
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-5 Issue-2, May 2015

79

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2610055215/2015©BEIESP

Overview of Source Code Plagiarism in

Programming Courses

Deniz Kılınç, Fatma Bozyiğit, Alp Kut, Muhammet Kaya

Abstract: Plagiarism of programming source codes is an

undesirable situation in the many fields of software development

world. Especially in educational field, it is obviously realized that

plagiarism in programming courses increases consistently. The

aim of this study is attempting to answer questions such as

“which codes are similar?”, “what similarity ratios are?” in

order to prevent plagiarism among university students who attend

programming courses. While developing the proposed

methodology, N-gram similarity calculation method and Vector

Space Model (VSM) were considered. Information Retrieval (IR)

System and Cosine Normalization (CN) methods were utilized to

calculate similarity ratios. Experimental study was performed on

the dataset yielded by changing source code examples in different

forms. The results obtained provide convincing evidence that the

study is fit the purpose.

Index Terms: Plagiarism source code, n-gram, vector space

model, cosine normalization.

I. INTRODUCTION

Plagiarized code is a source code example which its source

cannot be understood in detail most of the times [1]. If a

license of software allows using entire or some parts of

source code, there is no problem while citing and using it.

However, if citing a source code or appropriating is not

allowed, this is out of line in terms of ethics. This issue is

legally remarked in Intellectual and Artistic Works and

while computer programs are included in the scope of works

of science, the owner of source code is discussed as an

author [2]. Plagiarism of source code is an important

problem that can be faced every time, in everywhere. For

example, using a source code of a program without

permission which is developed specifically for a company is

a common plagiarism situation. Another example can be

seen in education area. Especially, programming course

instructors indicate that source code theft issues pose a

major problem while evaluating students’ projects and

home-works.

Based on continuing development of technology,

applications in field of software increase correspondingly

and plagiarism stands out as a big problem. There are many

methods to understand whether code is stolen or not and

how to prevent code theft. One of these methods is

evaluating a software tool which finds similarity ratios

among source codes. Already developed tools are available

and have been using in many fields such as education.

Manuscript Received on April 2015.

Deniz Kılınç, Celal Bayar University, Department of Software

Engineering, Turkey.

Fatma Bozyiğit, Celal Bayar University, Department of Software

Engineering, Turkey.

Alp Kut, Dokuz Eylul University, Department of Computer

Engineering, Turkey.

Muhammet Kaya, Celal Bayar University, Department of Software

Engineering, Turkey.

For example, Plague [3], JPlag [4] and YAP [5] applications

are well-known tools. Many instructors in universities use

these applications in order to check whether the assignments

in programming courses are copy or not.

The necessary steps to solve plagiarism problems on

source codes are much harder than natural language

processing (NLP)[6]. The traditional method is extracting

source code metrics before similarity check. However, there

are some disadvantages in this traditional approach. For

example, software metrics are programming language

dependent. Metrics which are created to specify

characteristics of Java programming language may not be

appropriate for C or Pascal. Another difference is that the

metric selection is not a trivial process and usually involves

setting thresholds in order to eliminate metrics which aren’t

correlated to the classification model.

The aim of this study is to find the similarity ratios among

source codes belonging to a programming course and

attempt to decide whether or not two or more programs are

plagiarized. To carry out our study, N-gram algorithm,

Vector Space Model (VSM) [7] and Information Retrieval

(IR) [8] system are utilized. Since N-gram algorithm is

language independent and does not contain disadvantages of

traditional methods, it has been selected in this study.

Firstly, optimal N value for an application is specified and

documents are divided into N-grams. In this study, bi-gram

and tri-gram methods are performed on datasets. After

obtaining N-grams, a VSM is constructed where each

document is represented as a vector. In VSM, a vector

includes each N-gram frequencies of a document in data set.

While calculating the weights of N-gram, IR approach is

utilized. After counting the values of Term Frequency (TF)

and Inverse Document Frequency (IDF), their values are

placed into VSM. Finally, the similarity scores between

documents are obtained by using Cosine Normalization

(CN) [9] method.

