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Abstract—Sensor networks are used for applications in moni- 

toring harsh environments including reconnaissance and surveil- 

lance of areas that may be inaccessible to humans. Such applica- 

tions depend on reliable collection, distribution and delivery of 

information to processing centres which may involve multi-hop 

wireless networks which experience disruptions in communica- 

tion and exhibit packet drops, connectivity loss and congestion. 

Some of these faults are periodic, attributed to external, 

recurring factors. In this paper, we study an effective way to 

forecast such repetitive conditions using time-series analysis. We, 

further, present an application-level, autonomic routing service 

that adapts sensor readings routes to avoid areas in which 

failures or congestion are expected. A prototype system of the 

approach is developed based on an existing middleware solution 

for sensor network management. Simulation results on the 

performance of this approach are also presented. 

Keywords:- Monitoring, Surveillance, Communication, 

Middleware, Reconnaissance. 

I. INTRODUCTION 

Wireless sensor networks are used to monitor environments 

that might be impractical or unsafe for humans to enter. 

Areas being monitored may be too large for single hop 

communi- cation to the monitoring centre, requiring 

collection, distri- bution and delivery of information that 

typically travels over multiple, interconnected nodes to 

reach processing centres. These networks may be 

susceptible to various communication disruptions such as 

connectivity loss due to unreliable links as well as packet 

drops due to noise on the wireless medium or high-volume 

of traffic overloading links and network buffers. While 

many of the faults can be attributed to random events, some 

of them exhibit specific repeating patterns caused by 

periodic events in the environment, such as day-night cycle 

of nearby electrical equipment, movement of inhabitants or 

vehicles in the environment generating noise  or  affecting 

signal paths. Periodic events detected by multiple nodes in 

the sensor network may result in increased traffic within a 

region of the network leading to congestion and possible 

message loss.  Finally, in hostile environments, causes may 

include adversaries that try to compromise communication. 

In this paper, we study an effective way to forecast repet- 

itive patterns in quality of service metrics of the network, 

using time-series analysis. We present an application-level, 

autonomic routing service that adapts sensor readings routes 

to avoid areas that are expected to have low link-quality, 

while, at the same time, avoid overload of good quality 

paths.  

 
Manuscript Received on September 2014. 

K. Seena Naik, Department of CSE, S.K University, Anantapur, India. 

Dr. G. A. Ramachandra, Professor, Department of CSE, S.K 

University, Anantapur, India. 

M. V. Brahmananda Reddy, Department of CSE, GITAM University, 

Bangalore, India. 

We also discuss the integration of this service in the Sensor 

Fabric [1], a sensor networks middleware that takes care of 

the sensor identification, discovery, access control 

interoperability, data dissemination and management of 

sensor nodes, developed within the International 

Technology Alliance (ITA) project1. We use the extension 

mechanisms of Fabric to collect real-time network 

information on node availability, link packet drop rates and 

traffic loads in order to select the routes that maximise the 

likelihood of message delivery across the network over an 

unreliable multi-hop network. The routing service maintains 

forecasting models for each link performance metric and 

decides route allocation to active network paths matching 

node requirements. Finally, we eval- uate our approach in a 

simulated environment and evaluate the effectiveness of 

network failure forecasting. In previous work [2], we have 

applied the forecasting model to predict node disappearance 

from a neighbourhood. Here, we study more extensively 

how forecasting can be applied on predicting periodic 

degradation of packet delivery rates on links and how to 

utilise repetitive bursty traffic patterns in order to avoid 

congestion due to overload of network buffers in nodes. 

The rest of the paper is structured as follows: in Section II 

we provide background on the ITA Sensor Fabric 

architecture and operation. Section III presents the network 

performance metrics we consider in the network, the route 

selection method and the forecasting model we use for 

predicting future perfor- mance based on past observations. 

In section IV, we discuss integration with the ITA Sensor 

Fabric and the implementa- tion of extensions for the 

adaptive, routing forecast service. Section V, includes 

evaluation of our methods using simulated scenarios. 

Finally, in section VI, we discuss related work from 

bibliography and we conclude in section VII. 

II. IT A SENSOR FABRIC MIDDLEWARE 

The Fabric middleware is a network management layer that 

connects assets in a sensor network to clients/actors 

providing a publish/subscribe communication abstraction 

[3]. Sensors act as publishers providing data feeds based on 

raw or processed sensor readings. Client nodes are the 

consumers of this infor- mation and can subscribe to sensor 

feeds to receive readings as they become available. There 

can be multiple subscribers to published messages and 

publishers are not aware of the identity or address of the 

subscribers, i.e. there is a decoupling between publishers 

and subscribers. Clients refer to a directory service to locate 

potential messages types of interest that they subscribe to. 

