
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-5 Issue-1, March 2015

1 Retrieval Number: E1929113513/2015©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Study of 8 Bits Fast Multipliers for Low Power

Applications

Vasudeva G, Cyril Prasanna Raj P

Abstract- High–speed multiplication has always been a

fundamental requirement of high performance processors and

systems. With MOS scaling and technological advances there is a

need for design and development of high speed data path

operators such as adders and multipliers to perform signal

processing operations at very high speed supporting higher data

rates. In Digital signal Processing applications, multiplication is

one of the most utilized arithmetic operations as part of filters,

convolves and transforms processors. It is found in the literature

that improving multipliers design directly benefits the high

performance embedded processors used in consumer and

industrial electronic products. Also significant increase in the bit

length increases the critical path affecting the frequency of

operations. It is also found that the regular structure required for

each processing elements also increases and hence consumes

area and power. Hence there is a need for design and

development of high-speed architectures for N-bit multipliers

supporting high speed and power. In this paper we review the

architecture reported in the literature for multipliers and critical

issues degrading the speed and power. Based on the literature

review suitable modifications are suggested in the design for high

speed and low power multipliers. The multipliers Booth, Wallace

tree and Dadda are implemented and the constraints Area, Power

and Timing are optimized using software resources NC SIM and

VC SIM.

Keywords: DSP, microprocessor, NC SIM, VC SIM

I. INTRODUCTION

Multiplication is a less common operation than addition, but

is still essential for microprocessors, digital signal

processors and graphics engines. Multiplication algorithms

will be used to illustrate methods of designing different cells

so that they fit into a large structure. The most basic form of

multiplication consists of forming the product of two

unsigned binary numbers, simplified to base 2. M x N -bit

multiplication can be viewed as forming N partial products

of M bits each, and then summing the appropriately shifted

partial products to produce on M + N -bit result P. Binary

multiplication is equivalent to a logical AND operation.

Therefore, generating partial product consists of logical

ANDing of the appropriate bits of the multiplier and

multiplicand. Each column of partial products must then be

added and if necessary, any carry values passed to the next

columns. In the 1960's two classes of parallel multipliers

were defined. The first class [6] of parallel multipliers uses a

rectangular array of identical combinational cells to generate

and sum the partial product bits. Multipliers of this type are

called array multipliers. They have a delay that is generally

proportional to the word length of the multiplier input. Due

to the regularity of their structures,

Manuscript Received on February 16, 2015.

Vasudeva G, Asst. Prof., Department of ECE, Rashtreeya Vidyalaya

College of Engineering, Bangalore-56, India.

Dr. Cyril Prasanna Raj P, M.S. Engineering College, Bangalore, India.

array multipliers are carrying to layout and have been

implemented frequently. The second class of parallel

multipliers reduces a matrix of partial product bits to two

words through the strategic application of counters or

compressors. These two words are then summed using a fast

carry-propagate adder to generate the product. This class of

parallel multiplier is known as column compression

multiplier. Since the delay is proportional to the logarithm

of the multiplier, word length, these are also the fastest

multipliers. In array multiplier, the two basic functions of

partial product generation and summation are combined. For

unsigned N X N multiplication, N2+N-1 cells, where N2

contain an AND gate for partial product generation and a

full adder for summing and N-1 cells containing a full adder,

are connected to produce a multiplier. The array generates N

lower product bits directly and uses a carry-propagate adder,

in this case a ripple carry adder, to form the upper N bits of

the product. Column compression multiplier continued to be

studied due to their high speed performance. With total

delays that are proportional to the logarithm of the operand

word length. Column compression multipliers are faster than

array multipliers whose delay grows linearly with operand

word length. According to Thomas Ko Callaway et al. [11]

column compression multipliers are more power efficient

than array multipliers. In 1964, Wallace [12] introduced a

scheme for fast multiplication based on summing the partial

product bits on parallel using a tree of carry save adders

which became generally known as the Wallace tree. Dadda

[13] later refined Wallace's method by defining a counter

placement strategy that required fewer counters in the partial

product reduction stage at the cost of a larger carry-

propagate adder. For both methods, the total delay is

proportional to the logarithm of the operand word-length.

