
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-4 Issue-4, September 2014

97

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D2375094414/2014©BEIESP

Self-Adaptive Routing in Multi-Hop Sensor

Networks

K. Seena Naik, G. A. Ramachandra, M. V. Brahmananda Reddy

Abstract—Sensor networks are used for applications in moni-

toring harsh environments including reconnaissance and surveil-

lance of areas that may be inaccessible to humans. Such applica-

tions depend on reliable collection, distribution and delivery of

information to processing centres which may involve multi-hop

wireless networks which experience disruptions in communica-

tion and exhibit packet drops, connectivity loss and congestion.

Some of these faults are periodic, attributed to external,

recurring factors. In this paper, we study an effective way to

forecast such repetitive conditions using time-series analysis. We,

further, present an application-level, autonomic routing service

that adapts sensor readings routes to avoid areas in which

failures or congestion are expected. A prototype system of the

approach is developed based on an existing middleware solution

for sensor network management. Simulation results on the

performance of this approach are also presented.

Keywords:- Monitoring, Surveillance, Communication,

Middleware, Reconnaissance.

I. INTRODUCTION

Wireless sensor networks are used to monitor environments

that might be impractical or unsafe for humans to enter.

Areas being monitored may be too large for single hop

communi- cation to the monitoring centre, requiring

collection, distri- bution and delivery of information that

typically travels over multiple, interconnected nodes to

reach processing centres. These networks may be

susceptible to various communication disruptions such as

connectivity loss due to unreliable links as well as packet

drops due to noise on the wireless medium or high-volume

of traffic overloading links and network buffers. While

many of the faults can be attributed to random events, some

of them exhibit specific repeating patterns caused by

periodic events in the environment, such as day-night cycle

of nearby electrical equipment, movement of inhabitants or

vehicles in the environment generating noise or affecting

signal paths. Periodic events detected by multiple nodes in

the sensor network may result in increased traffic within a

region of the network leading to congestion and possible

message loss. Finally, in hostile environments, causes may

include adversaries that try to compromise communication.

In this paper, we study an effective way to forecast repet-

itive patterns in quality of service metrics of the network,

using time-series analysis. We present an application-level,

autonomic routing service that adapts sensor readings routes

to avoid areas that are expected to have low link-quality,

while, at the same time, avoid overload of good quality

paths.

Manuscript Received on September 2014.

K. Seena Naik, Department of CSE, S.K University, Anantapur, India.

Dr. G. A. Ramachandra, Professor, Department of CSE, S.K

University, Anantapur, India.

M. V. Brahmananda Reddy, Department of CSE, GITAM University,

Bangalore, India.

We also discuss the integration of this service in the Sensor

Fabric [1], a sensor networks middleware that takes care of

the sensor identification, discovery, access control

interoperability, data dissemination and management of

sensor nodes, developed within the International

Technology Alliance (ITA) project1. We use the extension

mechanisms of Fabric to collect real-time network

information on node availability, link packet drop rates and

traffic loads in order to select the routes that maximise the

likelihood of message delivery across the network over an

unreliable multi-hop network. The routing service maintains

forecasting models for each link performance metric and

decides route allocation to active network paths matching

node requirements. Finally, we eval- uate our approach in a

simulated environment and evaluate the effectiveness of

network failure forecasting. In previous work [2], we have

applied the forecasting model to predict node disappearance

from a neighbourhood. Here, we study more extensively

how forecasting can be applied on predicting periodic

degradation of packet delivery rates on links and how to

utilise repetitive bursty traffic patterns in order to avoid

congestion due to overload of network buffers in nodes.

The rest of the paper is structured as follows: in Section II

we provide background on the ITA Sensor Fabric

architecture and operation. Section III presents the network

performance metrics we consider in the network, the route

selection method and the forecasting model we use for

predicting future perfor- mance based on past observations.

In section IV, we discuss integration with the ITA Sensor

Fabric and the implementa- tion of extensions for the

adaptive, routing forecast service. Section V, includes

evaluation of our methods using simulated scenarios.

Finally, in section VI, we discuss related work from

bibliography and we conclude in section VII.

II. IT A SENSOR FABRIC MIDDLEWARE

The Fabric middleware is a network management layer that

connects assets in a sensor network to clients/actors

providing a publish/subscribe communication abstraction

[3]. Sensors act as publishers providing data feeds based on

raw or processed sensor readings. Client nodes are the

consumers of this infor- mation and can subscribe to sensor

feeds to receive readings as they become available. There

can be multiple subscribers to published messages and

publishers are not aware of the identity or address of the

subscribers, i.e. there is a decoupling between publishers

and subscribers. Clients refer to a directory service to locate

potential messages types of interest that they subscribe to.

The Fabric infrastructure matches publications of these

messages to subscriptions and sets up routes over the multi-

hop network for relaying

messages to the subscriber.