The Fabric infrastructure matches publications of these 

messages to subscriptions and sets up routes over the multi-

hop network for relaying 

messages to the subscriber. 

Sensor networks do not, 



Self-Adaptive Routing in Multi-Hop Sensor Networks 

98 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: D2375094414/2014©BEIESP 

typically, form a fully connected graph, instead they rely on 

multi-hop end-to-end paths. Fab- ric supports multi-hop 

communication among nodes in the network while 

abstracting details of their location from the application 

developer, who perceives the existence of a fully connected 

network. Fabric provides the abstraction of a com- 

munication bus, where nodes can publish information, i.e. 

sensor feed readings, that eventually reach consumers that 

are subscribed to these feeds. Fabric builds an open platform 

of assets, where producers of information, e.g. physical or 

even virtual sensors, generate data that consumers, e.g. 

fusion centres or applications, subscribe to without imposing 

a single endpoint/sink in the network. 
1http://www.usukita.org/ 

Fig. 1.   Fabric Component Architecture 

Sensor data feeds are identified using globally unique names 

that consumers, i.e. subscribers, can refer to and receive 

produced data. Information for available resources and 

assets, as well as real-time metrics on network status are 

stored in a distributed database, the Fabric Registry. 

A. Fabric Components Architecture 

Figure 1 presents the architectural components of Fabric. 

We provide a brief description of these component introduce 

the terminology used in the remaining paper. 

Registry is a Gaian database2  distributed among nodes in 

the network. It contains all information about the state of the 

network including node IDs and physical location, neigh- 

bouring sets, network assets, registered data subscriptions 

and virtual circuit paths between nodes. The database is 

distributed among a subset of Fabric nodes, each 

maintaining local data. Information retrieval happens as a 

query that collects data from nodes that eventually get 

propagated to the request point. Registry communication 

can take place over a secondary low- traffic link that is not 

subject of our mechanism as it is considered more reliable, 

due to the sparsity of data on it. 

Node is the network endpoint of Fabric, which runs a Fabric 

Manager service. The Fabric Manager provides multi-hop 

communication and the publish-subscribe service. Fabric 

nodes are not to be confused with typical resource 

constrained sensor nodes. They have the power of a netbook 

computer and may have substantial battery or external 

power source (photoelectric cells).  They run a Java virtual 

machine and maintain a part of the Fabric Registry that 

stores local runtime information. Nodes are also the 

extension points in Fabric as discussed later. 

2http://www.alphaworks.ibm.com/tech/gaiandb 

Platform is an adaptor that connects sensors and actors to a 

Fabric node. A Platform could be the equivalent of MOTE- 

like small, constrained device with low-power radio running 

on batteries. In spite of being logically a separate component 

to the Fabric node, a platform could also reside on the same 

physical device. 

Sensors are attached to platforms and are the produc- 

ers/publishers of information in the network. They provide 

feeds of data that actors can subscribe to in order to receive 

readings updates. A sensor may encapsulate a hardware 

sens- ing device or it can be a virtual device that produces 

informa- tion by consuming feeds from other network 

endpoints, i.e. a fusion centre. 

Data Feeds are series of values produced by sensors. One 

sensor may provide multiple feeds, for example two separate 

resolution feeds from a camera or a feed with raw 

thermometer readings as well as their averages. 

Actors are either human users or software services. Similar 

to sensors, they have a unique identifier that allows the 

middeware to route information towards them. 

Client is a virtual entity, consisting of an actor and a 

platform through which it can interact with Fabric. 

B. Extension Infrastructure 

The Fabric core provides a minimum set of services required 

to implement a distributed communication bus service, 

while maintaining a small footprint and overhead in the 

system. Additional capabilities are introduced as plug-ins, 

which are grouped into families. A plug-in family is a user-

defined collection of extensions that share data and 

management operations. Fabric allows for three types of 

plug-ins; Message Plug-ins, Fablets and Services. 

