
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-5 Issue-4, September 2015

107

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D2705095415 /2015©BEIESP

Exploring of Sliding Window Visualization System

to Understand Flow and Error Control Mechanism

of Data Link Layer

Ayushi Chaudhary

Abstract- The perspective of this paper is to provide user friendly

Visualization System for Sliding Window protocol. The Sliding

Window Visualization system (SWV) is designed to understand

the flow and error control mechanisms of DLL (data link layer)

protocols. The system is interactive and allows the user to modify

some parameters of the protocol. In this paper a visualization

system has been developed where a user can easily understand

the working principle of sliding window protocol and it can be

used to compare two algorithms. In the mean time except the

visualization of this network protocol also we have sent data

packets at the back end. Thus giving an opportunity to the user to

understand the mechanism of real time data transfer, where

communication is often possible between physically separated

machines. The software has major responsibility is to help to

visualize newly developed algorithms where a researcher

formulates some mathematical model of an algorithm and a

developer converts it into a visualization system. This let us to

compare two algorithm’s efficiency with respect to some

parameter. This paper is designed and developed in such a

manner that it provides a vast scope of further development.

Number of modules can be added without many modifications in

it code for new algorithm and to compare their efficiency with

respect to existing algorithms. Since, this visualization system has

been designed by taking care of the needs of users, their tasks.

This SWV can be used as a teaching tool for a term at the

community college level. SWV will be useful in a laboratory or

self-study situation after the student has been introduced to DLL

protocols. SWV's strong point is in helping to create mental

images of the protocol mechanisms, and in allowing easy and

painless experimentation with the supported protocols.

 Keywords: Sliding window protocol, Interactive animation,

visualization

I. INTRODUCTION

Advances in computing technology and the affordability of

software and high performance graphics hardware enabled

rapid growth of visual tools. Today, not only very expensive

workstations, but also low cost PCs are capable of running

computationally demanding visualization systems.

Visualizations or the graphic depictions in execution are

being used in explaining, designing, analyzing algorithms,

and in debugging, fine-tuning, and documenting programs.

Although many tools have been developed over the past

twenty years, little attention has been paid to the analysis of

users, their needs, tasks, and goals. So our paper focuses on

visualization and Simulation of sliding window protocol.

This protocol is one of the most widely used protocols in the

field of networking.

 In this paper we have developed a visualization system

where a user can easily understand the working.

Revised Version Manuscript Received on August 31, 2015.
 Ms. Ayushi Chaudhary, Student, Department of Computer Science &

Engineering, Marathwada Institute of Technology, Bulandshar Uttar

Pradesh, India.

 Principle of sliding window protocol and it can be used as

Simulator to compare two algorithms. In the mean time

except the visualization of this network protocol also we

have sent data packets at the back end. Thus giving an

opportunity to the user to understand the mechanism of real

time data transfer, where communication is often possible

between physically separated machines, over so called

―faulty channels‖ — i.e., an asynchronous channel that can

lose and duplicate messages and can receive messages in an

order different from the one in which the messages were

sent. So, Sliding Window protocol enables the reliable

transfer of a data stream from one machine to another

machine over a faulty channel, i.e., the receiving side

outputs a data stream that is equal to the data stream input

on the sending side. Furthermore, the protocol should not

hamper throughput unnecessarily, the protocol must be

provably correct, and the protocol must exhibit progress.

 The Sliding Window Visualization system (SWV) can be

designed to understand the flow control mechanisms of

DLL (data link layer) protocols. The system is interactive

and allows the user to modify some parameters of the

protocol. The main goal was to create an interactive

simulator where we can visualize the working of an

algorithm i.e. sliding window algorithm which is widely

used in many standard network protocols. I am going to

implement a sliding window protocol which is a

bidirectional protocol, at any instant of time; the sender

maintains a set of sequence numbers corresponding to

frames it is permitted to send. These frames are said to fall

within the sending window and the receiver also maintains a

receiving window corresponding to the set of frames it is

permitted to accept.

