36

The motion of interaction three solitary waves using
third scheme is plotted at times t =0,t =15in Fig.4

L
60 80

a a \\

0.2 } / \ / \J \

(B)
Fig. 4 Interaction three solitary waves with
¢ =1y =0.75,c3 =0.5,% =15,xp =35,
X3 =450<x<80, t=0,t =15
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5.4 -The Maxwellian Initial Condition

In final series of numerical experiments, the development of
the Maxwellian initial condition

u(x,0) = exp(—(x—40)?) (48)
into a train of solitary waves is examined. We apply it to the
problem for different cases:

() #=01, () x£=0.05, () 4 =0.04and (IV) u
=0.015,(V) £=0.01 .When 4 is large such as case (1), only
single soliton is generated as shown in Fig.5, but the initial
pulse developed to a rapidly oscillating wave packet as
shown in Fig. 5a. However, when  is reduced, more and

more solitary waves are formed, since for case (lI), two
solitary waves is generated as shown in Fig. 5b, and for case
(1) the Maxwellian pulse breaks up into a train of at least
two solitary waves as shown in Fig. 6a. Finally, for (IV) and
(V) cases, the Maxwellian initial condition has decayed into
three stable solitary waves as shown in Fig. 6b and Fig. 7.
The peaks of the well-developed wave lie on a straight line
so that their wvelocities are linearly dependent on their
amplitudes and we observe a small oscillating tail appearing
behind the last wave as shown in the figures 5, 6 and 7, and

all states at t =5. Moreover, the total number of solitary
waves which are generated from the Maxwellian initial
condition according to the results obtained from the
numerical scheme in test problem as shown in Table 8, can
be shown to follow approximately the relation

SF!

Table 7 The values of the quantities |, |, and I, for
the cases: 1£=0.1, £ =0.05, 1£=0.04, 1£=0.015and u

(49)

=0.01
AL t I I I

3 1.04B832 0. 504005 00413785

0.1 4 1.0755 0483843 005335612

5 1055400 0. 470552 DO2B5 T

005 3 1.0R&560 0425156 00541883
4 106887 0408772 00274458

5 1.05628 0380312 00230417

0.0 3 1.08751 0414430 003610886
4 1.07004 040018 00207747

5 1.05801 0380753 00254186

0015 3 106048 0.3TDELE 00433270
4 1.03577 0.351375 00361025

5 1.01785 0.337731 DOS106TL

0.0l 3 1.04404 0352008 00426210
4 1.01932 0.333505 00354171

5 1.00134 0319882 005303083

Table 8 Solitary Waves Generated from a Maxwellian

Initial Condition

Womber of zolitsry wares

0.1

1

0105

004

0015

001

iaa] L] 2| B2
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Fig. 5 The Maxwellian initial condition at (1) £ = 0.1,
(1) ©£=0.05,and t =5
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Fig. 6 The Maxwellian initial condition at (111) z

=0.04, (IV) ££=0.015,and t =5
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Fig. 7 The Maxwellian initial condition at (V) x =0.01,
andt=5

VI. CONCLUSIONS

In this paper, we have applied a finite difference method to
study solitary waves, and show that the scheme is
unconditional stable. We tested our scheme through a single
solitary wave in which the analytic solution is known and
then extend it to study the interaction of solitons where no
analytic solution is known during the interaction. The
Maxwellian initial condition has been used and a relation
between 4 and the number of waves was explored.

Moreover, despite the fact that the wave does not change,
results show that the interaction results atail of small
amplitude in two and clearly three soliton interactions, and
the conservation laws were satisfactorily satisfied. The
appearance of such tail can be beneficial in further study.
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