Sensor networks do not,

Self-Adaptive Routing in Multi-Hop Sensor Networks

98

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D2375094414/2014©BEIESP

typically, form a fully connected graph, instead they rely on

multi-hop end-to-end paths. Fab- ric supports multi-hop

communication among nodes in the network while

abstracting details of their location from the application

developer, who perceives the existence of a fully connected

network. Fabric provides the abstraction of a com-

munication bus, where nodes can publish information, i.e.

sensor feed readings, that eventually reach consumers that

are subscribed to these feeds. Fabric builds an open platform

of assets, where producers of information, e.g. physical or

even virtual sensors, generate data that consumers, e.g.

fusion centres or applications, subscribe to without imposing

a single endpoint/sink in the network.
1http://www.usukita.org/

Fig. 1. Fabric Component Architecture

Sensor data feeds are identified using globally unique names

that consumers, i.e. subscribers, can refer to and receive

produced data. Information for available resources and

assets, as well as real-time metrics on network status are

stored in a distributed database, the Fabric Registry.

A. Fabric Components Architecture

Figure 1 presents the architectural components of Fabric.

We provide a brief description of these component introduce

the terminology used in the remaining paper.

Registry is a Gaian database2 distributed among nodes in

the network. It contains all information about the state of the

network including node IDs and physical location, neigh-

bouring sets, network assets, registered data subscriptions

and virtual circuit paths between nodes. The database is

distributed among a subset of Fabric nodes, each

maintaining local data. Information retrieval happens as a

query that collects data from nodes that eventually get

propagated to the request point. Registry communication

can take place over a secondary low- traffic link that is not

subject of our mechanism as it is considered more reliable,

due to the sparsity of data on it.

Node is the network endpoint of Fabric, which runs a Fabric

Manager service. The Fabric Manager provides multi-hop

communication and the publish-subscribe service. Fabric

nodes are not to be confused with typical resource

constrained sensor nodes. They have the power of a netbook

computer and may have substantial battery or external

power source (photoelectric cells). They run a Java virtual

machine and maintain a part of the Fabric Registry that

stores local runtime information. Nodes are also the

extension points in Fabric as discussed later.

2http://www.alphaworks.ibm.com/tech/gaiandb

Platform is an adaptor that connects sensors and actors to a

Fabric node. A Platform could be the equivalent of MOTE-

like small, constrained device with low-power radio running

on batteries. In spite of being logically a separate component

to the Fabric node, a platform could also reside on the same

physical device.

Sensors are attached to platforms and are the produc-

ers/publishers of information in the network. They provide

feeds of data that actors can subscribe to in order to receive

readings updates. A sensor may encapsulate a hardware

sens- ing device or it can be a virtual device that produces

informa- tion by consuming feeds from other network

endpoints, i.e. a fusion centre.

Data Feeds are series of values produced by sensors. One

sensor may provide multiple feeds, for example two separate

resolution feeds from a camera or a feed with raw

thermometer readings as well as their averages.

Actors are either human users or software services. Similar

to sensors, they have a unique identifier that allows the

middeware to route information towards them.

Client is a virtual entity, consisting of an actor and a

platform through which it can interact with Fabric.

B. Extension Infrastructure

The Fabric core provides a minimum set of services required

to implement a distributed communication bus service,

while maintaining a small footprint and overhead in the

system. Additional capabilities are introduced as plug-ins,

which are grouped into families. A plug-in family is a user-

defined collection of extensions that share data and

management operations. Fabric allows for three types of

plug-ins; Message Plug-ins, Fablets and Services.

1) Message Plug-Ins: Nodes process messages as they are

relayed by Fabric on each hop. Message Plug-ins are

modules that can be attached to a node’s Fabric Manager to

process messages directly. There are three sub-types of

Message Plug- ins: node, task and actor – allowing filtering

of messages that are related to any of these. Their life-cycle

is managed by the Fabric Manager and they are, typically,

short-lived operations, such as policy enforcement, filtering,

transformation, logging, caching and encryption, without the

ability to have side- effects outside their controlled

environment. Plug-ins can be registered to operate either on

incoming or outgoing messages of a node allowing

messages to be decrypted, processed and encrypted again

using different plug-ins. Within the Fabric Manager, the

Registry contains infor- mation about each data-feed that

flows over the bus. This includes what tasks it is part of,

where it was generated, who is subscribed to it and the

characteristics of its destination actors. This information is

available to message plug-ins as they are applied to each

individual data-feed message.

2) Fablets: Fablets are extensions that run on nodes inde-

pendently of the message flow. They run in separate threads,

managed by the Fabric Manager, and are more flexible than

Message Plug-ins allowing a broader range of operations.

They can directly access Fabric resources such as the

Registry and the publish-subscribe bus, but also other non-

Fabric resources such as storage devices or application

databases. Typical uses of

Fablets include accessing

non-Fabric resources and

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-4 Issue-4, September 2014

99

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D2375094414/2014©BEIESP

platforms or implementation of data fusion algorithms.

3) Fabric Services: Fabric Services are the mechanism used

to implement most high-level Fabric features, a modular

approach that builds on Fabric’s core message passing func-

tions. Services are complementary to other plug-ins. They

are separate processes that work on the side and can be

attached to Fabric though the Actors mechanism to interact

with the node’s local bus. For instance, Fabric’s sensor

subscription service is implemented to provide sensor data

feeds as a Service on top of Fabric’s core features;

communication bus, the Registry and event handling.