1) Message Plug-Ins: Nodes process messages as they are 

relayed by Fabric on each hop. Message Plug-ins are 

modules that can be attached to a node’s Fabric Manager to 

process messages directly. There are three sub-types of 

Message Plug- ins: node, task and actor – allowing filtering 

of messages that are related to any of these. Their life-cycle 

is managed by the Fabric Manager and they are, typically, 

short-lived operations, such as policy enforcement, filtering, 

transformation, logging, caching and encryption, without the 

ability to have side- effects outside their controlled 

environment. Plug-ins can be registered to operate either on 

incoming or outgoing messages of a node allowing 

messages to be decrypted, processed and encrypted again 

using different plug-ins. Within the Fabric Manager, the 

Registry contains infor- mation about each data-feed that 

flows over the bus. This includes what tasks it is part of, 

where it was generated, who is subscribed to it and the 

characteristics of its destination actors. This information is 

available to message plug-ins as they are applied to each 

individual data-feed message. 

2) Fablets: Fablets are extensions that run on nodes inde- 

pendently of the message flow. They run in separate threads, 

managed by the Fabric Manager, and are more flexible than 

Message Plug-ins allowing a broader range of operations. 

They can directly access Fabric resources such as the 

Registry and the publish-subscribe bus, but also other non-

Fabric resources such as storage devices or application 

databases.  Typical uses of 

Fablets include accessing 

non-Fabric resources and 
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platforms or implementation of data fusion algorithms. 

3) Fabric Services: Fabric Services are the mechanism used 

to implement most high-level Fabric features, a modular 

approach that builds on Fabric’s core message passing func- 

tions. Services are complementary to other plug-ins. They 

are separate processes that work on the side and can be 

attached to Fabric though the Actors mechanism to interact 

with the node’s local bus. For instance, Fabric’s sensor 

subscription service is implemented to provide sensor data 

feeds as a Service on top of Fabric’s core features; 

communication bus, the Registry and event handling. 

In section IV, we describe the family of Fabric plug-ins that 

have been developed for prototyping a dynamic routing 

mechanism for routing of sensor data avoiding links that are 

expected to have high message drop rates. 

III. ADAPTATION THROUGH FORECASTING 

As described in the previous section, Fabric handles propa- 

gation of data from producers, i.e. sensors and fusion 

centres, to consumers, i.e. fusion and analysis centres via 

multi-hop routing over Fabric Nodes. Routing paths for the 

subscriptions are created on-demand, when a request for a 

new subscription is received or an existing one is broken. 

Fabric uses virtual circuit switching, as  opposed  to  a  

connectionless  scheme, to guarantee that packets are routed 

only through particular trusted nodes for security concerns. 

Fabric Registry contains the full catalogue of network 

subscriptions and their virtual circuits. In this paper, we 

extend the current routing mecha- nism of Fabric by 

introducing a dynamic, self-adaptive routing service that 

relies on forecasting link reliability and traffic patterns in the 

network. 

A. Performance Metrics 

We measure the performance and reliability of the network 

by collecting a set of metrics from Fabric nodes. We collect 

application-layer metrics for network performance that 

allows the approach to be independent from the underlying 

network. We account for node availability, drop rate of 

network links and traffic characteristics of feed 

subscriptions. Based on these attributes, we build 

forecasting models and periodically update multi-hop relay 

routes in the Fabric Registry. 

A Fabric Discovery Service runs on nodes to track availabil- 

ity of directly reachable, single-hop neighbours. It should be 

noted that this node relationship is not necessarily 

symmetric as the fact that node A is directly reachable from 

node B does not imply that the reverse is necessarily true in 

a wireless network. The discovery service periodically 

broadcasts beacon messages to verify a node’s existence to 

its neighbourhood. In order to conserve battery power, 

nodes do not constantly listen for broadcasts. Instead, they 

turn their radio on periodically to receive beacon messages. 

This process may miss some of the beacon messages, hence 

there is a threshold of consecutive messages that can be 

missed before a neighbour is considered unavailable. Apart 

from availability of neighbouring nodes, the quality of the 

wireless links, based on measured packet drop rate (PDR), is 

also necessary to make a routing decision that maximises the 

likelihood of a message being delivered to its destination. 

PDR is measured by piggybacking sequence numbers on 

messages for each hop. Due to virtual circuit packet 

switching that Fabric uses, traversed nodes remain the same 

for each subscription, thus, per-hop sequence numbers can 

work. The approach has the advantage of being an 

inexpensive way to measure drop rates by only appending a 

few extra bytes on existing traffic, minimising energy 

overheads, however, there are some drawbacks. First, there 

is a non-bounded delay on metric updates. In case no 

messages are received by a node, either lack of traffic or 

large number of dropped messages can be inferred. 

However, the Fabric Discovery Service beacon message will 

also be affected by a link failure thus removing the node as a 

neighbour, which sets an upper bound on the update delay. 