The Sliding Window Visualization system (SWV) is

designed to help students understand the flow control

mechanisms of DLL protocols. The system is interactive

and allows the user to modify some parameters of the

protocol

and to create events while the protocol is being visualized.

SWV was designed to meet the following goals [2]:

 Animated and Interactive – student watches the

protocol in action

 Protocol parameters can be modified

 Protocol events can be generated at run-time –

student watches protocol reaction to events

 Easy to use, platform independent – student may

only spend a few minutes with SWV, so it has to

be simple enough to provide immediate benefit

Exploring of Sliding Window Visualization System to Understand Flow and Error Control Mechanism of

Data Link Layer

108

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D2705095415 /2015©BEIESP

II. LITERATURE SURVEY

A. Data Link Layer Protocol

The purpose of the DLL in computer networks is to convert

noisy lines into channels free of transmission errors for use

by the network layer [3]. Data is segmented into frames,

each of which is transmitted until properly received. Flow

control mechanisms are provided by DLL protocols to

prevent a faster sender from swamping a slower receiver.

This section provides a brief description of the established

DLL protocols, which form a basis for the work of this

paper.

Unrestricted Simplex Protocol (utopia)

This is the most simple DLL protocol possible. This

protocol assumes that the communication channel is error

free, and the receiver can process the data infinitely fast

Simplex Stop-and-Wait

With simplex stop-and-wait, the sender must be prevented

from flooding the receiver with frames, since it is unrealistic

that a slower receiver could keep up with a faster sender.

The general solution to this problem is to have the receiver

return an acknowledgment (ACK) frame to the sender, in

essence giving the sender permission to transmit the next

frame. An enhancement to this protocol is to add a 1-bit

sequence number to the data frames and acknowledgments.

This enhancement to the protocol is called Positive

Acknowledgment with Retransmission (PAR - protocol 3 in

[3]). The PAR protocol is the version of Simplex Stop-and

wait that is supported by SWV.

Sliding Window Protocols

Sliding window protocols (SWP) all use full-duplex data

transmission. The simplest way of achieving full-duplex

data transmission is to have two separate communication

channels; a forward channel for data and a reverse channel

for acknowledgment frames. This is the full-duplex situation

supported by SWV. In all SWP, each outbound

data frame contains a sequence number, usually 0..2n-1 so

the sequence number can fit into an n-bit field. The sender

contains a list of (consecutive) frames it is allowed to send,

which are called the sending window. The receiving

window is a similar set of frames the receiver is permitted to

accept. The sending and receiving window need not be the

same size, and SWV preserves this flexibility. The sequence

numbers in the sending window are frame numbers that

have been sent but not acknowledged. The upper edge of the

sending window is advanced with new packets arriving from

the network layer. The lower edge of the sending window is

advanced when an acknowledgment arrives for the oldest

outstanding sent frame. The sender must buffer

unacknowledged frames for possible retransmission. The

receiving window is the list of frames that may be accepted,

and any frame which arrives outside the window is

discarded. The receiving window always remains its initial.

size, and when the frame whose sequence number is on the

lower edge of the window arrives, the receiving window

slides forward. Receiving windows of size > 1 must contain

buffers equal to the window size, since the receiver's DLL

must forward frames to the network layer in the proper

order.

One Bit Sliding Window

This is the most basic SWP with a window size of one for

both sender and receiver.

Go-Back-n Sliding Window

Go -back-n uses a technique called pipelining in which a

sender continuously transmits frames for a time equal to the

frame round trip transit time. This technique does not

require the sender to wait for an acknowledgment before

sending the next frame. When a frame in the middle of this

stream of frames is damaged or lost, the receiver simply

discards all subsequent frames, sending no

acknowledgments. The receiver refuses to accept any frame

except the next one it must forward to the network layer

(receiver window size=1). Eventually, the sender times out

and resends all unacknowledged frames in order, starting

with the lost or damaged frame.