Other partial product reduction methods have been proposed

since the work of Wallace and Dadda. The reduced area [7]

and the Windsor methods are based on strategic utilization

of (3, 2) and (2, 2) counters to improve area and layout,

while maintaining the fast speed of the Wallace and Dadda

designs. In this paper we identify techniques for optimal

computer aided designs of column compression multipliers

by analyzing area, power and timing characteristics with

particular emphasis on low power.

II. DESIGN AND ANALYSIS

The major works in this paper are study of multiplier

architectures for high speed signal processing applications,

identifying the specifications for the multiplier design,

modeling the architecture, functional verification, and

developing the test bench to verify the design for all

possible input combinations.

We also do FPGA

implementation of the proposed

multiplier to meet the

Study of 8 Bits Fast Multipliers for Low Power Applications

2 Retrieval Number: E1929113513/2015©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

specification identified. Synopsys tool flow is used for ASIC

synthesis, physical design and implementation of

multipliers. GDSII Generated and Report prepared.

Following are the technical specification of experimental

work carried out to Design and implement Booth, Wallace,

Dadda Multipliers using 130nm technology.

Input bit width: 8-bit, signed, unsigned, Integer, Decimal

Input arrival: Parallel with 100 Mbytes / sec.

Expected output: 16-bit output, supporting all formats.

Output data rate: 100 Mbytes /sec.

Tech: 130 nm, Lib: TSMC

Power:
10

 watts

Area: 400 sq. mm

The power analysis is the process of calculating the power

consumption of the chip. It also consists of the calculation of

voltage, current drop (IR drop) and electro migration

analysis due to high current density of the metal. Table 1

gives the power consumption of the multipliers.

Table 1. Comparison of Area, power consumption and

Timing

8 bit
Booth

 Multiplier

Wallace

tree

Dadda

Multiplier

Area (μm) 5115.963379 1330.7615 1330.761597

Power(μw) 324.5302 655.5517

655.8073

Timings

(ns)
3.75 1.56 1.56

Area wise, Dadda multiplier consumes less area as

compared to Wallace tree and Booth Multiplier. Power wise,

Booth multiplier consumes less power as compared to

Wallace tree and Dadda multiplier. And delay wise, Wallace

tree has less delay as compared to Booth and Dadda

multiplier. Booth multiplier has maximum number of

ROMs, Macros and BELS. Wallace tree has minimum

number of BELS and Macros compared to Booth and Dadda

multiplier. Also Wallace tree multiplier and Dadda

multiplier have no flip-flops and Booth multiplier has

maximum Flip-flops. The multipliers have been synthesized

setting a constraint on speed to a maximum of 130MHz.

Based on this constraint the Table 2 depicts the synthesis

result. The results clearly indicate the performance of the

multipliers that are compared in the graphs.

Table 2. Design compiler output

8 bit
Booth

Multiplier

Wallace tree

Multiplier

Dadda

Multiplier

Frequency 130MHZ 130MHZ 130MHZ

Number of

ports
38 34 32

Number of Nets 265 302 348

Number of Cells 214 248 266

References 35 5 5

Combinational Area (μm) 1868.8373 1470.7612 1330.7615

Sequential Area (μm) 3247.1262 0.0000 0.0000

Total Cell Area (μm) 5115.96337 1470.7672 1330.7615

Cell internal Power (μw) 303.1691 501.8940 562.0927

Net Switching power (μw) 21.3691 153.6577 153.7151

Total Dynamic Power

(μw)
324.5302 655.5517 655.8073

Cell Leakage Power (μw) 5.6910 5.6263 5.6258

We denote the multiplicand as

Y = (yM-1, yM-2. . . y1, y0) (1)

and multiplier as

X = (xN-1,xN-2. . . x1,x0) (2)

For unsigned multiplication, the product is given in (3).