In section IV, we describe the family of Fabric plug-ins that

have been developed for prototyping a dynamic routing

mechanism for routing of sensor data avoiding links that are

expected to have high message drop rates.

III. ADAPTATION THROUGH FORECASTING

As described in the previous section, Fabric handles propa-

gation of data from producers, i.e. sensors and fusion

centres, to consumers, i.e. fusion and analysis centres via

multi-hop routing over Fabric Nodes. Routing paths for the

subscriptions are created on-demand, when a request for a

new subscription is received or an existing one is broken.

Fabric uses virtual circuit switching, as opposed to a

connectionless scheme, to guarantee that packets are routed

only through particular trusted nodes for security concerns.

Fabric Registry contains the full catalogue of network

subscriptions and their virtual circuits. In this paper, we

extend the current routing mecha- nism of Fabric by

introducing a dynamic, self-adaptive routing service that

relies on forecasting link reliability and traffic patterns in the

network.

A. Performance Metrics

We measure the performance and reliability of the network

by collecting a set of metrics from Fabric nodes. We collect

application-layer metrics for network performance that

allows the approach to be independent from the underlying

network. We account for node availability, drop rate of

network links and traffic characteristics of feed

subscriptions. Based on these attributes, we build

forecasting models and periodically update multi-hop relay

routes in the Fabric Registry.

A Fabric Discovery Service runs on nodes to track availabil-

ity of directly reachable, single-hop neighbours. It should be

noted that this node relationship is not necessarily

symmetric as the fact that node A is directly reachable from

node B does not imply that the reverse is necessarily true in

a wireless network. The discovery service periodically

broadcasts beacon messages to verify a node’s existence to

its neighbourhood. In order to conserve battery power,

nodes do not constantly listen for broadcasts. Instead, they

turn their radio on periodically to receive beacon messages.

This process may miss some of the beacon messages, hence

there is a threshold of consecutive messages that can be

missed before a neighbour is considered unavailable. Apart

from availability of neighbouring nodes, the quality of the

wireless links, based on measured packet drop rate (PDR), is

also necessary to make a routing decision that maximises the

likelihood of a message being delivered to its destination.

PDR is measured by piggybacking sequence numbers on

messages for each hop. Due to virtual circuit packet

switching that Fabric uses, traversed nodes remain the same

for each subscription, thus, per-hop sequence numbers can

work. The approach has the advantage of being an

inexpensive way to measure drop rates by only appending a

few extra bytes on existing traffic, minimising energy

overheads, however, there are some drawbacks. First, there

is a non-bounded delay on metric updates. In case no

messages are received by a node, either lack of traffic or

large number of dropped messages can be inferred.

However, the Fabric Discovery Service beacon message will

also be affected by a link failure thus removing the node as a

neighbour, which sets an upper bound on the update delay.

In case of low underlying traffic, underutilised links result in

limited traffic samples weak for statistical inference. To

compensate for this, additional low frequency control mes-

sages can be introduced over low-traffic links to sample

their status. Furthermore, we introduce a confidence level on

the link quality metric. The confidence level is a real

number value in the range [0.1, 1] that quantifies the

statistical confidence on the observations for link PDR,

based on the number of packets that have been relayed over

the link. The confidence is the fraction of a minimum

acceptable number of messages, c, that need to be relayed

over the link in order to have a reliable metric on the link

quality. We cap the confidence level to 1, even when a link

accommodates more than c messages. With regard to

network traffic, nodes monitor the volume of traffic that

they relay and the volume of messages they pro- duce.

Messages originating from other nodes, passing through the

intermediary are counted as relayed traffic, while messages

generated from a local platform attached to the node, are

considered as originating traffic. Originating traffic must be

sent out on the node’s links, whereas relayed traffic could be

rerouted to bypass the node in case of overload. They are

both used to train a prediction model on future message

volumes.

B. Subscription Route Selection

In this section, we describe the algorithm that selects the

virtual circuits that are created for active subscriptions in the

network based on the metrics described. Fabric middleware

uses virtual circuit routing instead of connectionless

datagrams as it targets military environments, where all

nodes are not equally trusted. Routing selection is also

affected by admin- istrator policies that are enforced by a

policy management system that dictate whether some data

subscriptions can only be relayed by particular trusted

nodes. This would be more complex to do with

connectionless datagram routing requiring per hop decisions

instead of a decision at the set-up time.

We construct a link graph GR = (V, ER) of the network,

where the vertices V are the network nodes, and edges ER

are the direct links between them. Edge weights represent

the expected failure rate between node pairs. Weights are

calculated as a linear combination of node availability and

the product of link PDR and the confidence level of the

metric. The graph GR essentially represents a map of link

health in the network. Applying a shortest path algorithm on

GR between the producers

and the consumers of feeds,

gives a prediction for the

Self-Adaptive Routing in Multi-Hop Sensor Networks

100

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D2375094414/2014©BEIESP

most reliable route, i.e. the one that is less likely to drop

messages in the near future. Subscription routes in Fabric

are locally cached on the nodes. When routes are updated in

Fabric Registry, nodes do not immediately update their

current routes. Instead, nodes update data subscription

routes only when they break due to a link failure or bad

reception rate that degrades below a predefined threshold.

