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Neural Network Applications in a   

Power Station 

T. K Sai, K. A. Reddy 

Abstract--The integration of Soft Computing  techniques in 

traditional real-time systems  is a promising approach to cope 

with the growing complexity of real-world applications. A  power 

station is a complicated multivariable controlled plant, which 

consists of boiler,  turbine, generator, power network and loads. 

The demands being placed on Control & Instrumentation 

engineers include economic optimization, practical methods for 

adaptive and learning control, software tools that place state-of-

art methods . As a result, Neural network applications  are 

explored in   Measurement and Control. In real time systems, 

Information plays a vital role for the efficient operation and 

maintenance in a power station. However there are limitations on 

making available information online due to instrumentation 

limitation, hazardous environment condition etc. The Furnace 

Exit Gas Temperature  (FEGT) is an important  design and  

operating  parameter. The furnace of a boiler is such a zone 

where online measurement of temperature is difficult  because 

of high temperature and adverse conditions. Considering the 

complexity of power plant operating condition and number of 

parameters involved, the best solution to this problem lies in 

adopting the Neural Networks to measure  FEGT in a 500 MW 

Thermal Power Plant.  Also, Steam temperature Control is one of 

the most challenging control loops in a power plant boiler 

because it is highly nonlinear and has a long dead time and time 

lag. . The Superheated temperature is to be controlled by 

adjusting the flow of spray water to within +/- 10 deg C during 

transient states and +/- 5 deg C at the steady state. A neural 

network based Model Predictive Control ( MPC ) is proposed in 

this paper 

 

Index Terms-- Neural Networks, Boiler, Superheater 

temperature, Furnace exit gas temperature, Measurement 

Control, Power Plant 

I. INTRODUCTION 

The  Power station considered in this paper  is a Fossil fired 

500 MW Power Station. Boiler is a very important 

component of steam power plant. It costs roughly 30% of 

total cost of power plant Boiler is a composition of 

combustion and heat transfer zones. The heat transfer inside 

the furnace basically takes place by radiation and 

convection. The portion of the furnace directly exposed to 

the flame receives heat by radiation and all other sections 

receive heat by convection. The imaginary plane, which 

separates these two sections, is called Furnace Exit Gas 

Plane.  
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Basically, the furnace exit point separates the radiation zone 

from the convection pass . The temperature in this plane is 

known as furnace exit gas temperature (FEGT) which 

cannot be measured directly due to high temperature and 

adverse condition. However temperature at the economizer 

outlet is available online, and it is possible to back-calculate 

this temperature using heat balance through various heat 

exchangers in the backward path up to the furnace exit zone 

and know the value of the FEGT. Considering the 

complexity of power plant operating condition and number 

of parameter involved, the best solution to this problem lies 

in adopting the AI method. Neural network  techniques  has 

been considered as an useful tool in the area of nonlinear 

parameter estimation. The design value of FEGT is  in the 

range from 1200 deg c to 1400 deg c. FEGT provides a 

direct indication of the heat transfer to the furnace water 

walls at a particular load condition, and sets expectations for 

performance of the superheat and re-heat processes. If the 

FEGT is too high, residual fly ash will fuse to the pendants 

and tubes forming slag reducing the heat exchange 

efficiency to the tube walls. This can lead to increased soot 

blowing operations, tube corrosion, reduced load operation, 

and possible safety issues. A low FEGT value may indicate 

excessive radiative losses to the water walls or an 

incomplete combustion process resulting in lost efficiency. 

By online measuring and controlling  the FEGT, operators 

can balance and optimize their combustion process and 

safeguard the boiler furnace. 

II. CONVENTIONAL METHODS OF FEGT 

MEASUREMENT 

A. Contact type Retractable HVT 

If an accurate kinetic flue gas temperature in a furnace is 

required, the most common practice has been to draw a 

sample of gas through a ceramic radiation shield and across 

a thermocouple junction in a suction pyrometer (also known 

as a high velocity thermocouple or HVT probe). In theory, 

this method should provide a reliable and accurate 

temperature measurement. However, in practice, the 

response time of the instrument is long and in pulverized 

coal-fired furnaces the blockage from ash and damage to the 

shield from thermal shock poses significant problems. 

