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Abstract: In this paper, the generalized regularized long wave 

(GRLW) equation is solved numerically using the finite 

difference method. Fourier stability analysis of the linearized 

scheme shows that it is unconditionally stable. Also, the local 

truncation error of the method is investigated. Three invariants 

of motion are evaluated to determine the conservation properties 

of the problem, and the numerical scheme leads to accurate and 

efficient results. Moreover, interaction of two and three solitary 

waves is shown. The development of the Maxwellian initial 

condition into solitary waves is also shown and we show that the 

number of solitons which are generated from the Maxwellian 

initial condition can be determined. Numerical results show also 

that a tail of small amplitude appears after the interactions. 

 

Keywords: Finite difference; generalized Regularized long 

wave equation; Solitary waves; Solitons. 

I. INTRODUCTION 

The regularized long wave (RLW) equation of the form 

0 xxtxxt uuuuu  ,                                                (1) 

where   and   are positive constants , was originally 

introduced  to describe  the behavior of the undular bore by 

Peregrine  [1]. This equation is very important in physics 

media since it describes phenomena with weak nonlinearity 

and dispersion waves, including nonlinear transverse waves 

in shallow water, ion- acoustic and magneto hydrodynamic 

waves in plasma and phonon packets in nonlinear crystals. 

In previous work [1-15], the RLW equation is solved by 

various methods such as finite difference methods, finite 

element methods including collocation method with 

quadratic B-splines, cubic B-splines and recently septic 

splines. The modified regularized long wave (MRLW) 

equation of the form 

02  xxtxxt uuuuu   ,                                             (2) 

was considered by Gardner used B-spline finite element 

[16], Khalifa et al, used finite difference methods [17], 

Raslan and Hassan used Solitary waves for the MRLW 

equation [18] , Khalifa  et al, used collocation methods 

with quadratic B– splines and cubic B-splines [19], 

recently Hassan and Alamery used quintic B-splines and 

Sextic B- splines [20], methods. Indeed the RLW and 

MRLW equations are special cases of the generalized long 

wave (GRLW) equation which has the form 
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0)1(  xxtx
p

xt uuuppuu  ,                                   (3) 

where    is  positive constants  and p   is a positive integer. 

The GRLW equation is studied by few authors, Mokhtari 

used Sinc-collocation [21], Kaya used a numerical 

simulation of solitary wave solutions [22], El-Danaf et al, 

used Adomian decomposition method (ADM) [23] and 

Thoudam Roshan used a petrov-Galerkin method [25], 

Mohammadi used the basis of a reproducing kernel space 

[26]. The purpose of this paper is to present a conservative 

finite difference scheme for the (GRLW) (3).Fourier 

stability analysis of the linearized scheme shows that it is 

unconditionally stable. Also, the local truncation error of the 

method is investigated. The interaction of solitary waves and 

other properties of the GRLW equation are studied.  

II. THE PROBLEM AND ANALYTICAL 

SOLUTION 

The GRLW (3) we can write it in this form [25] 

     0 xxtx
p

xt uuuuu   ,                                        (4) 

where )1(  pp and subscripts x  and t  denote 

differentiation, is considered with the boundary conditions 

 xu  as  0 . In this work, periodic boundary 

conditions on the region  bxa   are assumed in the form: 
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and then the analytical solutions of  (3) take the form.[25] 
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where 0x  is an arbitrary constant. Actually it is not always 

available to get an analytic solution for nonlinear partial 

differential equations, so we try to provide numerical 

methods to solve such problems. 

III. CONSIRVATION LAWS AND LL ,2 FOR 

THE GRLW EQUATION 

The numerical solutions of the GRLW equation must 

preserve the conservation laws during propagation as 

discuss the three invariant conditions which correspond to 

the conservation of mass, momentum and energy [25] 

respectively. 
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The accuracy of the method is measured using the following 

error norms 
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  ,max N
j

E
j

j
uuL                                                         (9)                                                    

IV. FINITE DIFFRENECE SCHEMES FOR THE 

GRLW EQUATION 

We solve the GRLW equation by using finite difference 

methods. We discuss three finite difference schemes for the 

GRLW (4). 