Then the producer node sets-up a new subscription path

using the updated route from the Registry.

Another consideration in event-driven, multi-hop sensor net-

works is when an event occurs in the environment

monitored by the nodes, and generates increased traffic in

the network. If additional feed subscriptions are routed over

the same nodes there might be increased packet loss due to

congestion in node buffers. In such cases, it is preferable to

separate high traffic flows to use different nodes for relaying

messages. Consequently, we use the information on the

traffic volumes that a sensor generates to separate high

volume flows over different paths. To prevent congestion,

we enhance the routing map GR generated based on link

qualities, using the expected traffic of the channels in order

to prevent overloading healthy channels with too many

subscriptions. To achieve this we increase link costs on

graph GR by a proportion of the overall traffic they expect to

carry which penalises high traffic links. In order to

determine the load of a link, we normalise the number of

packets that are expected to traverse the link based on

allocated feed subscriptions. All loads are expressed as a

proportion of the link with maximum load. However the

actual link utilisation is not known, so this could result in

penalising links with low utilisation which carry a relatively

high percentage of subscriptions even though the total traffic

is quite low. In order to resolve this issue, the administrator

can specify a threshold above which the congestion

prevention algorithm would start. Finally, the intention is to

avoid routing traffic through congested links while avoiding

throttling links with low to medium utilisation that can carry

more traffic. Thus, instead of a linear scale on link cost

penalties, we use an exponential scale so that penalisation

will mostly affect the costs of highest-traffic links of the

network, which are also the most likely to exhibit

congestion.

Fig. 2. Fabric Plug-in Architecture

IV. INTEGRATION WITH FABRIC

A. Routing Service Architecture

In this section, we discuss the architecture of the plug-in

family developed for Fabric’s routing prediction mechanism

and how different extensions collect metrics from the

network during its operation to support the decision

mechanism. Figure 2 gives an overview of the adaptive
Forecast Routing service architecture for Fabric. The node

availability metric is already provided in Fabric Registry by

the Discovery Service, however, we had to im- plement

message plug-ins to measure link quality as well as

generated and relayed traffic. Three message plug-ins have

been prototyped for measuring link packet drop rates and

message traffic load. An outgoing message plug-in at the

transmitting node inserted messages sequence numbers

related to a node pair, while an incoming message plug-in at

the receiving node checks the sequence number to verify

whether any messages have been lost from that link. The
message plug-in system of Fabric permits piggyback

information on messages as an extension without modifying

the underlying feed subscription service. A third message

plug-in monitors a node’s local publish/subscribe bus for

feed messages and counts them per time unit to quantify

traffic of the node. Message plug-ins are expected to be

short-lived and avoid use of external resources such as hard-

disk writes or network communication as this would have a

performance impact on the number of messages a node can

process. Thus, message plug-ins write information extracted

from messages to a Fablet that is running alongside the

Fabric Manager on the node. Fablets, being separate threads,
have their own execution flow control and memory storage.

They collect information posted by local message plug-ins

and use it to update the forecasting models they maintain.

The link quality and traffic load fore- casting models in the

Fablet periodically update the distributed Fabric Registry

with new values for monitored attributes. Although the

forecasting model incorporates information from all samples

collected throughout a system’s lifetime, it is relatively

small in size – in the order of a few kilobytes. As a result, it

can be serialised and stored in the Registry in a binary

format. Updating forecasting models locally, rather than
close to the Registry, significantly reduces the

communication overhead, compared to propagating

observations to a sink to perform forecasting model update

outside the network. The Routing Service pulls forecasting

models from Fabric Registry to update its routing paths.

After the forecasting phase of the algorithm, it updates the

subscription routes table in the Registry used by nodes when

they need to deploy new subscriptions.

B. Forecasting Mechanism

Forecasting models are produced from collected perfor-

mance metrics to create two network models – the link

quality and the traffic load graphs of the network projected

to a future period in time. We build three forecasting models

for different aspects of the network. The first model caters

for recurring isolation of nodes in their neighbourhood. The

second forecast model considers the packet drop rates

between node links. Finally, a forecast model is used for

predicting the traffic volume that a sensor feed requires.

We consider these metrics as a time-series and we use a fit-

ting model that describes their behaviour. We have selected

the Holt-Winter Additive Seasonal model that is able to

capture trend as well as periodic effects in time-series. Holt-

Winter applies exponentially decreasing weights on the

historical data to update the model. It decomposes the time-

series in three components;

the level St, local trend bt

and the periodic factor It.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-4 Issue-4, September 2014

101

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D2375094414/2014©BEIESP

Each of these components are updated incrementally

(online) using exponential smoothing. Forecasts in the

model are calculated as a linear combination of the

aforementioned components as shown in equation 1, where t

is the current time instance, m is the units in the future for

the prediction and L is the period of the time-series.