B. Non Contact Type 

The difficulties and limitations of contact measurement 

methods have encouraged the development and application 

of various non-contact techniques to obtain furnace gas 

temperature measurements on a real-time basis. Most of 

these techniques have been based 

upon measuring the thermal 

radiation emitted from the gas or 

ash particles suspended in it. 
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 C. Practical limitations of FEGT measurement 

Sonic detection systems are quite expensive to install and 

their accuracy can be adversely affected by the noise of the 

soot-blower operation and any other steam or gas leakages. 

Contact-type thermocouples are not as accurate as non-

contact infrared temperature sensing due to the lack of 

penetration of the thermowell, which is typically only 2' to 

3' long. Consequently, the temperatures measured are the 

areas along the boiler walls, which are generally cooler than 

the center of the boiler, which is the desirable measurement 

zone. In addition, in coal fired boilers the thermowells 

accumulate  soot and ash buildup thereby insulating the 

thermowell tube. This indicates a much lower operating 

temperature reading inside of the boiler or waste incinerator 

than the actual temperature, causing concern of burnout of 

the refractory and boiler tubes. Calculation from data points 

starting at the final gas-exit point, the economizer, and 

working back, using steam and water temperatures along the 

way involves too great a potential for error. Hence the 

continuous on-line measurement of FEGT enables the 

operators to monitor furnace trends and to react to 

undesirable conditions. For example, ash accumulation on 

the lower furnace walls can be reduced by initiating cleaning 

operations only when and as needed. This helps to avoid 

unnecessary tube erosion resulting from excessive cleaning 

operations and at the same time maintain the desired FEGT. 

III. NEURAL NETWORKS FOR FEGT 

MEASUREMENT 

NN architecture mimics the learning process of human 

brain. The basic architecture of  NN involves interconnected 

neurons, which are defined in three distinct categories: input 

layer neurons, output layer neurons and hidden layer 

neurons as shown in Figure 1. 

 

 

Figure 1 The Schematic diagram of a feed forward-back 

propagation network 

The important parameters selected at the input of the neural 

network are those parameters which are having maximum 

influence on FEGT, are as listed below. 

1. Feed Water Flow 

2. Coal Flow 

3. Air Flow 

4. Secondary Air Temperature 

5. Primary air flow to Coal flow ratio 

6. 02% 

7. Burner Till Position  

8. Mill Combination in service 

9. Cleanliness Factor 

The input data are presented through input layer neurons and 

the response of the input data is presented at output layer 

neurons. Neurons are connected by scalar functions known 

as weights that take part in the learning process of networks. 

In back propagation algorithm, which is widely used in 

training of NNs, a series of input and output data is 

presented to the system. Each hidden layer neuron and 

output layer neuron process this input data by multiplying its 

corresponding weights, and using a transfer function. Neural 

networks operate by recognizing and accounting for 

relationships among several input variables in an effort to 

correctly predict an output variable. The input variables are 

multiplied by a "weight", added to other variable-weight 

products and sent through an activation function (the 

hyperbolic tangent, logistic, and Gaussian distribution are 

examples). This new value is then multiplied by a second 

weight and the process repeated for as many layers as the 

network designer has used . For error back-propagation 

networks, the predicted output variable is compared to the 

actual value and the difference is then accounted for and 

distributed back through the weighted connections with each 

weight adjusted accordingly[11,15]. The FEGT is derived 

from the weights and biases of the trained feed forward back 

propagation neural network[8,9,11]. Weights and biases of 

all layers of neurons were combined with transfer functions 

of NN model to achieve an NN equation pattern as the 

following steps[11,19,20,21,22,23,24]. Results The learning 

of the network is carried out through adjusting the weights 

by continuous iterations and minimizing the error  between 

the measured analyser value and ANN model predicted 

response [3].The 9 input layer nodes with the 1st bias node 

connected to 10 nodes of hidden layer. Thus, there are 90 

values of weights and 10 values of biases on the layers 

between input and hidden layer. On the hidden layer, the 

„tansig‟ transfer function is used to calculate the sum of the 

90 weighted inputs (Wi,j) and the 10 biases (bt j). The sum 

of weights and biases in hidden layer is displayed on Eq. (1). 