4.1- A weighted average approximation ( st1  scheme) -   

stability and error analysis 

To apply the finite difference method for solving the GRLW 

equation, firstly we present the following notations for the 

derivatives 
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     (10) 

where n

j
u is the exact solution at ),( nj tx , 10   and kh,  

are the spatial and temporal step sizes respectively and, 

knthjx nj  , , and ,...,1,0n where superscript n denotes 

a quantity associated with time level nt  and subscript j

denotes a quantity associated with space mesh point jx . 

Now, we assume that n
ju is the exact solution ate the grid 

point ),( nj tx and n
jU is the approximation solution at the 

same point. Then the finite difference scheme for the (4) 

becomes, 
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 (11)  

Then (11) can be written as, 
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            (12)  

4.1.1- Stability of finite difference for ( st1  scheme) 

Lemma(1): The finite difference scheme (12) is 

unconditional  stable and if ),( txu is smooth enough, then 

the local truncation error n
jT  of the scheme  (12) is

)( 2 kh  . 

Proof. Using Fourier method, assuming that u in the 

nonlinear term is locally constant. In case of applying the 

Von Neumann stability theory, the growth of Fourier mode 

takes the form                                              

,jikxnn
j eU                                                               (13) 

where k is a mode number, h is the element size and

1,  ijhx j Now, substituting  (13) into  (12) yields 
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then we can get the amplification factor in the form  
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where khQBhkhA sin2),2(cos2 2   . 

Now, we discuss the stability of this scheme 

(1)For Crank-Nicholson scheme 

Substituting   the values of 5.0  into (15) yields 

    .
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Then we get 

,1g                                                                             (17) 

so we can say that the Crank-Nicholson scheme is 

unconditional  stable. 

(2) The fully implicit scheme.  

Substituting the values of 1 into  (15) yields 

.
iBA

A
g


                                                                     (18) 

Then we get 

 ,1g                                                                      (19) 

so we can say that the implicit scheme  is unconditional  

stable.                                                                                                       

Now, to study the local truncation error of (12) we replace

n
jU by ),( nj

n
j txu represents the analytical solution for 

the (4) with independent variables x and t and let 3p , 

(GRLW) equation, then substituting it into (12) gives 
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so using Taylor’s 

expansion, it can be shown 

that at point ),( nj tx  
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but  is the solution of  the differential equation ,so 

,0))1(( 3  n
jxxtxt                                       (22) 

therefore,  the principal part of local truncation error is 
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hence the local truncation error is )( 2 kh  . 

4.2- First order, two level scheme (The nd2  scheme)-

stability and error analysis 

To apply the finite difference method for solving the GRLW 

equation, firstly we present the following notations for the 

derivatives 
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 (24)                 

where 
n

j
u is the exact solution at ),( nj tx , h and k are the 

spatial and temporal step sizes respectively and, 

nktjhx nj  , , ,......,1,0j and ,......,1,0n where 

superscript n denotes a quantity associated with time level 

nt  and subscript j denotes a quantity associated with space 

mesh point jx .Now, we assume that n
ju is the exact 

solution ate the grid point ),( nj tx and n
jU is the 

approximation solution at the same point. Then the finite 

difference scheme for (4) becomes, 
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so, 
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4.2.1. Stability of finite difference for (The nd2  scheme) 

Lemma(2): The finite difference scheme (26) is a 

unconditional stable and if u(x, t) is smooth enough, then the 

local truncation error n
jT  of the scheme (26) is )( kh  . 

Proof. Using Fourier method, assuming that u in the 

nonlinear term is locally constant. In case of applying the 

Von Neumann stability theory, the growth of Fourier mode 

takes the form                                                            
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where k is a mode number, h is the element size and

1,  ijhx j , 

now, substituting (27) into  (26) yields 
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then we can get the amplification factor in the form  
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where khQBhkhA sin2),2(cos2 2   . 

Then we get 

 ,1g                                                                            (30) 

so we can say that The scheme is unconditional stable. 

Now, to study the local truncation error of (26) we replace

n
jU by ),( nj

n
j txu represents the analytical solution for 

(4) with independent variables x and t .and let 3p , 

(GRLW) equation, then substituting it into (26) gives 
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so using Taylor’s expansion, it can be shown that at point 

),( nj tx  
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but  is the solution of  the differential equation ,so 

    ,0))1(( 3  n
jxxtxt                                   (33) 

therefore, the principal part of local truncation error is 
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hence the local truncation error is )( kh  . 