The rest of paper is organized as follows: Section 2 detail

plagiarism and how students create copy codes from the

original one. Section 3 introduces the background of study.

It includes related works and general information about N-

gram algorithm, VSM. In Section 3, the details of study are

explained. In Section 4, the datasets that have created for

the application and experimental results are touched on.

Section 5 concludes the paper and gives some information

about future works.

II. PLAGIARISED SOURCE CODE

SAMPLES/PARADIGMS

Plagiarized code is a modified and concerted version of

original code which is taken without permission of code

owner. Especially, in

education area, some

students, who attend

Overview of Source Code Plagiarism in Programming Courses

80

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2610055215/2015©BEIESP

programming courses, copy all or part of a program from

other students and submit the copy as their own work. When

the copy code is inspected in detail, it can be obviously seen

that most of students only change the specific points of

program such as renaming variable names, adding comment

lines, replacing code blocks etc.., while creating copy codes.

Considering the situations that are mentioned above, the

experimental dataset is generated in order to test the

proposed study. This dataset includes different instance of

programs which are obtained by changing a code sample at

specific points. At this stage of the study, it is performed a

work with a team consisting of five instructors. It is

determined which parts of source code are generally

modified by the students while creating copy code.

Instructors highlight that they realize the most noticeable

thing is renaming variables, functions and parameters when

they inspect copy codes. In this part, renaming is the most

efficient step while generating dataset that includes modified

code examples to test study. For example, in Figure 1, both

of the program codes calculate the factorial of a number.

While left one is original code, the code in the right side is

copy. At first glance, distinction in identifiers can be

realized easily. It is clearly seen that the name of parameter

“input” is changed as “inpt” and parameter “result” is

changed as “rslt” while producing a new code from the

original one. Also, when looking at similarities among

source codes, regulating comment lines like removing,

translating into another language etc… is efficient for

decreasing similarity ratio. In Figure 1, it is also seen that

the comment line which gives information about “factorial”

method is removed at the right code.

Figure 1 Original and modified copy code comparison

As a result of inspections, the following steps are selected

which are useful to generate copy source codes. These

steps are;

1) Renaming identifiers,

2) Adding or removing blank lines,

3) Modifying the comment lines,

4) Changing parameter order in functions/methods,

5) Removal of functions/methods,

6) Adding or removing operator space.

III. BACKGROUND

A. Related Works

Joy and Luck (1999) dwell on plagiarism in assignments of

programming courses [10]. They explain plagiarism as out

of favor making copy of documents or source codes. In the

study, it is claimed that if students in the programming

course are in high number, detecting and controlling copies

in assignments can be difficult. Also similarities among

programs don’t refer to plagiarism all the time. In the study,

it is inspected that how it can be decided about the code is

copy or not. Source codes are divided into tokens that take

value as name, operator, loop etc.. After filtering out

unnecessary information, incremental comparison step is

completed and similarity ratios among codes are obtained.

In incremental comparison step, pair of programs is

compared five times; in their original form, with the white

spaces removed, with all comments removed etc.. So they

provide obtaining more consistent similarity results.

Jones (2001) indicates that plagiarism is an ethical

problem can be faced always in the academic area [11]. It is

also mentioned that trying to detect copy codes in

programming courses is so difficult for educators in terms of

presenting proofs about copies, wasting time and emotional

burden because of charging a student as cheater. Jones

develop an application to give evidences of plagiarism to

students. So, objection of students and arguing between

instructors and students can be terminated owing to results

of application. In metric

based system, physical

profiles that include general

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-5 Issue-2, May 2015

81

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2610055215/2015©BEIESP

parameters such as number of lines, words and characters

are created at first. Then, Helstead profiles that divide

source code into tokens and store the frequencies of tokens,

is evaluated. Lastly, two profiles are combined and distances

of patterns of profiles from the each other computed.