Ft+m = St + bt ∗ m + It+m−L (1)

We use the IBM Watson Forecasting library (WatFore) to

construct and manage the forecasting models. The WatFore

library provides a fully automated, extensible and scalable

streaming predictive analytics framework that is suitable for

monitoring any type of Key Performance Indicators (KPIs).

It implements a number of streaming algorithms (including

the Holt-Winters Additive Seasonal) that do not require

permanent storage of historical performance measurements,

thus bound- ing memory requirements for maintaining and

using forecast- ing models. This is particularly important in

our application domain, as sensor platforms cannot be

assumed to have large storage capabilities solely for

performance monitoring pur- poses. Furthermore, the

incremental updates to the forecasting models with newly

obtained measurements from continuous monitoring

minimizes the processing requirements for keeping the

models up to speed, imposing only marginal overhead to the

sensor platform. The library also provides methods for

calculating the periodicity of the performance metric using

Fourier analysis, and automatic training of the forecasting

models once enough data measurements have been

collected.

IV. EVALUATION

For the evaluation of the forecasting effectiveness on route

selection we emulated network scenarios that we consider fit

well with expected periodic failure error classes in

sensor networks. We initially evaluated the effectiveness of

the al- gorithm for coping with node reachability and link

failures, then considered congestion effects in high-traffic

networks. In all scenarios, we use a grid layout, where nodes

can directly communicate only with its immediate

neighbours. Hence, most nodes can send messages directly

to 8 neighbours while nodes at the corners are limited to 3-5

neighbours, depending on their position. Feed subscriptions,

as in the ITA Sensor Fabric framework, may originate from

any point of the network. Hence, there is no single sink in

the network, but there are multiple subscribers that consume

data from producers. Subscribers may be terminal recipients

or in turn produce new data, after processing their input

feeds, which are in turn consumed by other nodes. This

creates an open environment in which information does not

have a single flow among nodes. We randomly generate

feed subscription in the simulated network set-ups that are

examined in this section. We compare three routing

approaches in the simulations. The first one is the static

paths that are currently implemented in the ITA Sensor

Fabric framework. This is a na¨ıve approach that provides a

lower bound of network performance – an indication of the

impact of failures in the network, as it is unable to respond

to them. The second approach is dynamic adaptation of

routes based on the metrics discussed in the paper. However,

instead of forecasting future values, route adaptations is

based on recent observations. Essentially, this approach

performs adaptation based on current network status.

Finally, we make use of future predictions of metric values,

by projecting from historic data using the Holt-Winter

additive model provided by the IBM WatFore library, to

dynamically adapt routes in Fabric Registry.

A. Periodic Node Communication Failures

We first study the accuracy of forecasting fail-stop commu-

nication link failures inside the network. We emulate a 5 × 5

network grid where 26 subscription are placed among nodes

randomly. Sensor feeds produce data regularly in random

intervals between 1 to 10sec. In every run, 8 nodes, roughly

1/3 of the population, experience periodic failures that cause

them to be isolated from their neighbourhood for random

time intervals. Failure times and duration are selected from

the range 10 to 50sec, with an average close to 20sec. For

this particular scenario, we assume that links between nodes

are ideal and do not drop packets due to noise, in order to

study only the effects of node disappearance. We emulate

the scenario running Fabric on desktop machines where

different nodes run in separate virtual machines and we

emulate communication failures by editing linux iptables to

add rules that drop packets from certain nodes in order to

isolate them. Figure 3a shows the overall packet delivery

rate achieved in the network, as an average of several

experiments, with three different approaches mentioned

earlier; static routes (SR), adaptive historic routes (HR) and

adaptive forecasting routes (FR). The static routing achieves

a 74% packet delivery rate, which we consider as the lower

bound because there is no effort to adapt to node failures.

The dynamic selection of routes based on recent historic

observations improves the rate close to 85% while

forecasting outperforms both, reaching a 95% packet

delivery rate. Even though HR is able to adapt to nodes that

have a longer uptime phase based on recent observation, its

decisions quickly become outdated. However, FR by

projecting these values in the future achieves better

adaptation of the routing schemes as it is able to predict

which nodes are going to be available in the next rounds. As

shown in figure 3a, the FR method exhibits, initially, similar

performance with SR. The dive in the graph is due to the

training phase that is required by the Holt-Winter model

in order to start producing predictions. As soon as the model

is trained and routes are adapting, a sharp increase at the

delivery rate is presented. Furthermore, as the model

continues to collect feedback from the network, it further

improves its forecasting ability until it converges at 95%

packet delivery. It should be noted that a portion of the

failed messages are due to destination nodes, instead of

intermediates, that have failed. In that case, there is no

alternative delivery path, but the messages are still counted

as undelivered. Figure 3b presents results from a similar set-

up, however nodes do not have stable down/up-time periods.

Instead their periods follow a Gaussian distribution with a

random average value in the range of 10 to 50sec, as before,

and σ value 2. Static routing is mostly unaffected from this

change as it was expected. Average node downtime is not

changing in the experiment, only the fixed periodicity that

nodes disappear mobile

networks, where patrolling

nodes may occasionally

Self-Adaptive Routing in Multi-Hop Sensor Networks

102

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D2375094414/2014©BEIESP

come into contact with stationary nodes. Delivery rate of

forecasting routing is affected by the introduced irregularity

in node disappearance, though still remains high around

90%. The irregularity appears to also affect the routing

based on recent observations, but not by a significant

proportion (2%) to affect any change in the approach’s

performance.