In case of low underlying traffic, underutilised links result in 

limited traffic samples weak for statistical inference. To 

compensate for this, additional low frequency control mes- 

sages can be introduced over low-traffic links to sample 

their status. Furthermore, we introduce a confidence level on 

the link quality metric. The confidence level is a real 

number value in the range [0.1, 1] that quantifies the 

statistical confidence on the observations for link PDR, 

based on the number of packets that have been relayed over 

the link. The confidence is the fraction of a minimum 

acceptable number of messages, c, that need to be relayed 

over the link in order to have a reliable metric on the link 

quality. We cap the confidence level to 1, even when a link 

accommodates more than c messages. With regard to 

network traffic, nodes monitor the volume of traffic that 

they relay and the volume of messages they pro- duce. 

Messages originating from other nodes, passing through the 

intermediary are counted as relayed traffic, while messages 

generated from a local platform attached to the node, are 

considered as originating traffic. Originating traffic must be 

sent out on the node’s links, whereas relayed traffic could be 

rerouted to bypass the node in case of overload. They are 

both used to train a prediction model on future message 

volumes. 

B. Subscription Route Selection 

In this section, we describe the algorithm that selects the 

virtual circuits that are created for active subscriptions in the 

network based on the metrics described. Fabric middleware 

uses virtual circuit routing instead of connectionless 

datagrams as it targets military environments, where all 

nodes are not equally trusted. Routing selection is also 

affected by admin- istrator policies that are enforced by a 

policy management system that dictate whether some data 

subscriptions can only be relayed by particular trusted 

nodes. This would be more complex to do with 

connectionless datagram routing requiring per hop decisions 

instead of a decision at the set-up time. 

We construct a link graph GR = (V, ER) of the network, 

where the vertices V are the network nodes, and edges ER 

are the direct links between them. Edge weights represent 

the expected failure rate between node pairs. Weights are 

calculated as a linear combination of node availability and 

the product of link PDR and the confidence level of the 

metric. The graph GR essentially represents a map of link 

health in the network. Applying a shortest path algorithm on 

GR between the producers 

and the consumers of feeds, 

gives a prediction for the 
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most reliable route, i.e. the one that is less likely to drop 

messages in the near future. Subscription routes in Fabric 

are locally cached on the nodes. When routes are updated in 

Fabric Registry, nodes do not immediately update their 

current routes. Instead, nodes update data subscription 

routes only when they break due to a link failure or bad 

reception rate that degrades below a predefined threshold. 

Then the producer node sets-up a new subscription path 

using the updated route from the Registry. 

Another consideration in event-driven, multi-hop sensor net- 

works is when an event occurs in the environment 

monitored by the nodes, and generates increased traffic in 

the network. If additional feed subscriptions are routed over 

the same nodes there might be increased packet loss due to 

congestion in node buffers. In such cases, it is preferable to 

separate high traffic flows to use different nodes for relaying 

messages. Consequently, we use the information on the 

traffic volumes that a sensor generates to separate high 

volume flows over different paths. To prevent congestion, 

we enhance the routing map GR generated based on link 

qualities, using the expected traffic of the channels in order 

to prevent overloading healthy channels with too many 

subscriptions. To achieve this we increase link costs on 

graph GR by a proportion of the overall traffic they expect to 

carry which penalises high traffic links. In order to 

determine the load of a link, we normalise the number of 

packets that are expected to traverse the link based on 

allocated feed subscriptions. All loads are expressed as a 

proportion of the link with maximum load. However the 

actual link utilisation is not known, so this could result in 

penalising links with low utilisation which carry a relatively 

high percentage of subscriptions even though the total traffic 

is quite low. In order to resolve this issue, the administrator 

can specify a threshold above which the congestion 

prevention algorithm would start. Finally, the intention is to 

avoid routing traffic through congested links while avoiding 

throttling links with low to medium utilisation that can carry 

more traffic. Thus, instead of a linear scale on link cost 

penalties, we use an exponential scale so that penalisation 

will mostly affect the costs of highest-traffic links of the 

network, which are also the most likely to exhibit 

congestion. 