Culwin and Thomas (2001) mention about plagiarism

problem that increases in academic institutions [12]. They

elaborate why students steal the information and show it as

their own while they do assignments. They perform a study

to dissolve plagiarism. So, their study helps instructors to

understand which assignment is copy. The study consist of

four stage; collection, detection, confirmation and

investigation. At collection stage, students use web form

submissions, so collection of assignment is completed via

Web. After collecting the data, detection stage is started and

similarity ratios among documents are obtained. At

confirmation step, instructors should check whether the

similarity results are consistent. Because, two students

whom similarity ratio is high, may use same web site while

doing assignments, so they cannot be charged with

plagiarism. The process is terminated with investigation step

and students who will be punished are determined. It is

briefly pointed that revealing proof of copy is so necessary

to eliminate plagiarism in the study.

Frantzeskou (2007) indicates that to solve authorship

disputes in software area, not only finding similarities

among programs is enough, but also identifying source code

authors is necessary [13]. So, she developed SCAP Method

to specify owner of source code. The author underscores

that SCAP method is effective on all programming

language. Also, it is claimed that SCAP Method can work

with simple profile examples that include a few code lines

and a few examples of profile is enough to get good results.

In SCAP, after finding N-gram frequencies, Simplified

Profile Intersection (SPI) value is counted. Value of SPI

measures the intersection of source code documents and

gives a similarity ratio.

B. N-gram Algorithm

N-gram algorithm obtains a substring combination and finds

repeat ratios of this substring in a character array which will

be compared with other strings to find similarity [14].

Besides using in fields of natural language processing,

owing to technological development, N-gram algorithms

have started to be used in programming languages. The

algorithm inspects documents to categorize and to find

similarities. N-gram algorithm is recognized as one of the

simplest and best efficient method that finds similarity

among strings.

An N-gram algorithm starts to work with dividing a text

into substrings has length of N that is specified by the user.

When reached to N-1th element of string, process is

terminated. If value of N is one, it is called uni-gram. If

value of N is two, it called bi-gram. If value of N is three, it

is called tri-gram. For example, to explain tri-gram, the

results in Table 1 can be shown.

 N-Gram Frequencies

N-Gram

Frequencies

STR 1

TRI 1

RIN 1

ING 1

Table 1. Tri-grams in STRING word and frequencies of

substrings

As shown in Table 1, at fourth character of STRING,

grouping process is terminated so, N-gram algorithm is

completed. Substrings in specified text and frequencies of

them are held to compare two or more documents.

 At indexing step, the documents are partitioned into N-

grams, and then each N-grams word is added to lists

correspondingly. Figure 1 explains the indexing step briefly.

At search step, the query is also partitioned into N-grams,

and for each of them corresponding lists are scanned using

the metric.

Figure 2 Tri-grams in “ALGORITHM”

Briefly, in this algorithm, N-gram frequencies of two

documents are compared and distances between them are

measured. The distance variable takes value between 0 and

1. While the value of distance closes to 1, it is deduced that

similarity ratio increases. Otherwise, this ratio decreases

In this study, the reason of choosing N-gram algorithm is

providing language independent structure and obtaining

accurate results while finding similarities among source

code documents. Value of N is specified as three and tri-

grams in each source codes are compared separately to

obtain similarity ratios.

C. Vector Space Model

The representation of a set of documents as vectors in a

common vector space is known as the vector space model

and is fundamental to a host of information retrieval

operations ranging from scoring documents on a query,

document classification and document clustering [15]. In

this model, each dimension shows a separate term. All terms

in vector have a weight that is represented as “𝑤”.

According to query result, if a document contains a term,

value of weight is counted and takes a value different from

0. In Figure 3, x and y show two documents that will be

compared and 𝑤1, w2 and 𝑤3 indicate the weight of terms

in documents.

Overview of Source Code Plagiarism in Programming Courses

82

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2610055215/2015©BEIESP

Figure 3 Representation documents in VSM

Weights of terms can be calculated by 𝑇𝐹 × 𝐼𝐷𝐹 method.