B. Node Link Reliability

The second network aspect we study is link quality between

nodes. During the lifetime of a deployed network we have

noticed that links may exhibit recurring, periodic issues with

delivery rates. This was typically due to moving obstacles

that interfered with the signal, such as environmental

inhabitants that have a certain routine, or connectivity can

be affected by mobile nodes with a periodic movement

pattern, even though they remain in theoretical

communication range. In order to address such repetitive

adjustments on link quality, we apply the forecasting model

on message drop rates of links in the network and study its

effectiveness in this section. We use Castalia [4] as a

simulation environment. Castalia is built on top of

Omnet++3 and provides realistic link quality behaviour in a

sensor network based on traffic, signal interference, node

distance and noise in the wireless medium.
3http://www.omnetpp.org/

Fig. 3. Average Message Delivery Rate on Periodic

Node Disappearance

To introduce the periodic fluctuation on the link quality, we

modify the underlying connectivity map during the

simulation. We study how feed subscription delivery rates

are affected and how effective is dynamic forecasting in

such situations. Figure 4 illustrates the performance of each

approach when link quality varies periodically over time.

The graph presents averages for every ten rounds and the

variance is illustrated as the y-axis error bars. SR is, again,

the reference line of network degradation reaches an average

message delivery rate slightly above 50%. HR does improve

the na¨ıve, static approach but on average it does not reach

70% message delivery rates. FR performs best in this case as

well. After an initial training phase, of roughly 20 rounds, it

increases the delivery rate slightly below 90%.

C. Traffic Load and Congestion

Exclusive use of best quality paths in the network may result

in over-utilisation of nodes causing packet congestion in

their network buffers. Congestion can be caused either in

incoming buffers, when a node is not able to process

receiving packets fast enough, or in the outgoing

buffers, when the medium is very busy for transmission

and packets get queued. Castalia emulates MAC and

physical layer buffers and we study the behaviour of our

forecasting approach under heavy traffic. We compare the

approach from previous paragraphs, which ignores traffic

load on nodes, with the the traffic-aware penalisation

scheme that was introduced in section III-B.

Fig. 4. Packet Delivery Rate over Periodically

Unreliable Links

We run an experiment, where nodes generate random

medium-level traffic and there are four events during the

simulation that cause group of nodes in the network to

generate increased traffic. Each event produces different

volumes of traffic. The resulting delivery rates for this

experiment are presented in figure 5. Figure 5a shows the

routing behaviour in an ideal network, where links have no
drop-rates apart from those in congested buffers. We ran the

experiment in an ideal network in order to solely observe the

impact of congestion and quantify the benefit of

systematically attempting to avoid overloading nodes with

excessive traffic. The four events that cause increased traffic

can be easily observed in the graph as delivery rates fall

sharply for the traffic-unaware scheme. On the other hand,

the heavy traffic load penalisation scheme learns over time

to spread traffic through different routes in the network grid

avoiding packets due to congestion. It should be noted that

even in an ideal network there are packet drops without
heavy traffic. Such drops can be attributed to the half-

duplex radio used in the simulation, where packets are lost

on a node when the radio is

in the transmission state.

Figure 5b presents the

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-4 Issue-4, September 2014

103

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D2375094414/2014©BEIESP

results of the same experiment that runs on a realistic

network, where links drop packets due to noise similar to

the set-up used in section V-B. Overall, packet delivery rates
are lower and their variance is increased for both cases.

However, the trends remain similar, where the congestion-

prevention scheme performs better during high- traffic

events, but the gap between the two approaches is less. This

can be explained as a side-effect of the noisy links that

reduce the amount of received packets; hence the effects of

buffer congestion are decreased.

Fig. 5. Average Delivery Rate on Periodic Node

Disappearance

VI. RELATED WORK

There are several approaches in the literature for increasing

network reliability for message delivery rates, some

incorpo- rated in network management frameworks similar

to Fabric. MANNA [5] and Sympathy [6] are examples of

management systems that monitors nodes collecting metrics

centrally for analysis. In [7] a fault management service for

MANNA is described, where nodes report measurements to

local managers that are subsequently propagated to a sink.
Both systems make decisions on networks health based on

recent observations. Neighbourhood collaboration is utilised

in [8] for detection of missing neighbours, where a protocol

runs in two phases. Nodes monitor which neighbours they

believe are alive in the first phase by exchanging hello

messages. In the second phase the neighbourhood exchange

their local observations of missing nodes and reach a local

consensus before they trigger a failure alert at the sink.

RedFlag [9] improves on that original algorithm, adopting

some of its ideas. It requires clock synchronisation between

nodes in order to begin a handshake round with their

neighbours and verify their existence. If a neighbour misses
a configurable number of handshakes then a neighbourhood

consensus protocol takes place between nodes on whether

the node has failed. Each node tracks information about

their neighbours link quality and residual energy to infer

whether a failure is due to a broken link or power depletion.