Fig. 2.   Fabric Plug-in Architecture 

IV. INTEGRATION WITH FABRIC 

A. Routing Service Architecture 

In this section, we discuss the architecture of the plug-in 

family developed for Fabric’s routing prediction mechanism 

and how different extensions collect metrics from the 

network during its operation to support the decision 

mechanism. Figure 2 gives an overview of the adaptive 
Forecast Routing service architecture for Fabric. The node 

availability metric is already provided in Fabric Registry by 

the Discovery Service, however, we had to im- plement 

message plug-ins to measure link quality as well as 

generated and relayed traffic. Three message plug-ins have 

been prototyped for measuring link packet drop rates and 

message traffic load. An outgoing message plug-in at the 

transmitting node inserted messages sequence numbers 

related to a node pair, while an incoming message plug-in at 

the receiving node checks the sequence number to verify 

whether any messages have been lost from that link. The 
message plug-in system of Fabric permits piggyback 

information on messages as an extension without modifying 

the underlying feed subscription service. A third message 

plug-in monitors a node’s local publish/subscribe bus for 

feed messages and counts them per time unit to quantify 

traffic of the node. Message plug-ins are expected to be 

short-lived and avoid use of external resources such as hard-

disk writes or network communication as this would have a 

performance impact on the number of messages a node can 

process. Thus, message plug-ins write information extracted 

from messages to a Fablet that is running alongside the 

Fabric Manager on the node. Fablets, being separate threads, 
have their own execution flow control and memory storage. 

They collect information posted by local message plug-ins 

and use it to update the forecasting models they maintain. 

The link quality and traffic load fore- casting models in the 

Fablet periodically update the distributed Fabric Registry 

with new values for monitored attributes. Although the 

forecasting model incorporates information from all samples 

collected throughout a system’s lifetime, it is relatively 

small in size – in the order of a few kilobytes. As a result, it 

can be serialised and stored in the Registry in a binary 

format. Updating forecasting models locally, rather than 
close to the Registry, significantly reduces the 

communication overhead, compared to propagating 

observations to a sink to perform forecasting model update 

outside the network. The Routing Service pulls forecasting 

models from Fabric Registry to update its routing paths. 

After the forecasting phase of the algorithm, it updates the 

subscription routes table in the Registry used by nodes when 

they need to deploy new subscriptions. 

B. Forecasting Mechanism 

Forecasting models are produced from collected perfor- 

mance metrics to create two network models – the link 

quality and the traffic load graphs of the network projected 

to a future period in time. We build three forecasting models 

for different aspects of the network. The first model caters 

for recurring isolation of nodes in their neighbourhood. The 

second forecast model considers the packet drop rates 

between node links. Finally, a  forecast  model  is used  for  

predicting  the  traffic volume that a sensor feed requires. 

We consider these metrics as a time-series and we use a fit- 

ting model that describes their behaviour. We have selected 

the Holt-Winter Additive Seasonal model that is able to 

capture trend as well as periodic effects in time-series. Holt-

Winter applies exponentially decreasing weights on the 

historical data to update the model. It decomposes the time-

series in three components; 

the level St, local trend bt 

and the periodic factor It. 
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Each of these components are updated incrementally 

(online) using exponential smoothing. Forecasts in the 

model are calculated as a linear combination of the 

aforementioned components as shown in equation 1, where t 

is the current time instance, m is the units in the future for 

the prediction and L is the period of the time-series. 

Ft+m  = St + bt ∗ m + It+m−L (1) 

We use the IBM Watson Forecasting library (WatFore) to 

construct and manage the forecasting models. The WatFore 

library provides a fully automated, extensible and scalable 

streaming predictive analytics framework that is suitable for 

monitoring any type of Key Performance Indicators (KPIs). 

It implements a number of streaming algorithms (including 

the Holt-Winters Additive Seasonal) that do not require 

permanent storage of historical performance measurements, 

thus bound- ing memory requirements for maintaining and 

using forecast- ing models. This is particularly important in 

our application domain, as sensor platforms cannot be 

assumed to have large storage capabilities solely for 

performance monitoring pur- poses. Furthermore, the 

incremental updates to the forecasting models with newly 

obtained measurements from continuous monitoring 

minimizes the processing requirements for keeping the 

models up to speed, imposing only marginal overhead to the 

sensor platform. The library also provides methods for 

calculating the periodicity of the performance metric using 

Fourier analysis, and automatic training of the forecasting 

models once enough data measurements have been 

collected. 