222
1

0

1

0

1

0

1

0

))((
ji

j

N

i

M

j
i

i
N

i
i

j
M

j
j

yxxyP

 (3)

There are a number of techniques that can be used to

perform multiplication. In general, the choice is based up on

factors such as latency, throughput, area, and design

complexity. An obvious approach is to use an M+1 – bit

carry propagate adder (CPA) to add the first two partial

products, then another CPA to add the third partial product

to the running sum, and so forth. Such an approach requires

N-1 CPAs and is slow, even if a fast CPA is employed.

More efficient parallel approaches use some sort of array or

tree of full adders to sum the partial products. In the early

1950’s, multiplier performance was significantly improved

with the introduction of Booth multiplier [4] and the

development of faster adders [5] and memory components.

Booth's method and the modified Booth's method do not

require a correction of the product when either (or both) of

the operands is negative for two's complement numbers.

During the 1950's, adders designs moved away from the

slow sequential formation of carried executed by ripple

carry adders carry look ahead, carry select, and conditional

sum adders yielded speedy sums through the faster

simultaneous or parallel generation of carriers. In the 1960's

two classes of parallel multipliers were defined .The first

class [6] of parallel multipliers uses a rectangular array of

identical combinational cells to generate and sum the partial

product bits. Multipliers of this type are called array

multipliers. They have a delay that is generally proportional

to the word length of the multiplier input. Due to the

regularity of their structures, array multipliers are carrying

to layout and have been implemented frequently. The

second class of parallel multipliers reduces a matrix of

partial product bits to two words through the strategic

application of counters or compressors. These two words are

then summed using a fast carry-propagate adder to generate

the product. This class of parallel multiplier is known as

column compression multiplier. These are also the fastest

multipliers because of delay is proportional to the logarithm

of the multiplier and word length.

III. ARRAY MULTIPLIER

In array multiplier, the two basic functions, partial product

generation and summation are combined. For unsigned N by

N multiplication, N2+N-1 cells are connected to produce a

multiplier, where N2 contain an AND gate for partial

product generation, a full adder for summing and N-1 cells

containing a full adder. The array generates N lower product

bits directly and uses a carry-propagate adder, in this case a

ripple carry adder, to form the upper N bits of the product.

Replacing full adder with half adders, possibly reduces the

complexity to N2 AND gates, N half adders, and N(N-2)

full adders as shown in Fig. 1.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-5 Issue-1, March 2015

3 Retrieval Number: E1929113513/2015©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Fig. 1. 4x4 Square array multiplier

This 4x4 multiplier is shown as a square array with

modifications to the first two rows. Since the carry-in bits

and the previous partial products bits are zero for the first

row and the left column, only the AND gates are needed.

With only two switching inputs, the second row employs

half adders instead of full adders. The worst case delay is

(2N-2) c , where c is the adder delay.

In order to design an array multiplier for two's complement

operands, Booth algorithm [8] can be employed. The

Booth's algorithm array multiplier computes the partial

products by examining two multiplicand bits at a time.

Except for enabling usage of two's complement operands,

this Booth's algorithm array multiplier offers no

performance or area advantage in comparison to the basic

array multiplier. Better delays, though can be achieved by

implementing a higher radix modified Booth algorithm.

Another method for building an array multiplier that handles

two's complement operands was presented by Baugh et al.

[9] as shown in Fig. 2. This method increases the maximum

column height by two. This may lead to an additional stage

of partial product reduction, thereby increasing overall

delays. A modified form of the Baugh et al. strategy is more

commonly used because it does not increase the maximum

column height.

0 n 1 0 n 2 0 2 0 1 0 0a b a b a b a b a b- -

n 1 n 2 1 0

n 1 n 2 1 0

a a a a

b b b b. . .
- -

- -

1 n 1a b -

1

1 n 2a b - 1 1 1 0a b a b

2 n 1a b - 2 n 2a b - 2 1a b 2 0a b

n 2 n 1a b- - n 2 n 2a b- - n 2 0a b-

n 1 n 1a b- -
n 1 n 2a b- - n 1 1 n 1 0

a b a b- -

1

2n 1P - 2n 2P - 2n 3P - n 1P + nP n 1P - n 2P - 2P 1P 0P

×

Fig. 2. Two’s complement by modified Baugh-Wooley

method

IV. COLUMN COMPRESSION MULTIPLIER

Column compression multiplier continued to be studied due

to their high speed performance. With total delays that are

proportional to the logarithm of the operand word length,

where as other array multipliers delay grows linearly with

operand word length. According to Thomas Ko Callaway et

al. [11] column compression multipliers are more power

efficient than array multipliers. In 1964, Wallace [12]