The collection tree protocol (CTP) [10] is an efficient data

collection protocol for multi-hop sensor networks. It is

based on two main ideas for improving message delivery

rates and reduce imposed overheads. A datapath validation

mechanism avoids looping of messages among nodes that

are formed due to dynamic link health changes and adaptive

node beaconing that reduced beacon messages of nodes with
healthy links to conserve energy, but increases the rate when

links start losing packets. A backpressure collection

protocol [11] improves delivery rates of CTP for dynamic

environments with moving sinks. However, both protocols

target datagram packet routing and they do not account for

recurring patterns on failures and traffic. Memento [12] is a

service deployed inside the network looking for fail-stop

node failures. It is based on a heart-beat mechanism that will

tag a sensor failed after missing a number of consecutive

heart-beats. It also introduces a variance-bound mechanism

that can put an upper bound on false positives. Our approach
on detecting missing neighbours is similar, as nodes

periodically exchange heart-beat message to verify their

proximity and they have a certain threshold of failed

attempts before they consider a neighbour lost. Regarding

detection of missing packets, Silberstein et al. [13] discuss

how they cope with failures in a system that suppresses

updates of new values unless they exceed a pre- defined

threshold. They compare several schemes including

application level ACK messages, sequence numbers and

hints of previous, possibly lost values. They, further, use a

Bayesian approach at the sink to infer missing values using
models learned from the data instead of interpolating.

Detection of dropped and missing packets is a concern of

network protocols in most sensor dissemination protocols.

Use of NACK messages has been used in PSFQ [14] and

GARUDA [15] for detecting missing packets, however they

require an indefinite amount of packets stored in

intermediate nodes. For streaming applications, delay or

lack of traffic is considered as a symptom of fault in the

network [6], [16]. We chose to follow a less taxing approach

of counting sequence numbers, even though the method has

disadvantages that have been discussed in previous sections.

However, the use of confidence factor on link quality
compensates to some extent for their weaknesses. Link

quality can be measured by the ratio of undamaged received

packets. Passively monitoring the link quality using

snooping has been used in [17] by tracking link layer

sequence numbers. Congestion levels can be monitored

using buffer occupancy levels [18] or channel loading [19].

However, monitoring link quality and channel loading

requires the radio to operate constantly in listening mode,

thus consuming high levels of energy. Snooping has also

been used in Snif [20] that operates as a secondary system

with its own dedicated wireless channel, deployed on the
side of to the normal sensor network for monitoring

purposes. Other forecasting

approaches in the literature

are focusing on predicting

Self-Adaptive Routing in Multi-Hop Sensor Networks

104

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D2375094414/2014©BEIESP

link availability based on node movement [21] in mobile

networks. In [22] the authors attempt to introduce the

lifetime expectancy prediction for nodes in the routing
selection to maximise network’s operating time apart from

minimising packet hop-count. Furthermore, a predictive

model for minimising transmission time in networks based

on cross- traffic estimations has been introduced in [23].

Finally, in [24], a time-series model is proposed for

predicting link quality in the network based on RSSI and

LQI metrics based on a weighted average of past and

present observations.

VII. CONCLUSION

We have presented a dynamic routing service based on

forecasting network attributes, which is integrated in the

ITA Sensor Fabric middleware. Forecasting trends of the

network allows pro-active adaptation of routing paths for

long run- ning subscriptions, avoiding recurring network

degradation. We assume the existence of a more reliable,

low-traffic, secondary channel that the nodes can use to

communicate with a distributed database, the Fabric

Registry, in order for nodes to update network statistics for

the main, high-traffic network channel carrying subscribed
messages to be relayed to consumers. We, further,

demonstrated the effectiveness of forecasting of periodic

failures, compared to adaptation based on recent his- tory

observations. The Holt-Winter’s model used for predicting

network attributes is able to distinguish different periods in

the input enabling effective estimation on future node

connectivity.

VIII. ACKNOWLEDGEMENT

This research was sponsored by the U.S. Army Research

Labora- tory and the U.K. Ministry of Defence and was

accomplished under Agreement Number W911NF-06-3-

0001. The views and conclusions contained in this document

are those of the author(s) and should not be interpreted as

representing the official policies, either expressed or

implied, of the U.S. Army Research Laboratory, the U.S.

Gov- ernment, the U.K. Ministry of Defence or the U.K.

Government. The U.S. and U.K. Governments are

authorized to reproduce and distribute reprints for

Government purposes notwithstanding any copyright
notation hereon.

REFERENCES

[1] J. Wright, C. Gibson, F. Bergamaschi, K. Marcus, R. Pressley, G.

Verma, and G. Whipps, “A dynamic infrastructure for interconnecting

disparate isr/istar assets (the ita sensor fabric),” in IEEE/ISIF Fusion

Conference, July 2009.

[2] T. Bourdenas, F. Bergamaschi, D. Wood, P. Zerfos, A. Swami, and

M. Sloman, “Forecasting routes and self-adaptation in multi-hop

wire- less sensor networks,” in SPIE Defense Security and Sensing,

April 2011.