Zj = f t(Wi,j Xi + btj ), i = 1,2,3,4,5,6,7,8,9 j = 1,2,3,…,10 

(1) 

where, Zj is the 10 outputs of hidden layer 

f t is the „tansig‟ transfer function of hidden layer 

Wi,j is the weights from input layer i to hidden layer j 

Xi is the 9 inputs of input layer 

btj is the 10 biases of hidden layer 

The 10 nodes of hidden layer connected to one node of 

output layer. It means the layers between hidden layer and 

output layer have 10 values of weights rows and one value 

of bias. On the output layer, the „purelin‟ transfer function is 

used to calculate the sum of the 10 weighted inputs (Wj) and 

one bias (bp).The sum of weights and bias in output layer is 

displayed on Eq. (2). 

Y = f p(Wj Zj + bp ), j = 1,2,3,…,10 (2) 

where, Y is the output – FEGT estimation 

f p is the „purelin‟ transfer function of output layer 

Wj is the weights from hidden layer j to output layer 

Zj is the 10 inputs of hidden 

layer 

bp is the bias of output layer 
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Neural network training is made more efficient if certain 

pre-processing steps are performed on training data set. The 

input data to be applied to network and the target data for 

training and testing is to be normalized in the range of the 

activation function. It is also to be seen that the normalized 

values of input and target data samples do not fall in the 

saturation regions of the activation function characteristic 

curve to avoid unrealistic network response. Hence all data 

samples are normalized in the range of-0.9 to +0.9 as the 

range of tan-sigmoid activation function is from -1 to +l. In 

this case the target value is measured with HVT probe.  

 

 
As shown in figure 2 there are 9 inputs and 1 output. The 

measured and predicted FEGT shown in Figure 3 indicates 

that the trained network is performing reasonably good in 

prediction. 

 

 

Figure 3. Sample Measured versus predicted FEGT 

IV. NEURAL NETWORKS FOR SUPERHEATER 

TEMPERATURE CONTROL 

Proper control of Superheated steam temperature is 

extremely important  as  high temperature  can damage the 

superheater or high pressure turbine and  low temperature 

will reduce the efficiency of power plant. 

Thus for economical operation: 

[1] It is important to maintain rated main steam 

temperature and pressure and reheat steam temperature 

within extremely close limits for higher cycle 

efficiency and avoidance of overstresses.  

[2] The rate of change in steam temperature should be 

within the limits imposed by thermal stresses.  

[3] The use of spray water should be minimized.  

4.1 Conventional Superheater temperature control 

The conventional superheater( SH) temperature control loop 

is shown in figure 4. The Main Steam ( MS ) temperature is 

influenced by three variables, namely Main Steam flow, 

Heat input and Drum pressure. To control the MS 

temperature as per the setpoint value, the inlet steam 

temperature is modulated by changes in spray water. As the 

dynamic response of superheated steam temperature to the 

inlet steam temperature is very sluggish, the control system 

will set into oscillations if the MS temperature is controlled 

directly by spray water flow. Hence a Cascade Control is 

envisaged. The Master controller ( MC ) has the set point 

value for the final superheated steam temperature and sets 

the required superheater inlet steam temperature to the Slave 

controller ( SC). The SC responds to this and the disturbance 

of inlet steam temperatures and modulates the spray water 

flow rates. The general layout of Cascaded Steam 

temperature control loop is shown in Figure I.  The Slave 

controller ( TC2 ) reduces the intensity of effects of these 

disturbances on the final superheater steam temperature. The 

process under the control of Slave controller consist of 

control valve, Desuperheater and Temperature Sensor. The 

overall order of this system is third order which can be 

controlled by a PI control configurations. The Master 

controller ( TC 1 ) is of sixth order and hence a PID 

configuration is used. Conventional Proportional-Integral-

Derivative (PID) based controllers were used to control the 

spray vales that regulate the injection of water into the steam 

header. The control is difficult because there is a significant 

dead time between the addition of the spray water and the 

effect on steam temperature. This problem is compounded 

because the system response changes as the MW load on the 

turbine is changed and the boiler-firing rate is adjusted to 

produce the required steam flow. 