IV. EVALUATION 

For the evaluation of the forecasting effectiveness on route 

selection we emulated network scenarios that we consider fit 

well with  expected  periodic  failure error  classes  in  

sensor networks. We initially evaluated the effectiveness of 

the al- gorithm for coping with node reachability and link 

failures, then considered congestion effects in high-traffic 

networks. In all scenarios, we use a grid layout, where nodes 

can directly communicate only with its immediate 

neighbours. Hence, most nodes can send messages directly 

to 8 neighbours while nodes at the corners are limited to 3-5 

neighbours, depending on their position. Feed subscriptions, 

as in the ITA Sensor Fabric framework, may originate from 

any point of the network. Hence, there is no single sink in 

the network, but there are multiple subscribers that consume 

data from producers. Subscribers may be terminal recipients 

or in turn produce new data, after processing their input 

feeds,  which  are  in  turn  consumed by other nodes. This 

creates an open environment in which information does not 

have a single flow among nodes. We randomly generate 

feed subscription in the simulated network set-ups that are 

examined in this section. We compare three routing 

approaches in the simulations. The first one is the static 

paths that are currently implemented in the ITA Sensor 

Fabric framework. This is a na¨ıve approach that provides a 

lower bound of network performance – an indication of the 

impact of failures in the network, as it is unable to respond 

to them. The second approach is dynamic adaptation of 

routes based on the metrics discussed in the paper. However, 

instead of forecasting future values, route adaptations is 

based on recent observations. Essentially, this approach 

performs adaptation based on current network status. 

Finally, we make use of future predictions of metric values, 

by projecting from historic data using the Holt-Winter 

additive model provided by the IBM WatFore library, to 

dynamically adapt routes in Fabric Registry. 

A. Periodic Node Communication Failures 

We first study the accuracy of forecasting fail-stop commu- 

nication link failures inside the network. We emulate a 5 × 5 

network grid where 26 subscription are placed among nodes 

randomly. Sensor feeds produce data regularly in random 

intervals between 1 to 10sec. In every run, 8 nodes, roughly 

1/3 of the population, experience periodic failures that cause 

them to be isolated from their neighbourhood  for  random 

time intervals. Failure times and duration are selected from 

the range 10 to 50sec, with  an  average  close  to  20sec. For 

this particular scenario, we assume that links between nodes 

are ideal and do not drop packets  due  to  noise,  in order to 

study only the effects of node disappearance. We emulate 

the scenario running Fabric on desktop machines where 

different nodes run in separate virtual machines and we 

emulate communication failures by editing linux iptables to 

add rules that drop packets from certain nodes in order to 

isolate them. Figure 3a shows the overall packet delivery 

rate achieved in the network, as an average of several 

experiments, with three different approaches mentioned 

earlier; static routes (SR), adaptive historic routes (HR) and 

adaptive forecasting routes (FR). The static routing achieves 

a 74% packet delivery rate, which we consider as the lower 

bound because there is no effort to adapt to node failures. 

The dynamic selection of routes based on recent historic 

observations improves the rate close to 85% while 

forecasting outperforms both, reaching a 95% packet 

delivery rate. Even though HR is able to adapt to nodes that 

have a longer uptime phase based on recent observation, its 

decisions quickly become outdated. However, FR by 

projecting these values in the future achieves better 

adaptation of the routing schemes as it is able to predict 

which nodes are going to be available in the next rounds. As 

shown in figure 3a, the FR method exhibits, initially, similar 

performance with SR. The dive in the graph is due to the 

training phase that is required by the Holt-Winter model 

in order to start producing predictions. As soon as the model 

is trained and routes are adapting, a sharp increase at the 

delivery rate is presented. Furthermore, as the model 

continues to collect feedback from the network, it further 

improves its forecasting ability until it converges at 95% 

packet delivery. It should be noted that a portion of the 

failed messages are due to destination nodes, instead of 

intermediates, that have failed. In that case, there is no 

alternative delivery path, but the messages are still counted 

as undelivered. Figure 3b presents results from a similar set-

up, however nodes do not have stable down/up-time periods. 

Instead their periods follow a Gaussian distribution with a 

random average value in the range of 10 to 50sec, as before, 

and σ value 2. Static routing is mostly unaffected from this 

change as it was expected. Average node downtime is not 

changing in the experiment, only the fixed periodicity that 

nodes disappear mobile 

networks, where patrolling 

nodes may occasionally 
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come into contact with stationary nodes. Delivery rate of 

forecasting routing is affected by the introduced irregularity 

in node disappearance, though still remains high around 

90%. The irregularity appears to also affect the routing 

based on recent observations, but not by a significant 

proportion (2%) to affect any change in the approach’s 

performance. 