[3] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The

many faces of publish/subscribe,” ACM Comput. Surv., vol. 35, pp.

114– 131, June 2003.

[4] H. Pham, D. Pediaditakis, and A. Boulis, “From simulation to real de-

ployments in wsn and back,” World of Wireless, Mobile and

Multimedia Networks, 2007. WoWMoM 2007. IEEE International

Symposium on a, pp. 1–6, 2007.

[5] L. B. Ruiz, J. M. Nogueira, and A. A. F. Loureiro, “Manna: A

manage- ment architecture for wireless sensor networks,” IEEE

Communications Magazine, vol. 41, no. 2, pp. 116–125, 2003.

 [6] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and D.

Estrin, “Sympathy for the sensor network debugger,” in ACM

SenSys, San Diego, CA, 2005.

[7] L. B. Ruiz, I. G. Siqueira, L. B. e. Oliveira, H. C. Wong, J. M. S.

Nogueira, and A. A. F. Loureiro, “Fault management in eventdriven

wireless sensor networks,” in MSWiM, 2004.

[8] C. Hsin and M. Liu, “Self-monitoring of wireless sensor networks,”

vol. 29, 2006, pp. 462–476.

[9] I. Urteaga, K. Barnhart, and Q. Han, “Redflag a run-time, distributed,

flexible, lightweight, and generic fault detection service for data-

driven wireless sensor applications,” in PERCOM ’09: Proceedings of

the 2009 IEEE International Conference on Pervasive Computing and

Communications. Washington, DC, USA: IEEE Computer Society,

2009, pp. 1–9.

[10] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis,

“Collection tree protocol,” Proc. of the 7th ACM SenSys, pp. 1–14,

2009.

[11] S. Moeller, A. Sridharan, B. Krishnamachari, and O. Gnawali,

“Routing without routes: The backpressure collection protocol,” Proc.

of the 9th ACM/IEEE IPSN, 2010.

[12] S. Rost and H. Balakrishnan, “Memento: A Health Monitoring

System for Wireless Sensor Networks,” in IEEE SECON, Reston,

VA, September 2006.

[13] A. Silberstein, G. Puggioni, A. Gelfand, K. Munagala, and J. Yang,

“Suppression and failures in sensor networks: a bayesian approach,”

in VLDB ’07: Proceedings of the 33rd international conference on

Very large data bases. VLDB Endowment, 2007, pp. 842–853.

[14] C. Wan, A. Campbell, and L. Krishnamurthy, “Pump slowly fetch

quickly (psfq): A reliable transport protocol for wireless sensor net-

works,” IEEE JSAC, vol. 23, no. 4.

[15] S. Park, R. Vedantham, R. Sivakumar, and I. Akyildiz, “A scalable

approach for reliable downstream data delivery in wireless sensor

networks,” in ACM MobiHoc, 2004.

[16] J. Staddon, D. Balfanz, and G. Durfee, “Efficient tracing of failed

nodes in sensor networks,” in 1st ACM international Workshop on

Wireless Sensor Networks and Applications, 2002.

[17] A. Woo, T. Tong, and D. Culler, “Taming the underlying challenges

of reliable multihop routing in sensor networks,” in ACM SenSys,

2003.

[18] Y. Sankarasubramaniam, O. Akan, and I. Akyildiz, “Erst: Event-to-

sink reliable transport in wireless sensor networks,” in ACM

MobiHoc, 2003.

[19] C. Wan, S. Eisenman, and A. Campbell, “Coda: Congestion detection

and avoidance in sensor networks,” in ACM SenSys, 2003.

[20] M. Ringwald and K. Romer, “Snif: A comprehensive tool for passive

inspection of sensor networks,” 2007.

[21] S. Jiang, D. He, and J. Rao;, “A prediction-based link availability

estimation for mobile ad hoc networks,” INFOCOM 2001. Twentieth

Annual Joint Conference of the IEEE Computer and Communications

Societies. Proceedings. IEEE, vol. 3, pp. 1745 – 1752 vol.3, 2001.

[22] M. Maleki, K. Dantu, and M. Pedram, “Lifetime prediction routing in

mobile ad hoc networks,” Wireless Communications and Networking,

2003. WCNC 2003. 2003 IEEE, vol. 2, pp. 1185–1190, 2003.

[23] S. Yin, Y. Xiong, Q. Zhang, and X. Lin, “Prediction-based routing for

real time communications in wireless multi-hop networks,” QShine

’06: Proceedings of the 3rd international conference on Quality of

service in heterogeneous wired/wireless networks, Aug 2006.

[24] L. Liu, Y. Fan, J. Shu, and K. Yu, “A link quality prediction

mechanism for wsns based on time series model,” 2010 Symposia and

Workshops on Ubiquitous, Autonomic and Trusted Computing, Jan

2010.

AUTHOR PROFILE

K. Seena Naik, Department of CSE, S.K University,

Anantapur, India.

Dr. G. A. Ramachandra, Professor, Department of

CSE, S.K University, Anantapur, India.

M.V.Brahmananda Reddy, Department of CSE,

GITAM University, Bangalore, India.