introduced a scheme for fast multiplication based on

summing the partial product bits on parallel using a tree of

carry save adders which became generally known as the

Wallace tree. Dadda [13] later refined Wallace's method by

defining a counter placement strategy that required fewer

counters in the partial product reduction stage at the cost of

a larger carry-propagate adder. For both methods, the total

delay is proportional to the logarithm of the operand word-

length. Other partial product reduction methods have been

proposed since the work of Wallace and Dadda. The

reduced area [7] and the Windsor methods are based on

strategic utilization of (3, 2) and (2, 2) counters to improve

area and layout, while maintaining the fast speed of the

Wallace and Dadda designs. This research identifies

techniques for optimal computer aided designs of column

compression multipliers by analyzing area, power and

timing characteristics with particular emphasis on low

power.

V. TOOLS

5.1 Design Compiler and Design Vision

The Synopsys Design compiler (DC) and Design Vision

(DV) comprise a powerful suite of logic synthesis products,

designed to provide an optimal gate-level synthesized net

list based on the design specifications, and timing

constraints.

5.2 Primetime (Static Timing Analysis tool)

Primetime (PT) is the Synopsys sign-off quality, full chip,

and gate level static timing analysis tool. It allows

comprehensive modeling capabilities often required by large

designs. Primetime is faster compared to design compilers

internal static timing analysis engine. It provides enhanced

analysis capabilities to other Synopsys tools, this tool is

based on TCL language, thus providing powerful features of

that language to promote the analysis and debugging of the

design.

5.3 Standard Delay format (SDF) generation

5.3.1 SDF file

The SDF file is used to perform exhaustively throughout the

ASIC world to perform dynamic timing simulations. It

contains timing information of each cell in the design. The

basic timing data comprises of the following.

 IOPATH delay- specifies the cell delay.

 INTERCONNECT delay- specifies point to point

delay.

 SETUP timing check- contains the required setup of

each sequential cell.

 HOLD timing check-

hold time of each

sequential cell.

Study of 8 Bits Fast Multipliers for Low Power Applications

4 Retrieval Number: E1929113513/2015©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

5.3.2 SDF file generation

The SDF file may be generated for pre-layout or post-layout

simulations. The post-layout SDF is generated from DC or

PT, after back annotating the extracted RC delay values and

parasitic capacitances, to DC or PT. The post-layout values

represent the actual delays associated with the design. The

pre-layout numbers contain delay values that are based upon

the wire-load models. It does not contain the clock tree.

Therefore it is necessary to approximate the post-route clock

trees delays while generating the pre-layout SDF. The post-

layout design contains the clock tree information. Therefore

all the steps that were needed to fix the clock latency, skew

and clock transition time, during pre-layout phase are not

required for post-layout SDF file generation.

5.4 DESIGN FOR TEST (DFT)

The design-for-test or DFT techniques are increasingly

gaining momentum among ASIC designers. These

techniques provide measures to test the manufactured device

for quality and coverage.

Types of DFT

The main DFT techniques that are currently in use are

1) Scan insertion

2) Memory BIST insertion

3) Logic BIST insertion

4) Boundary scan insertion

Scan insertion is one of the most widespread DFT

techniques used by design engineers to test the chip for

defects such as stuck-at faults. The scan insertion technique

involves replacing all the flip-flops in the design with

special flops that contain built-in logic, solely for testability.

The most commonly used architecture is the multiplexed

flip-flop. Scan can also be used to test the DUT for any

possible timing violations. The memory BIST is comprised

of controller logic that uses various algorithms to generate

input patterns that are used to exercise the memory elements

of a design. The BIST logic is automatically generated

based upon the size and configuration of the memory

element. It is in the form of synthesizable verilog or VHDL

which is inserted in the RTL source with hookups, leading

to the memory elements. Boundary scan is used for testing

the board connections, without unplugging the chip from the

board.