4.3- A Second Order, Three-Level scheme (The rd3

Scheme) - stability and error analysis 

To apply the finite difference method for solving the GRLW 

equation, firstly we present the following notations for the 

derivatives 
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where n

j
u is the exact solution at ),( nj tx  and kh ,  are the 

spatial and temporal step sizes respectively and, 

nktjhx nj  , , ,...,1,0j  and ,...,1,0n where superscript 

n denotes a quantity associated with time level 
nt  and 

subscript j denotes a quantity associated with space mesh 

point jx . The scheme requires two initial time levels, so we 

use the analytical solution (6) at 0t and kt  .  

Now, we assume that 
n

ju is the exact solution ate the grid 

point ),( nj tx and n
jU is the approximation solution at the 

same point. Then the finite difference scheme for (4) 

becomes, 
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so, we can simplify as,                                                                                                                                
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4.3.1- Stability of finite difference for (The rd3  Scheme) 

Lemma(3): The finite difference scheme (37) is 

unconditional stable and if ),( txu is smooth enough, then 

the local truncation error n
jT  of the scheme (37) is 

)( 22 kh  . 

Proof. Using Fourier method, assuming that u in the 

nonlinear term is locally constant. In case of applying the 

Von Neumann stability theory, the growth of Fourier mode 

takes the form                                              

    jikxnn
j eU  ,                                                            (38) 

where k is a mode number, h is the element size and

1,  ijhx j . 

Now, substituting (38) into (37) yields 

       
1

1
2






n

n

g



,                                                            (39) 

where g  is the growth factor, and from  (37) and (38) we 

get 

       ,01sin22  igg                                                (40) 

       

where,
22cos2

sin
sin),)(1(

hkh

khQ
UkhQ pn

j





 ,yields 

121  gg , therefore the finite difference scheme is 

unconditional stable. 

Now, to study the local truncation error of (37) we replace

n
jU by ),( nj

n
j txu represents the analytical solution for 

the Eq. (4) with independent variables x and t .and let 3p , 

(GRLW) equation, then substituting it into  (37) gives 
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   (41) 

so using Taylor’s expansion, it can be shown that at point 

),( nj tx  
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              (42) 

but  is the solution of  the differential equation ,so 

,0))1(( 3  n
jxxtxt                                         (43) 

therefore, the principal part of local truncation error is          

,))1((
6

)(
6

3
22

n
jxxx

n
jttt

n
j

hk
T                                    (44)                                                                  

hence the local truncation error is )( 22 kh  . 

V. NUMERICAL TESTES AND RESULTS OF 

GRLW EQUATION 

It has been shown in Section 2 that the GRLW equation has 

an analytical solution of the form (6). In this work, we 

consider 1  and present some numerical experiments to 

assign the numerical solution of single solitary wave, in 

addition to determine the solution of two and three soliton 

interactions at different time levels. 

5.1- Single Solitary Waves 

In previous section, we have provided three finite difference 

schemes for the GRLW equation, and we can take the 

following as an initial condition. 

    ,))(
)1(2

(sec
2

)2(
)0,( 0

p xx
c

cp
h

p

cp
xu 







           (45) 

The norms 2L and L  are used to compare the numerical 

results with the analytical values and the quantities 21, II  

and 3I are shown to measure conservation for the schemes. 

Now, for comparison, we consider a test problem where, 

,1.0,1,1.0,3  hcp   ,400 x 1.0 kt , with range 

[0,80]. The simulations are done up to 1t and the value of 

θ in the first scheme is chosen to be 0.5.The invariants 

21, II  and 3I are changed by less than 3106.61 

310 ,4.28  and 4103.3147  , respectively in the computer 

program for the first 

scheme. And less than

4106  , 4103.9   and
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,102.982 5  respectively for the second scheme. The 

invariants 21, II  and 3I are approach to zero for third 

scheme. Errors, also, at time 1 are satisfactorily small 2L -

error = 3102.0923  and L -error = 3101.0287   for the 

first scheme, are satisfactorily small 2L -error =

4102.44805   and L -error = 4101.56618   for the second 

scheme. And are satisfactorily small 2L -error = 

5106.87621  and L -error = 5103.87296  for third 

scheme. Our results are recorded in Table 1. These results 

illustrate that the third scheme has a highest accuracy and 

best conservation than other tow schemes. So we use it to 

study the motion of single solitary waves and interaction 

between two and three solitons. 