 

B. Node Link Reliability 

The second network aspect we study is link quality between 

nodes. During the lifetime of a deployed network we have 

noticed that links may exhibit recurring, periodic issues with 

delivery rates. This was typically due to moving obstacles 

that interfered with the signal, such as environmental 

inhabitants that have a certain routine, or connectivity can 

be affected by mobile nodes with a periodic movement 

pattern, even though they remain in theoretical 

communication range. In order to address such repetitive 

adjustments on link quality, we apply the forecasting model 

on  message  drop rates of links in the network and study its 

effectiveness in this section. We use Castalia [4] as a 

simulation environment. Castalia is built on top of 

Omnet++3 and provides realistic link quality behaviour in a 

sensor network based on traffic, signal interference, node 

distance and noise in the wireless medium. 
3http://www.omnetpp.org/ 

Fig. 3.   Average Message Delivery Rate on Periodic 

Node Disappearance 

To introduce the periodic fluctuation on the link quality, we 

modify the underlying connectivity map during the 

simulation. We study how feed subscription delivery rates 

are affected and how effective is dynamic forecasting in 

such situations. Figure 4 illustrates the performance of each 

approach when link quality varies periodically over time. 

The graph presents averages for every ten rounds and the 

variance is illustrated as the y-axis error bars. SR is, again, 

the reference line of network degradation reaches an average 

message delivery rate slightly above 50%. HR does improve 

the na¨ıve, static approach but on average it does not reach 

70% message delivery rates. FR performs best in this case as 

well. After an initial training phase, of roughly 20 rounds, it 

increases the delivery rate slightly below 90%. 

C. Traffic Load and Congestion 

Exclusive use of best quality paths in the network may result 

in over-utilisation of nodes causing packet congestion in 

their network buffers. Congestion can be caused either in 

incoming buffers, when a node is not able to process 

receiving packets  fast  enough,  or  in  the  outgoing  

buffers,  when  the medium is very busy for transmission 

and packets get queued. Castalia emulates MAC and 

physical layer buffers and we study the behaviour of our 

forecasting approach under heavy traffic. We compare the 

approach from previous paragraphs, which ignores traffic 

load on nodes, with the the traffic-aware penalisation 

scheme that was introduced in section III-B. 

Fig. 4.   Packet Delivery Rate over Periodically 

Unreliable Links 

We run an experiment, where nodes generate random 

medium-level traffic and there are four events during the 

simulation that cause group of nodes in the network to 

generate increased traffic. Each event produces different 

volumes of traffic. The resulting delivery rates for this 

experiment are presented in figure 5. Figure 5a shows the 

routing behaviour in an ideal network, where links have no 
drop-rates apart from those in congested buffers. We ran the 

experiment in an ideal network in order to solely observe the 

impact of congestion and quantify the benefit of 

systematically attempting to avoid overloading nodes with 

excessive traffic. The four events that cause increased traffic 

can be easily observed in the graph as delivery rates fall 

sharply for the traffic-unaware scheme. On the other hand, 

the heavy traffic load penalisation scheme learns over time 

to spread traffic through different routes in the network grid 

avoiding packets due to congestion. It should be noted that 

even in an ideal network there are packet drops without 
heavy traffic. Such drops can be attributed to the half- 

duplex radio used in the simulation, where packets are lost 

on a node when the radio is 

in the transmission state. 

Figure 5b presents the 
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results of the same experiment that runs on  a realistic  

network,  where links  drop packets  due to noise similar to 

the set-up used in section V-B. Overall, packet delivery rates 
are lower and their variance is increased for both cases.  

However, the  trends remain  similar, where the congestion-

prevention scheme performs better during high- traffic 

events, but the gap between the two approaches is less. This 

can be explained as a side-effect of the noisy links that 

reduce the amount of received packets; hence the effects of 

buffer congestion are decreased. 

Fig. 5.   Average Delivery Rate on Periodic Node 

Disappearance 

VI. RELATED WORK 

There are several approaches in the literature for increasing 

network reliability for message delivery rates, some 

incorpo- rated in network management frameworks similar 

to Fabric. MANNA [5] and Sympathy [6] are examples of 

management systems that monitors nodes collecting metrics 

centrally for analysis. In [7] a fault management service for 

MANNA is described, where nodes report measurements to 

local managers that are subsequently propagated to a sink. 
Both systems make decisions on networks health based on 

recent observations. Neighbourhood collaboration is utilised 

in [8] for detection of missing neighbours, where a protocol 

runs in two phases. Nodes monitor which neighbours they 

believe are alive in the first phase by exchanging hello 

messages. In the second phase the neighbourhood exchange 

their local observations of missing nodes and reach a local 

consensus before they trigger a failure alert at the sink. 