Term Frequency (𝑇𝐹) represents frequency of a term in the

document. Inverse Document Frequency (𝐼𝐷𝐹) gives

information about the number of times that term occurs in

all documents of collection. Equation of (𝑇𝐹) and 𝐼𝐷𝐹 are

shown in Equation (1) and Equation (2).

𝑇𝐹 𝑡 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑠 𝑡𝑒𝑟𝑚 𝑡 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑎 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

Total number of terms in the document
. (1)

𝐼𝐷𝐹 𝑡 = log𝑒
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑤𝑖𝑡 ℎ 𝑡𝑒𝑟𝑚 𝑡 𝑖𝑛 𝑖𝑡
 (2)

After finding the weights of all terms in vector, some vector

operations are used to compare documents to specify how

they are similar. Generally, the cosine of the angle between

documents is calculated. This method is called Cosine

Normalization. Equation (3) shows formula of Cosine

Normalization.

𝑠𝑖𝑚𝑑1,𝑑2 = cos𝑄 =
𝑑1 𝑑2

𝐼𝐼𝑑1𝐼𝐼 𝐼𝐼𝑑2𝐼𝐼
 (3)

In this study, tri-grams in source code document are taken as

terms and placed into VSM. Weights of tri-grams in source

code documents are calculated by 𝑇𝐹 × 𝐼𝐷𝐹 and values of

terms are set. After weighting process, the cosine

normalization is calculated and similarity ratios of source

code documents are obtained.

IV. EXPERIMENTAL STUDY

A. Dataset

In this part of the study, 63 different code examples are

generated by modifying the original code example as

reported in the third section of paper. The documents which

are created to test the study and to view similarity scores are

called according to their alteration style. Table 2 shows all

acronyms of documents names and explanations.

Table 2. Information of documents in dataset

Document Name

Explanation

𝑫𝑩𝑳 Adding/Removing Blank Line

𝑫𝑹𝑰 Renaming Identifiers

𝑫𝑷𝑶 Changing Parameter Order

𝑫𝑶𝑺 Adding/Removing Operator Space

𝑫𝑹𝑭 Relocation of Functions

𝑫𝑴𝑪 Modifying Comment Lines

𝑫𝑪𝟏 Adding/Removing Blank Line + Renaming Identifiers

𝑫𝑪𝟐 Adding/Removing Blank Line + Changing Parameter Order

𝑫𝑪𝟑 Adding/Removing Blank Line + Adding/Removing Operator Space

𝑫𝑪𝟒 Adding/Removing Blank Line + Relocation of Functions

𝑫𝑪𝟓 Adding/Removing Blank Line + Modifying Comment Lines

𝑫𝑪𝟔 Adding/Removing Blank Line + Renaming Identifiers + Changing Parameter Order

𝑫𝑪𝟕 Adding/Removing Blank Line Renaming Identifiers + Adding/Removing Operator

Space

𝑫𝑪𝟖 Adding/Removing Blank Line + Renaming Identifiers + Relocation of Functions

𝑫𝑪𝟗 Adding/Removing Blank Line + Renaming Identifiers + Modifying Comment Lines

…

…

𝑫𝑪𝟓𝟕 Adding/Removing Blank Line + Renaming + Parameter Order + Operator Space +

Functions + Comment Lines

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-5 Issue-2, May 2015

83

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2610055215/2015©BEIESP

In Table 2, first six documents are obtained by adding or

removing blank line, changing parameter orders in methods,

adding or removing spaces between operators, relocation of

functions and modifying comments. Other 57 ones are

generated by combining of the six alteration steps.

According to the Table 2, 𝐷𝐵𝐿 represents the documents

which are formed with additional blank lines among original

source code lines.