Selective Repeat Sliding Window

Selective repeat uses pipelining in the same way as go-

backn, but the receiver stores all correct frames following

the bad one. The sender times out and begins retransmitting

the unacknowledged frames in order again, as in go-back-n,

but

when the lost data frame is received, the receiver can

acknowledge all frames present in its buffer. This

corresponds to a receiver window size greater than 1. Go

back-n and selective repeat are trade-offs between

bandwidth and receiver buffer space. Both of these

protocols require separate sender timers for each frame.

B. How Dll Protocols Lend Themselves To

Visualization

DLL protocols can be described in the following ways:

 Pseudo code

 State machines

 Sliding Windows Diagrams

 Time -based frame transmission diagrams

 Performance formulas

With these several ways to describe and define DLL

protocols (most of them visual), there are generous

opportunities to combine diverse representations into a

visualization system. SWV does not use pseudo code or

state machines to visualize DLL protocols, although they

could be used in a visualization system. Sliding windows

diagrams are an abstraction used to

convey the current state of a sliding window protocol. The

sliding windows in SWV are actively animated as protocol

events occur, and are a vital visual element in assisting the

student to understand the current state of the sender/receiver

windows. Time -based frame transmission diagrams are

brought to life with SWV. Instead of imagining the

progression of time. Through the diagram, SWV animates

these diagrams and allows the user to affect or realize the

diagram by damaging

or losing frames as the protocol proceeds.

III. IMPLEMENTATION

Implementation is the stage of the project when the

theoretical design is turned out into a working system. Thus

it can be considered to be

the most critical stage in

achieving a successful new

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-5 Issue-4, September 2015

109

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D2705095415 /2015©BEIESP

system and in giving the user, confidence that the new

system will work and be effective. Descriptive life cycle

models characterize how software systems are actually

developed.

A. Supported Protocols

of the protocols mentioned in section 3, most can be

visualized using SWV:

1) Go Back N Visualization

2) Selective Repeat Visualization

3) Simulation with data Transfer for Selective Repeat ARQ

We found it more interesting to concentrate on the complex

protocols, since these are generally more difficult to

understand [2]. Protocol 1 is merely a building block to

understanding DLL protocols and it was thought that

protocol 3 is so closely related to protocol 2 as to make

protocol 2 support uninteresting.

B. Design of Sliding Window Visualization

At the core of SWV is a framework which allows a protocol

to control the animation and feeds user input to the protocol.

Protocols can be modified, added, or removed, independent

of the framework [2]. The protocol itself can optionally use

sliding windows, and can have a fixed maximum sequence

or window size. When SWV was designed the graphical

display layer was separated from the underlying framework

of protocol and visualization system core (Figure 1). This

facilitated a cleaner design and Object Oriented

implementation. The graphical display layer includes a

sliding windows component which is encapsulated and

could be used by another Java application needing a sliding

windows GUI control.

Figure 1: Architecture of SWV

C. Interaction Levels

Interaction is possibly the most important issue a

visualization system designer faces. Interaction is what

differentiates a visualization system from a simple

animation of an algorithm or protocol. A visualization
system should encourage a user to test a hypothesis through

interaction. A interaction level should be simple as possible

use case diagrams figure 2 as shown to the user and swv.

How to get the packet transmitted and received to packet.

During the connection establish the client and server. Given

the parameters user and swv how many packets are received

and discarded information.

Figure 2: Uses Case Diagrams

D. Activity Diagram for the Client

In Fig3 I can show overall activity diagram for the client as

follows

 Request for IP address

 Establish the connection

 Connection is established to receive the data

 Connection is not established to display the error

message

 Send the acknowledgment number and display msg

 Send the data reordered simulation result.

Figure 3: User Activity Diagram

E. Display Out

Sami Khuri comments on the design of visualization system

interfaces [4]: "Interactive visualization systems should be

forgiving to the user. In a highly-interactive system, there is

always a situation when the user will press the wrong

button, input invalid data, or manipulate the wrong graphic

object. The vast majority of user errors occur because the

developer of a system allows the error to occur. Most error

messages therefore, can be eliminated by reducing the

possibility of errors, by making sure that number fields only

accept numbers, but providing lists wherever possible, by

providing file selection

dialogs rather than asking

users to type filenames, and

by providing default

Exploring of Sliding Window Visualization System to Understand Flow and Error Control Mechanism of

Data Link Layer

110

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D2705095415 /2015©BEIESP

values." If you choose Simulation with data Transfer for

Selective Repeat ARQ, the sever starts execution and waits

for connection with some client.