 

Figure 4.Conventional SH temperature control loop 
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4.2 Predictive Control  

Predictive control is becoming a valuable control strategy 

for higher control requirements i.e., tighter, faster regulation 

or tracking in the industrial world. Using predictive control, 

a process is regulated by specifying the desired plant output 

at a particular instance or instances in the future. Then the 

controller action, which minimises the predicted error  is 

calculated. As MPC relies of the prediction of the controlled 

variable, a model of the process is compulsory.With the 

increasing interest to Artificial Neural Networks (ANN) as a 

modelling tool for  industrial processes, the concept of ANN 

models used with MPC appeared. Artificial neural networks 

(ANNs) as a process model for control purposes conceive 

the following superiority points as compared with other 

conventional modeling methods: 

(1) Models derived from first principles are usually difficult 

and/or costly to develop for processes that are not well 

understood or very complex. Additionally, to evaluate 

model parameters and to make models concise enough for 

online execution, assumptions and simplifications are 

inevitable and compromise model accuracy. 

(2) ANNs provide a general approach for extracting process 

dynamics from input-output data only. Their learning ability 

makes them versatile and friendly for practical applications. 

In addition to their great power for approximating complex 

functionality, the compact form and high speed of 

information retrieval make ANNs very suitable for online 

use. 

Model Predictive Control (MPC) is widely adopted in 

industry as an effective means to deal with large 

multivariable constrained control problems. The main idea 

of MPC is to choose the control action by repeatedly solving 

on line an optimal control problem. This aims at minimizing 

a performance criterion over a future horizon, possibly 

subject to constraints on the manipulated inputs and outputs, 

where the future behavior is computed according to a model 

of the plant . The general principle of predictive control can 

be explained as “At each consecutive sampling instant k, the 

control inputs u(k) = u(k|k), u(k +1|k), . . . , u(k + Nu −1|k) 

are calculated, assuming u(k + p|k) = u(k + Nu −1|k) for p 

≥Nu, where Nu is the control horizon. The applied notation 

„u(k + p|k)‟ means the prediction of the control input value 

for the future time k + p, performed at the time k. The 

control inputs are calculated in such a way as to minimize 

differences between the predicted controlled outputs y(k + 

p|k) and the foreseen set points for these outputs y
sp

(k+p|k) 

over the prediction horizon N (p = 1, 2, . . .,N). Then, only 

the first element u(k|k) of the calculated sequence is applied 

to the process, i.e., u(k) = u(k|k). At the next sample (k + 1), 

there occurs a new measurement of the process outputs and 

the whole procedure is repeated, with the prediction horizon 

of the same length N, but shifted by one step forward”. This 

principle is presented in Figure  5 and 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Concept of predictive control 
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Figure 6. MPC principle 

 

4.3 MPC strategy 

An MPC strategy can be implemented using either an 

identified input-output model or a physical state-space 

model based on first principles. But, getting a physical 

model involves complicated computations and total 

dynamics of sub-systems cannot be incorporated, as it will 

increase the order of the system. . Hence, it is important to 

construct a data-based model for the power plant. This 

would give a system behaviour close to the actual plant 

behaviour with a model of complexity much less than the 

actual physical model. Figure 7 shows a typical set up of a 

MPC in a power plant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Typical MPC in a Power Plant 

P-steam pressure 

TSH- superheater steam temperature  

TRH- reheater steam temperature 

αSH- superheater spray valve opening  

*- Predicted values 

U1 to U4 control inputs 

4.4 Data collection 

Extensive data from an actual plant was taken from two 

thermal power plants of 200 MW and 500 MW units. Dates 

for data collection are chosen based on 10% variation from 

normal value. For 500 MW units the duration was 15 

seconds and 5760 sets of data per day were collected and 

total number of days was 8. For 200 MW units the duration 

was 60 seconds and 1440 sets of data per day were collected 

and total number of days was 7. A sample data sheet for 

stage I and II units is given in Appendix IV and V 

respectively. An Artificial Neural Network (ANN) is used to 

model the complete boiler. An ANN is trained with the help 

of measured data from the boiler process and then is used in 

a control system. It is also possible to train the ANN online 

and update the parameters continuously to keep the 

performance within some quality measure. Creating an 

ANN is nothing but a nonlinear system identification 

process, resulting in a nonlinear model. Schematic of NN 

predictive controller is given in figure 8. 