 𝐷𝑅𝐼 demonstrates the code obtained from original source

code by changing identifiers’ names. 𝐷𝑃𝑂 shows the a code

document yielded by changing the location of the

parameters of methods in original code. For example, let’s

look at the Figure2 includes a method that finds the

minimum between two numbers. While “minFunction”

method in original code includes parameters “param1” and

“param2” sequentially, the copy code this parameter order

relocated.

public static int minFunction(int param1, int param2)

{

int minimum;

if (param1> param2)

min = param2;

else

min = param1;

return min;

}

public static int minFunction(int param2, int param1)

{

int minimum;

if (param2 > param1)

min = param1;

else

min = param2;

return min;

}

Figure 4 An example of changing parameter order in methods

 𝐷𝑂𝑆 implies spacing out before or after operators. For

example, it can be easily realized in Figure 3. While code

block at the left side of Figure don’t include any space

before or after operator, at the left it can be easily

recognized that there are spaces between operators.

 i=i+1

 submitted +=1

 x = x*2 - 1

 hypot2 = x*x + y*y

 c = (a+b) * (a-b)

 i = i + 1

 submitted += 1

 x = x * 2 - 1

 hypot2 = x * x + y * y

 c = (a + b) * (a - b)

Figure 5 An example of adding operator space

 DRF indicates changing of place of functions or methods

in code lines. For example if a function starts at 57th code

lines in original code, the student who attempt to plagiarize

can move it 3rd code lines to show code as different. In the

opinion of instructors, this is one of the most common

methods among students while attempting to copy a code.

DMC is obtained by modifying comment lines as contraction

or rewriting in different language.

B. Experimental Results

After creating dataset as mentioned in the previous section,

Tri-gram and VSM Tri-gram similarity ratios are obtained

and the results are showed in Table 3. The results of

similarity ratios are between 0 and 1. When this value

approximate to 1 from 0, it can be understood that the

similarity is higher between two compared documents.

Original Code

Original Code Copy Code

Copy Code

Overview of Source Code Plagiarism in Programming Courses

84

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2610055215/2015©BEIESP

Document(Original)

Tri-Gram Result

VSM Tri-Gram

Result

𝑫𝑶 1 1

𝑫𝑩𝑳 0.96 0.98

𝑫𝑹𝑰 0.86 0.88

𝑫𝑪𝑷 0.94 0.97

𝑫𝑶𝑺 0.81 0.96

𝑫𝑹𝑭 0.93 0.94

𝑫𝑴𝑪 0.95 0.92

𝑫𝑪𝟏 0.82 0.90

𝑫𝑪𝟐 0.94 0.93

 𝑫𝑪𝟑 0.80 0.94

𝑫𝑪𝟒 0.90 0.92

𝑫𝑪𝟓 0.94 0.91

𝑫𝑪𝟔 0.76 0.84

𝑫𝑪𝟕 0.72 0.83

𝑫𝑪𝟖 0.74 0.81

𝑫𝑪𝟗 0.78 0.80

𝑫𝑪𝟏𝟎 0.69 0.77

… … …

… … …

𝑫𝑪𝟔

0.69 0.66

Table 3. Compare Results of Tri-grams

After the codes in datasets are inspected by the instructors it

is obviously seen that VSM results are more consistent. For

example, according to the instructors, adding space before

or after operators is not effective while attempting to change

source code. However, when it is looked at the Table 2, it

can be realized that the similarity ratio between 𝑫𝑶𝑺 and

original document is low significantly beside VSM Tri-gram

result. Even the ratio of 𝑫𝑶𝑺 is smaller than 𝑫𝑪𝟏 which

consist of adding/removing blank line and renaming

identifiers. The other point the instructors especially indicate

that modifying comment is more effective than adding or

removing blank lines among the code lines. However in the

tri-gram results, 𝑫𝑴𝑪 and 𝑫𝑩𝑳 has nearly same similarity

score when they compare to original code and it is obviously

seen that the difference in similarity values of 𝑫𝑩𝑳 and 𝑫𝑴𝑪

are more coherent in VSM Tri-Gram.

As mentioned in Section 2, instructors claim that students

generally choose only one alteration type while trying to

change source code. Commonly used alteration types are

leaving/removing blank lines among code lines, changing

identifier names, adding/removing comment lines and

replacing of code blocks of methods. In accordance with the

experimental test results, doing one of these changing is not

efficient while decreasing similarity ratio. If student

combines all of six steps that mentioned in Section 2, the

similarity among original code and copy code decreases

significantly. However, this is difficult as creating new code,

so instructors claim that students don’t exert effort and

waste their time to combine more than three steps.