Figure 4: Server side snapshot when the server is waiting

for client

On Client machine run the SWV Client Application (here it

is SWVClient2) given with the package. When the client

starts it requires the IP address of Server machine.

Figure 5: Client side snapshot when the user enters ip

address of server to connect

After getting IP address the connection between Server and
Client machine is established.

Figure 6: Server side Snapshot when the server is

connected to specific client.

First of all take for 3 or 4 frames given the menu option send

new, timeout, window size, kill packets, reset etc. Here

packets 3 and 6 have not been acknowledged and treated as
packet lost or Ack lost and shown in specific color (light

blue) in sender window because the SWVClient2 has

dropped packets 3 and 6 and, in receiver side packet 4, 5 and

7 have been received but treated as out of order kept in

buffer and shown in specific color (pink for Buffered

packet) in receiver side. When timeout occurs sender

checks its window for all packets has been acknowledged or

not. The packets which have not been acknowledged will be

sent by sender automatically after timeout. The Client side

application is running that receives data and shows

appropriate message while simulation as below.

Figure 7: Client side snapshot when the client is

receiving packet & dropping acknowledgement.

Here this Client (SWVClient2) has dropped packets 3 and 6

as shown and after timeout when sender sends it again it is
received successfully. Different color used for specific

packets and Acknowledgement as shown below:

Figure8: Snapshot of different color and meaning

Orange - Moving Packet color.

Red -Received Packet at Reviver side.

 Yellow - Moving Acknowledgement color.

Green - Packet Acknowledged at sender side.

 Pink - Buffered packet at receiver side.

 In the below snapshot it is shown the Acknowledgement

for packets 20,22 and 23 has been received at sender side.

Packet 24 is an the way.

Figure 9: Server side snapshot when the server sending

the packet

When all data has been received by client it shows all data

in order and total time taken for data transfer as simulation

time.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-5 Issue-4, September 2015

111

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D2705095415 /2015©BEIESP

Figure 10: Client Snapshot when simulation is complete.

IV. FUTURE ENCHANCEMENT

Many visualizations are being designed without paying too

much attention to the needs of users, their tasks, and their

characteristics. Creating visualizations requires substantial

time and effort. Mapping an algorithm to an animated

representation is a non-trivial problem; it requires careful

thought and knowledge of a particular algorithm animation

programming framework. There are many underutilized

techniques for creating effective visualization, such as

sound, 3D, and artificial intelligence, which will continue to

spark the creativity of the developers in the years to come.

But the main problem still remains the same, there is no

single visualization, specialized or general-purpose, that can

satisfy all kinds of users, all kinds of tasks and can be used

in all kinds of environments. Without the careful analysis of

the users‗ needs, tasks, scope, information, and resources,

the effort put in developing a visualization package will

probably be wasted. It can help to visualize newly

developed algorithms where a researcher formulates some

mathematical model of an algorithm and a developer

converts it into a visualization system. Since, this

visualization system has been designed by taking care of the

needs of users, their tasks. This SWV can be used as a

teaching tool for a term at the community college level.

SWV will be useful in a laboratory or self-study situation

after the student has been introduced to DLL protocols.

SWV's strong point is in helping to create mental images of

the protocol mechanisms, and in allowing easy and painless

experimentation with the supported protocols. It will be

more intuitive to some students than discussing slides of

sliding window diagram progressions. Viewing and

interacting with an animation can provide significant

intuition about the behavior of a protocol. Proper abstraction

of protocol elements can be used to filter out extraneous

information, to draw the user's attention, and to efficiently

convey information.

V. CONCLUSION

The concept of peer-reviews helped to rectify the problems

as and when they occurred and also helped us to get some

valuable suggestions that ware incorporated by us.

Developing those has helped us to gain some experience on

real – time development procedures. SWV has been used as

a teaching tool for a term at the community college level.