 
 

Figure 8. ANN predictive control structure 
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INPUTS: MS Temperature, MS pressure, drum level, Feed 

Water Flow Rate, Fuel Flow Rate, Attemperator Spray Flow 

Rates, Flue Gas Temperatures, Air Flow, Excess Oxygen, 

Furnace Pressure 

OUTPUTS: Main Steam Temperature 

The FFNet uses a supervised learning algorithm besides the 

input pattern; the neural net also needs to know to what 

category the pattern belongs. Learning proceeds as follows: 

a pattern is presented at the inputs. The pattern will be 

transformed in its passage through the layers of the network 

until it reaches the output layer. The units in the output layer 

all belong to a different category. The outputs of the 

network as they are now are compared with the outputs as 

they ideally would have been if this pattern were correctly 

classified: in the latter case the unit with the correct category 

would have had the largest output value and the output 

values of the other output units would have been very small. 

On the basis of this comparison all the connection weights 

are modified a little bit to guarantee that, the next time this 

same pattern is presented at the inputs, the value of the 

output unit that corresponds with the correct category is a 

little bit higher than it is now and that, at the same time, the 

output values of all the other incorrect outputs are a little bit 

lower than they are now. (The differences between the 

actual outputs and the idealized outputs are propagated back 

from the top layer to lower layers to be used at these layers 

to modify connection weights. This is why the term back 

propagation network is also often used to describe this type 

of neural network. 

4.5 Simulation of ANN: 

Parametric model of the plant is developed using system 

identification toolwith Graphic User Interface (GUI). 

This model is used in the design of ANN predictive 

controller. Figure 9 to 12 show the plants measured and 

predicted model output, error, 5 step ahead prediction and 

step response for stage-II units . 

 

Measured and simulated model output 
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Figure 9. Measured and simulated model output stage-II unit 
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Measured minus simulated model output 
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Figure 10.  Model error stage-II unit 

 

Measured and 5 step predicted output  

 

20 

 

 

10 

 

 

0 

 

 

-10 

 

 

-20 

 

 

-30 

 

 

-40 

 

 

-50 

- 
2000     2500          3000              3500    4000      4500            5000             5500         6000 

 

Time 
 

Figure 11.  Prediction output stage-II unit 
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Step Response 
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Figure 12. Model step response stage-II unit 

 

 

4.6 Results 

The data is taken from an actual plant to provide the 

input/output data for the system. The ANN consists of 

many neurons, which utilize a sigmoid function in each 

hidden layer. There are simulation parameters, which are the 

number of neurons in the hidden layer of the ANN, and 

the number of epochs to train the ANN. Figures 13  to 14 

show results of the simulation  

 

 

Figure 13. Predicted MS Temperature (training) 

 
 

Figure 14.  Predicted MS Temperature  (testing) 

V. CONCLUSION 

The purpose of this paper is to demonstrate the neural 

network applications in a Power Station. The FEGT online 

measurement is derived from Neural Networks. FEGT can 

be used as the primary indicator to establish the scheme for 

automatic soot blowing or to alert the operator to start the 

manual soot-blowing operation.  
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If FEGT exceeds the original design value, this indicates 

that the furnace is dirty and the operator should initiate the 

furnace soot blowing and the soot blowing should be 

stopped when FEGT has been reduced below the original 

design value. The over-blowing in the furnace is wasting the 

energy and can also create soot blower erosion problem in 

the water wall tube. The Superheater temperature control is 

implemented with NN based MPC which is more effective 

and efficient. Hence, the proposed approach makes it 

possible to easily build high-performance tailor-made 

controllers for any specific  control loop in the Power Plant 

thereby optimizing power plant efficiency and cost.  The 

boiler system is a kind of typical nonlinear multivariable 

systems, and so it is known difficult to be controlled. 

Modeling by physical principle is very complex.Hence 

ANN based modeling tool is very handy method of 

improving the control syste. These techniques can be be 

applied to other measurement and control domains of Power 

Station. 
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