5.5 Synopsys Technology Library and Delay Calculation

5.5.1 Wire load models

The physical library is a text file and is compiled by LC to

generate a binary format with a “pdb” extension. Synopsys

have provided a useful utility called “lef2pdb” that takes the

standard library Exchange Format(LEF) file and the process

technology file as input and converts it to the “pdb” format

.The wire_load group contains information that DC utilizes

to estimate interconnect wiring delays during the pre layout

phase of the design. Usually several models appropriate to

different sizes of the logic are included in the technology

library. These models define the capacitance, resistance

and area factors. Also the wire_load group specifies slope

and fanout_length for the logic under consideration.

The capacitance, resistance and area factors represent the

wire resistance; the capacitance and area respectively per

unit length of interconnect wire.

The fanout_length attribute specifies values for the length

of the wire associated with the number of fan outs. This may

also contain values for other parameters such as

average_capacitance, standard_deviation and

number_of_nets.

VI. REVIEW OF MULTIPLIERS

6.1 Description of Modified Booth’s Multiplier

Booth’s algorithm is a powerful direct algorithm to perform

signed number multiplication. It involves repeatedly adding

one of two predetermined values A and S to a Product P,

then performing a rightward arithmetic shift on P. Let x and

y be the multiplicand and multiplier respectively. Let x and

y represent the number of bits in x and y.

1) Determine the values of A, S and the initial value of P.

All of these numbers should have a length equal to

x+y+1.

 A: Fill the most significant (leftmost) bits with the

value of x. Fill the remaining (y+1) bits with zeros.

 S: Fill the most significant bits with the value of (-

x) in two’s complement notation. Fill the remaining

(y+1) bits with zeros.

 P: Fill the most significant x bits with zeros. To the

right of this append the value of y. Fill the least

significant (rightmost) bits with a zero

2) Determine the two least significant (rightmost) bits of

P.

 If they are 01, find the value of P+A, ignore any

overflow.

 If they are 10, find the value of P+S, ignore any

overflow.

 If they are 00 or 11, do nothing, use P directly in

the next step

3) Arithmetically shift the value obtained in the previous

step by a single place to the right. Let P now equal to

this new value.

4) Repeat steps 2 and 3 until they have been done y times.

5) Drop the least significant (rightmost) bit from P,

resultant is the product of x and y.

The following example 1 demonstrates the Booth‘s

multiplier algorithm

Example1: Find 3* -4 with x=3 and y=4.

Solution: step 1 A= 0011 0000 0

 S= 1101 0000 0

 P= 0000 1100 0

 Perform the loop 4 times

Step 2: P= 0000 1100 0.The last two bits are 00.

 P= 0000 0110 0.Arithmetic right shift.

Step 3: P= 0000 0110 0.The last two bits are 00.

 P= 0000 0011 0.Arithmetic right shift

Step 4: P=0000 00110. The last two bits are 10

 P= 1101 00110. P=P+S

 P= 1110 10011. Arithmetic right shift

Step 5: P= 1110 10011. The last two bits are 11

 P=1111 0100. Arithmetic right shift

The product is 1111 0100 which is -12.

6.2 Wallace tree Multiplier

In 1964 C.S.Wallace

introduced a scheme for the

multiplication based on

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-5 Issue-1, March 2015

5 Retrieval Number: E1929113513/2015©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

summing the partial product bits in parallel using a tree of

carry save adders which became generally known as the

Wallace tree. This method has a three step process is used to

multiply two numbers.

Step 1: The bit products are formed

Step 2: The bit product matrix is reduced to a two row

matrix by using carry save adders known as

Wallace tree.

Step 3: The remaining two rows are summed using a fast

carry –propagate adder to produce the product.

Though the process seems to be complex it yields

multipliers with delay proportional to the logarithm of the

operand size n. The Wallace tree multiplier belongs to a

family of multipliers called column compression multipliers.