Only a handful of students were involved in evaluating

SWV as a teaching tool, so there was not enough data to

perform statistical analysis, but useful comments were

collected which helped direct improvements in usability and

usefulness as a learning tool. [9] The authors recommend

using SWV in a laboratory or self-study situation [10] after

the student has been introduced to DLL protocols. SWV's

strong point is in helping to create mental images of the

protocol mechanisms, and in allowing easy and painless

experimentation with the supported protocols. The author

has also used SWV in the classroom while teaching DLL

protocol concepts, which seems more intuitive to some

students than discussing slides of sliding window diagram

progressions. However, the authors stress that this use of

SWV should not replace discussions of DLL protocol code

and algorithms.

REFERENCES

1. Lawrence, A.W., Badre, A.N., & Stasko, J.T., ―Empirically

evaluating the use of animations to teach algorithms‖, Proceedings of

the 1994

IEEE Symposium on Visual Languages IEEE Computer Society

Press, Los Alamitos, CA, 1994, pp. 48-54.

2. David Henery, Yashwant K. Malayia, ―A Visualization System

forSliding Sliding Windows Protocols‖ Proceedings of the 2003

IEEE frontiers in Education Conference Boulder, CO ppT2C1-T2C6.

3. Kehoe, C.M., & Stasko, J., ―Using Animations to Learn about

Algorithms: An Ethnographic Case Study‖, Georgia Institute of

Technology Technical Report GIT-GVU-96-20., 1996.

4. Tanenbaum, A.S., Computer Networks, 3rd Edition, Prentice Hall

PTR, 1996, pp. 212-250.

5. Khuri, S., ―Designing Effective Algorithm Visualizations‖, Available

at http://www.mathcs.sjsu.edu/ faculty/khuri, 2001.

6. Brown, M.H., & Herschberger, J., ―Color and Sound in Algorithm

Animation‖, DEC Systems Research Center Technical Report, 1991.

7. Chi, M.T.H., Bassok, M., Lewis, M., Reimann, P., Glaser, R., ―Self

Explanations: how students study and use examples in learning to

solve problems‖, Cognitive Science, #13, 1989, pp. 145 -182.

8. Price, B.A., Baecker, R.M., & Small, I.S., ―A principled taxonomy of

software visualization‖, Journal of Visual Languages and Computing

4, 1993, pp. 211 -266.

9. Cox, K., Roman, G., ―Abstraction in Algorithm Animation‖,

Proceedings of the 1992 IEEE Workshop on Visual Languages, 1992,

pp. 18-24.

10. Henry, D., ―Master‘s Project: A Visualization System for Sliding

Windows Protocols‖, Colorado State University Technical Report,

available at http://www.cs.colostate.edu/testing/, 2002.

11. Hundhausen, C., ―Toward effective algorithm visualization artifacts:

Designing for course‖, Doctoral dissertation, University of Oregon,

1999.

12. Hansen, S.R., Narayanan, N.H., & Schrimpsher, D., ―Helping

learners visualize and comprehend algorithms‖. Interactive

Multimedia

Electronic Journal of Computer-Enhanced Learning, 2000.

13. Stasko, J., Badre, A., & Lewis, C., ―Do Algorithm Animations Assist

Learning? An Empirical Study and Analysis‖, Proceedings of ACM

INTERCHI'93 Conference on Human Factors in Computing Systems,

ACM Press, New York, 1993, pp. 61 -66.

14. Lattu, M., Tarhio, J., & Meisalo, V., ―How a Visualization Tool Can

Be Used - Evaluating a Tool in a Research & Development Project‖,

Proceedings of the 12th Workshop of the Psychology of

Programming Interest Group, 2000.

15. Douglas, S., McKeown, D., & Hundhausen, C., ―Exploring Human

Visualization of Computer Algorithms‖, Graphics Interface ‘96,

1996, pp. 9 -16.

16. Michail, A., ―Teaching Binary Tree Algorithms through Visual

Programming‖, University of Washington Technical Report

UWCSE-97-05-01, 1996.