Table 1 Invariants and errors for single solitary wave

,1.0,3  cp ,1.0h  1.0k  and 800,400  xx  

 

Now, we consider two different cases to study the motion of 

single soliton.  

Case1. In this case we study the motion of single soliton by 

first, second scheme and third scheme. In this case, we 

choose 1.0,40,1.0,1,1.0,3 0  ktxhcp  with 

range [0,80]. The simulations are done up to 5t .The 

invariants 21, II  and 3I are changed by less than 2103.254 

, 2102.101  and 3101.57323   percent, respectively for the 

first scheme. Errors, also, are satisfactorily small 2L -error =

2101.09547  and L -error = 3106.07418   for the first 

scheme. And the invariants 21, II  and 3I are changed by 

less than 3103.03  , 3101.93  and 4101.4403  , 

respectively for the second scheme. Errors, also, are 

satisfactorily small 2L -error = 3101.38547  and L -error 

= 8.223
410 , respectively for the second scheme. And the 

invariants 21, II  and 3I are approach to zero for third 

scheme. Errors, also, are  

satisfactorily small 2L -error = 4102.83131  and L -error =

4101.55714  , respectively for third scheme .Our results are 

recorded in Table 2 and the motion of solitary wave is 

plotted at different time levels in Fig. 1. 

Table 2 Invariants and errors for single solitary wave 

,1.0,1.0  hc 1.0k    and 800,400  xx  

 

The motion of solitary wave using third scheme is plotted 

at times 5,0  tt in Fig. 1 

 

(A) 

 

(B) 

Fig. 1 Single solitary wave with ,1.0,1.0  hc  1.0k

and 800,400  xx , 5,0  tt  

Case 2. In this case we study the motion of single soliton by 

third scheme. In this case, we choose 

025.0,40,1.0,1,2.1,3 0  ktxhcp  with range 

[0,100]. The simulations are 

done up to 5.2t .  The 

invariants 1I  and 2I
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approach to zero and 3I is changed by less than 5103.34    

percent, respectively. Errors, also, are satisfactorily small 

2L -error = 3106.71998  and L -error = 3104.13724  , 

percent, respectively. Our results are recorded in Table 3 

and the motion of solitary wave is plotted at different time 

levels in Fig. 2. 

Table 3 Invariants and errors for single solitary wave

,1.0,2.1  hc 025.0k    and 1000,400  xx  

 

The motion of solitary wave using third scheme is plotted 

at times 2,0  tt in Fig. 2 

 

(A) 

 

(B) 

Fig. 2 Single solitary wave with ,1.0,2.1  hc 025.0k

and 1000,400  xx , 2,0  tt  

In the next table we make comparison between the results of 

third scheme and the results have been published in Search 

[25]. 

Table 4  Invariants and errors for single solitary wave 

,1.0,2.1  hc  025.0k  and 1000,400  xx , Time=2 

 
The results of two numerical methods and the analytical 

schemes are similar.  

5.2- Interaction of two solitary waves: 

The interaction of two GRLW solitary waves having 

different amplitudes and traveling in the same direction is 

illustrated. We consider GRLW equation with initial 

conditions given by the linear sum of two well separated 

solitary waves of various amplitudes 

    ,))(
)1(2

(sec
2

)2(
)0,( p

i
i

ii xx
c

cp
h

p

cp
xu 







         (46) 

where, ixi    ,2,1  and ic are arbitrary constants. In our 

computational work, we choose 

35=x,15 ,5.0,1 2121  xcc 1.0,1.0 ,1,  kh with 

interval [0, 80]. In Fig.3 the interactions of these solitary 

waves are plotted at different time levels. We also, observe 

an appearance of a tail of small amplitude after interaction 

and the three invariants for this case are shown in Table 5. 

The invariants 21, II  and 3I are changed by less than

31065.3  , 31006.1  and 31051.9   percent, respectively 

for the third scheme. 