In Figure 3, an application GUI of the study is shown that

give information about bigram, trigram and VSM Tri-gram

similarity scores between 𝐷𝐵𝐿 and other 62 documents.

Figure 6 Interface of comparing results between 𝐃𝐁𝐋

and other documents

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-5 Issue-2, May 2015

85

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2610055215/2015©BEIESP

V. CONCLUSION

Plagiarism in programming courses is a growing problem in

education. The aim of this study is attempting to find similar

source codes. Although N-gram analysis is a well-known

technique in NLP, it has been utilizing in source code

analysis for a while. In this study, the reason of selecting N-

gram method is providing language independency. In our

previous study, we utilized only bi-gram and tri-gram

methods to check the source codes are copy or not [14]. In

this study, additional to n-grams, VSM is constructed and

weights of tri-grams of all documents are placed into

document matrices separately. Then, CSM scores are

obtained between matrices in VSM. When acquired tri-gram

and VSM tri-gram results are compared, it is determined by

instructors that VSM tri-gram results give more accurate

outcomes.

In future, we would like to integrate Word Net to our

proposed method that provides finding similarities among

source code. Another future direction of proposed study is

generating a system that enables to build up greater datasets

to test the study.

REFERENCES

1. A. Parker and J. Hamblen, “Computer algorithms for plagiarism

detection”, IEEE Trans. Education, vol. 32, May 1989, pp. 94–99.

2. Intellectual and Artistic Works Law. Available:

http://mevzuat.meb.gov.tr/html/7981_5846.html

3. G. Whale, “Plague: Plagiarism Detection Using Program Structure”,

Dept. Comput. Sci., Univ. New South Wales, Kensington, Australia,

Tech. Rep. 8805,1988.

4. G. Malpohl. JPlag: Detecting Software Plagiarism. Available:

http://www.ipd.uka.de:2222/index.html

5. “YAP3: Improved detection of similarities in computer program and

othertexts,” In Proc. 27
th
 SCGCSE Tech. Symp., Philadelphia, PA,

1996, pp.130–134

6. R. Dale, H. Mois, H. Somers, “Handbook of NLP”, Marcel Dekker,

2000.

7. G. Salton, “The SMART Retrieval System – Experiments in

Automatic Document Processing”, NJ, Englewood Cliffs: Prentice-

Hall, 1971.

8. G. Salton, A. Wong, C.S. Yang. “A vector space model for

information retrieval”, Journal of the American Society for

Information Science, 1975 , 18(11):613-620.

9. C.D. Manning, P. Raghavan., H. Schütze, “An Introduction to

Information Retrieval”, Cambridge University Press, 2009.

10. M. Joy and M. Luck, “Plagiarism in programming assignments,”

IEEE Trans. Educ., vol. 42, no. 1, Feb. 1999, pp. 129–133.

11. E. L. Jones, “Metrics based plagiarism monitoring “, In: 6
th
 Annual

CCSC Northeastern Conference, Middlebury, Vermont, April 20-21,

2001.

12. F. Culwin, T. Lancaster, "Plagiarism issues for higher education",

VINE, Vol. 31 Iss 2, 2001, pp. 36 – 41.

13. G. Frantzeskou, E. Stamatatos, S. Gritzalis, and C. E. Chaski.

“Identifying authorship by byte-level n-grams: The source code

author profile (SCAP)”, Journal of Digital Evidence, 2007.

14. Bozyigit, D. Kılınç, A. Kut, M. Kaya, “Bulanık Mantık Algoritmaları

Kullanarak Kaynak Kod Benzerliği Bulma”,In: AB15, 2015,

submitted for publication.

15. Vector Space Model. Available: http://nlp.stanford.edu/IR-

book/html/htmledition/the-vector-space-model-for-scoring-1.html

http://mevzuat.meb.gov.tr/html/7981_5846.html
http://www.ipd.uka.de:2222/index.html