RedFlag [9] improves on that original algorithm, adopting 

some of its ideas. It requires clock synchronisation between 

nodes in order to begin a handshake round with their 

neighbours and verify their existence. If a neighbour misses 
a configurable number of handshakes then a neighbourhood 

consensus protocol takes place between nodes on whether 

the node has failed. Each node tracks information about 

their neighbours link quality and residual energy to infer 

whether a failure is due to a broken link or power depletion. 

The collection tree protocol (CTP) [10] is an efficient data 

collection protocol for multi-hop sensor networks. It is 

based on two main ideas for improving message delivery 

rates and reduce imposed overheads. A datapath validation 

mechanism avoids looping of messages among nodes that 

are formed due to dynamic link health changes and adaptive 

node beaconing that reduced beacon messages of nodes with 
healthy links to conserve energy, but increases the rate when 

links start losing packets.  A backpressure collection 

protocol [11] improves delivery rates of CTP for dynamic 

environments with moving sinks. However, both protocols 

target datagram packet routing and they do not account for 

recurring patterns on failures and traffic. Memento [12] is a 

service deployed inside the network looking for fail-stop 

node failures. It is based on a heart-beat mechanism that will 

tag a sensor failed after missing a number of consecutive 

heart-beats. It also introduces a variance-bound mechanism 

that can put an upper bound on false positives. Our approach 
on detecting missing neighbours is similar, as nodes 

periodically exchange heart-beat message to verify their 

proximity and they have a certain threshold of failed 

attempts before they consider a neighbour lost. Regarding 

detection of missing packets, Silberstein et al. [13] discuss 

how they cope with failures in a system that suppresses 

updates of new values unless they exceed a pre- defined 

threshold. They compare several schemes including 

application level ACK messages, sequence numbers and 

hints of previous, possibly lost values. They, further, use a 

Bayesian approach at the sink to infer missing values using 
models learned from the data instead of interpolating. 

Detection of dropped and missing packets is a concern of 

network protocols in most sensor dissemination protocols. 

Use of NACK messages has been used in PSFQ [14] and 

GARUDA [15] for detecting missing packets, however they 

require an indefinite amount of packets stored in 

intermediate nodes. For streaming applications, delay or 

lack of traffic is considered as a symptom of fault in the 

network [6], [16]. We chose to follow a less taxing approach 

of counting sequence numbers, even though the method has 

disadvantages that have been discussed in previous sections. 

However, the use of confidence factor on link quality 
compensates to some extent for their weaknesses. Link 

quality can be measured by the ratio of undamaged received 

packets. Passively monitoring the link quality using 

snooping has been used in [17] by tracking link layer 

sequence numbers. Congestion levels can be monitored 

using buffer occupancy levels [18] or channel loading [19].  

However, monitoring link quality and channel loading 

requires the radio to operate constantly in listening mode, 

thus consuming high levels of energy. Snooping has also 

been used in Snif [20] that operates as a secondary system 

with its own dedicated wireless channel, deployed on the 
side of to the normal sensor network for monitoring 

purposes. Other forecasting 

approaches in the literature 

are focusing on predicting 



Self-Adaptive Routing in Multi-Hop Sensor Networks 

104 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: D2375094414/2014©BEIESP 

link availability based on node movement [21] in mobile 

networks. In [22] the authors attempt to introduce the 

lifetime expectancy prediction for nodes in the routing 
selection to maximise network’s operating time apart from 

minimising packet hop-count. Furthermore, a predictive 

model for minimising transmission time in networks based 

on cross- traffic estimations has been introduced in [23]. 

Finally, in [24], a time-series model is proposed for 

predicting link quality in the network based on RSSI and 

LQI metrics based on a weighted average of past and 

present observations. 

VII. CONCLUSION 

We have presented a dynamic routing service based on 

forecasting network attributes, which is integrated in the 

ITA Sensor Fabric middleware. Forecasting trends of the 

network allows pro-active adaptation of routing paths for 

long run- ning subscriptions, avoiding recurring network 

degradation. We assume the existence of a more reliable, 

low-traffic, secondary channel that the nodes can use to 

communicate with a distributed database, the Fabric 

Registry, in order for nodes to update network statistics for 

the main, high-traffic network channel carrying subscribed 
messages to be relayed to consumers. We, further, 

demonstrated the effectiveness of forecasting of periodic 

failures, compared to adaptation based on recent his- tory 

observations. The Holt-Winter’s model used for predicting 

network attributes is able to distinguish different periods in 

the input enabling effective estimation on future node 

connectivity. 
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