Table 5 Invariants of interaction two solitary waves of   

GRLW   equation (third scheme) 

800,35,15,5.0,1 2121  xxxcc  

 

The motion of interaction two solitary waves using third 

scheme is plotted at times 20,0  tt in Fig.3 

 

(A) 

 
(B) 

Fig. 3 interaction two 

solitary waves with
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800,35,15,5.0,1 2121  xxxcc , 20,0  tt  

5.3 -Interaction of three solitary waves:  

The interaction of three GRLW solitary waves having 

different amplitudes and traveling in the same direction is 

illustrated. We consider the GRLW equation with initial 

conditions given by the linear sum of three well separated 

solitary waves of various amplitudes: 

           p
i

i xx
c

cp
h

p

cp
xu ))(

)1(2
(sec

2

)2(
)0,( 







    (47) 

where, ixi   3, ,2,1  and 
ic are arbitrary constants. In our 

computational work, we choose 0.5,,75.0,1 321  ccc

,35,15 21  xx 45 3 x with interval [0, 80]. In   Fig. 4 the 

interactions of these solitary waves are plotted at different 

time levels. We also, observe an appearance of a tail of 

small amplitude after interaction and the three invariants for 

this case are shown in Table 6. The invariants 21, II  and 3I

are changed by less than 110492.3  , 210392.7  and

21045.9   percent, respectively for the third scheme. 

Table 6 Invariants of interaction three solitary waves 

of GRLW equation (third scheme) 

800,45,35,15,5.0,75.0,1 321321  xxxxccc  

 

The motion of interaction three solitary waves using 

third scheme is plotted at times 15,0  tt in Fig.4 

 
(A) 

 
(B) 

Fig. 4 Interaction three solitary waves with 

,35,15,5.0,75.0,1 21321  xxccc  

800,453  xx , 15,0  tt  

5.4 -The Maxwellian Initial Condition 

In final series of numerical experiments, the development of 

the Maxwellian initial condition 

  ,))40(exp()0,( 2 xxu                                            (48) 

into a train of solitary waves is examined. We apply it to the 

problem for different cases:  

(I)  =0.1 , (II)  =0.05 , (III)  =0.04and (IV) 

=0.015,(V)  =0.01 .When   is large such as case (I), only 

single soliton is generated as shown in Fig.5, but the initial 

pulse developed to a rapidly oscillating wave packet as 

shown in Fig. 5a. However, when   is reduced, more and 

more solitary waves are formed, since for case (II), two 

solitary waves is generated as shown in Fig. 5b, and for case 

(III) the Maxwellian pulse breaks up into a train of at least 

two solitary waves as shown in Fig. 6a. Finally, for (IV) and 

(V) cases, the Maxwellian initial condition has decayed into 

three stable solitary waves as shown in Fig. 6b and Fig. 7. 

The peaks of the well-developed wave lie on a straight line 

so that their velocities are linearly dependent on their 

amplitudes and we observe a small oscillating tail appearing 

behind the last wave as shown in the figures 5, 6 and 7, and 

all states at 5t . Moreover, the total number of solitary 

waves which are generated from the Maxwellian initial 

condition according to the results obtained from the 

numerical scheme in test problem as shown in Table 8, can 

be shown to follow approximately the relation 

              













4
1


N ,                                                   (49) 

Table 7 The values of the quantities 21 , II  and 3I for 

the cases: =0.1,  =0.05,  =0.04,  =0.015 and 
=0.01  

 

Table 8 Solitary Waves Generated from a Maxwellian 

Initial Condition 
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(A) 

                               

 (B) 

Fig. 5 The Maxwellian initial condition at (I)  0.1= , 

(II)  =0.05, and 5t  

   

(A)  

 
(B) 

Fig. 6 The Maxwellian initial condition at (III) 

=0.04, (IV)  =0.015, and 5t  

 

Fig. 7 The Maxwellian initial condition at (V)  =0.01, 

and 5t  

VI. CONCLUSIONS 

In this paper, we have applied a finite difference method to 

study solitary waves, and show that the scheme is 

unconditional stable. We tested our scheme through a single 

solitary wave in which the analytic solution is known and 

then extend it to study the interaction of solitons where no 

analytic solution is known during the interaction. The 

Maxwellian initial condition has been used and a relation 

between  and the number of waves was explored. 

Moreover, despite the fact that the wave does not change, 

results show that the interaction results atail of small 

amplitude in two and clearly three soliton interactions, and 

the conservation laws were satisfactorily satisfied. The 

appearance of such tail can be beneficial in further study. 
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