The principle in this family of multipliers is to achieve

partial product accumulated by successively reducing the

number of bits of information in each column using full

adders or half adders. The full adder is known as (3:2)

compressor because of its ability to add three bits from a

single column of the partial product matrix and output two

bits, one bit in the same column and one bit in the next

column of the output matrix. The half adder is known as

(2:2) compressor because of its ability to take two bits from

a single column of the partial product matrix and output two

bits, one bit in the next column of the output matrix. Fig. 3

gives dot diagram of Wallace tree multiplier.

Fig. 3. Dot diagram of Wallace tree multiplier

Example2: 12810 x 12810 (using Wallace tree

multiplication)

 10000000 x 10000000

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 step1

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

 1 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 step2

 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

 1 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 step3

 1 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 step4

 0 0 0 0 0 0 0 0 0 0 0

 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0(16384)10

The Wallace tree consists of numerous levels of such

column compressor structures until finally only two full

width operands remain. These two operands can then be

added using regular 2N-bit adders to obtain the product

result. The difference between the Wallace tree multiplier

from column compression multiplier is that, in the Wallace

tree every possible bit in every column is covered by the

(3:2) or (2:2) Compressors respectively. Until finally the

partial product matrix has a depth of only two. Thus the

Wallace tree multiplier uses as much hardware as possible to

compress the partial product matrix as quickly as possible

into the final product.

6.3 Dadda Multiplier

Dadda refined Wallace’s method by defining a counter

placement strategy that required fewer counters in the partial

product reduction stage at the cost of a larger carry

propagate adder. Dadda has introduced a number of ways to

compress the partial product bits using such a counter which

later became known as Dadda’s Counter. This process is

shown for an 8 by 8 Dadda multiplier in Fig. 4.

Fig. 4. Operation 8X8 bits Dadda Multiplier

An input 8 by 8 matrix of dots (each dot represents a bit

product) is shown as matrix 0.Columns having more than

six dots are reduced by the use of half adders, each half

adder takes in two dots and outputs one in the same column

and one in the next more significant column and full adders,

each full adder takes in three dots and outputs one in the

same column and one in the next more significant column so

that no column in matrix 1 will have more than six dots.

Half adders are shown by a crossed line in the succeeding

matrix and full adders are shown by a line in the succeeding

matrix. In each case the rightmost dot of the pair that is

connected by a line is in the column from which the inputs

were taken from the adder. In the succeeding steps reduction

to matrix two with no more than four dots per column,

matrix three with no more than three dots per column, and

finally matrix four with no more than two dots per column is

performed. The height of the

matrices is determined by

working back from the final

two row matrix and limiting the

Study of 8 Bits Fast Multipliers for Low Power Applications

6 Retrieval Number: E1929113513/2015©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

height of the each matrix to the largest integer that is no

more than 1.5 times the height of its successor. Each matrix

is produced from its predecessor in one adder delay. Since

the number of bits in the words to be multiplied, the delay of

the matrix reduction process that reduces is proportional to

log (n).Since the adder that reduces the final two row matrix

can be implemented as a carry look ahead adder which also

has logarithmic delay, the total delay for this multiplier is

proportional to the logarithm of the word size proportional

to the logarithm of the word size.

VII. COMPARISON BETWEEN 8X8-BIT DADDA

AND WALLACE TREE MULTIPLIERS

1. Wallace tree multiplier uses 38 full adders and 15 half

adders.

2. Dadda multiplier uses 35 full adders and 7 half adders.

3. Wallace tree multiplier requires a carry-propagate adder

of 10 bits wide

4. Dadda multiplier requires a carry propagate adder of 14

bits wide.

5. The other disadvantage of Dadda multiplier is that it is

less regular than the Wallace tree multiplier, making it

more difficult to layout in VLSI design.

Complexities of Multipliers:

The multiplier being one of the major complex arithmetic

building blocks for VLSI design has its own sets of

complexities in terms of area, power, speed, and cost and

design methodology. The tables 2.12 and 2.12(a) below

shows the complexity involved in multiplier design. With bit

width being increased, the number of stages also increases,

and this introduces complexity. Wide bit width is required

for accuracy and high sampling rate. Hence there is a need

for design and development of an IP that can be easily

adopted for any high speed applications by just using the

basic building block of the multiplier design.

Table 3. Number of stages in multipliers

Bitwidth of Multiplier (N) Number of Stages (S)

2 0

3 1

4 2

5 to 6 3

7 to 9 4

10 to 13 5

14 to 19 6

20 to 28 7

29 to 42 8

43 to 63 9

64 to 94 10

Table 4. Comparison of Different Multipliers with area,

speed and power

Multipliers
Delay

(ns)

Area

(µm2)

Power

(mw)

Dadda using carry look

ahead adder
2.56 878 5.65

Dadda using Ripple

carry adder
2.73 853 5.23

Array 8 3.02 979.7 5.16

Wallace 8 2.81 910 5.39

Fig. Comparison of Different Multipliers with area,

speed and power

VIII. COMPARISON OF FPGA AND ASIC

Multiplier Booth Wallace tree Dadda

No. of ports 38 34 32

29

30

31

32

33

34

35

36

37

38

39

Booth Wallace tree Dadda

Multiplier

N
um

be
r

of
 P

or
ts

Fig. 5. Graphical representation of design compiler

output with frequency 130 MHz of Multipliers verses No.

of ports.

Table 5. Comparison of ASIC and FPGA

Sl

No.
 FPGA ASIC

1
Complexity of

multipliers is more

Complexity of multipliers

is less

2

Area occupied by

the multipliers is

less.

Area occupied by the

multipliers is more.

3

Power

consumption by the

multipliers is more.

Power consumption by the

multipliers is less.

4
Delay is more and

hence speed is less.

Delay is less and hence

speed is high.

Hence ASIC physical design is preferred compared to

FPGA.

IX. APPLICATIONS, CONCLUSION AND

FUTURE WORK

9.1 Applications

1. High Speed Signal Processing that includes DSP

based applications.

2. Used in DWT and DCT transforms used for image

and wide signal processing.

3. Used in FIR and IIR Filters for high speed, low

power filtering applications.

Used in Multirate signal processing applications such as

digital down converters and up

converters.

9.2 Conclusion

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-5 Issue-1, March 2015

7 Retrieval Number: E1929113513/2015©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

In this project we have identified the techniques for optimal

computer aided designs of selected three 8-bit multipliers

namely Booth, Wallace tree and Dadda by analyzing delay,

area and power characteristics with particular emphasis on

designing the cells for optimum power using layout design

techniques. The three multipliers Booth, Wallace and Dadda

are implemented and the constraints area, power and timing

are optimized using Verilog codes based on software

resources NC SIM and VC SIM.

The main results of the project are

1. After carrying out the literature review on the existing

high speed serial and parallel multipliers available,

identified the specification requirements for the

multipliers.

2. Modeled the multipliers using HDL and verified the

functionality using test vectors.

3. Implemented the design on FPGA and verified its

functionality and identified the hardware requirements.

4. Carried out ASIC design on the synthesized net list by

appropriately providing the constraints based on the

first cut information obtained from FPGA synthesis.

5. Compared the performance of multiplier design and

optimized the design for area, speed and power.

So the final conclusion of this project is performance wise,

Dadda multiplier consumes less area as compared to

Wallace tree and Booth multiplier. Power wise Booth

multiplier consumes less power compared to Wallace tree

and Dadda multiplier. Delay wise Wallace tree has less

delay as compared to Booth and Dadda multiplier.

 From the graph we observed that the Dadda Multipliers

requires more nets and consumes lesser references than

Wallace tree multiplier and Booth multiplier. The graphs

indicate that, as the number of intermediate stages increases

in multipliers, the interconnection between the building

blocks also increases. As Dadda multiplier has more number

of intermediate stages it has more number of

interconnections.

265
100 76.5%

348
 Increase in the number of

interconnections.

3.3. Graph of multipliers verses no. of cells

Multiplier Booth Wallace tree Dadda

No. of cells 214 248 266

O Booth

Cells graph

Multipliers

N
o

.
o

f
c

e
ll

s

Wallace Dadda

x

y

100

200

300

9.3 Scope for Future work

As this project was limited to design of only the multiplier

as an IP using TSMC 130nm CMOS technology, it would be

better to incorporate the Multiplier into a MAC unit that can

perform multiplication and accumulation. As MAC forms

the major block for any filtering application. During the

design of MAC block, redundancy in filter coefficients can

be exploited to minimize the filter structure and optimize the

performances of MAC unit. Also, there is possibility in

developing a hybrid multiplier that takes into consideration

both Dadda and Wallace multiplier architecture combined

with booths multiplier.

ACKNOWLEDGMENT

I express my deep sense of gratitude to my project guide,

Mr. Cyril Prasanna Raj P, Assistant Professor, Course

Manager, VSD, MSRSAS. His willingness to teach and

unfailing patience have been a source of great motivation for

me to excel in my work. Without his guidance and

invaluable time spent with me in this project, this thesis

would not have been completed successfully. I express my

sincere thanks to my internal project guide, Ms.B G

Shivaleelavati, Assistant Professor, Department of

Electronics and Communication Engineering, JSSATE,

Bangalore for her continuous encouragement and

suggestions at every stage of this work.. Finally I offer my

sincere pranamas to my parents and sisters for their

blessings in all my intellectual pursuits.

REFERENCES

1. Keshab K.Parhi, “VLSI DIGITAL SIGNAL PROCESSING SYSTEMS”,

Design and implementation John Wiley and sons (ASIA), 1999.

2. Neil H.E.Weste, David Harris, Ayan Banerjee, “CMOS VLSI DESIGN”,

A circuits and systems perspective. Pearson Education, Third edition 2007,

pp345-356.

3. Robert F.Shaw, “Arithmetic operations in a binary computer”, Review of
scientific instruments; vol 21, pp 687-693, 1950.

4. O.L.Mac Sorley,”High-Speed Arithmetic in Binary Computers”,

Proceedings of the IRE, Vol 49, pp.67-91, 1961.

5. Bruce Gilchrist, J.H. Pomerene and S.Y.Wong, “Fast Carry logic for

Digital Computers”, IRE Transactions on Electronic Computers, Vol.EC-

4, PP.133-136, 1955.

6. R. De Mori, “Suggestions for an TC Fast Parallel Multiplier”, Electronics

letters, Vol.5, pp 50-51,1965
7. K’Adrea C.Bickerstaff,Michael J.Schulte,and Earl E. Swartz Lander, Jr.,

“Reduced Area Multipliers”, Proceedings of the 1993 International

Conference on Application Specific Array Processors, pp.478-489,1993.

8. Andrew D.Booth, “A Signed Binary Multiplication Technique”, Quarterly

Journal of Mechanics and Applied Mathematics, Vol .4, pp.236-240, 1951.

9. Charles R. Baugh and Bruce .A.Wooley, “A Two’s Complement Parallel

Array Multiplication Algorithm”, IEEE Transactions on Computers, Vol.
C-22, pp.1045-47, 1973.

10. Behrooz Parhami, “Computer Arithmetic: Algorithms and Hardware

Designs, Newyork: Oxford University press, 2000.

11. Thomas K.Callaway and Earl E. Swatzlander,JR., “Optimizing Multipliers

for WSI”, Proceedings of the 1993 International Conference on Wafer

Scale Integration, pp.85-94,1993.

12. C.S.Wallace,” A suggestion for a Fast Multiplier”, IEE Transactions on

Electronic Computers, Vol.EC-13, pp.14-17, 1964.
13. Luigi Dadda,” Some Schemes for Parallel Multipliers”, Alta Frequenza,

Vol.34, pp.349-356, August 1965.

14. Advanced Asic Chip Synthesis by Himanshu Bhatnagar Second Edition

pp-183-256, 2002.

15. Wey C.L and Chang T.Y., “Design and analysis of VLSI-based parallel

multipliers”, IEEE proceedings computers and Digital Techniques,

vol.137, no.4,pp,328-336, July 1990.(Journal paper)

