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 

Abstract—  In the process industries convergence of  a batch 

gradient method with inner-penalty and adaptive momentum is 

inspection  for training pi-sigma neural networks. The role of the 

usual penalty is considered, which is a term proportional to the 

norm of the weights to control the magnitude of the weights and 

improve the generalization performance of the network. The 

monotonicity theorem and two convergence theorems of our 

gradient algorithm with inner-penalty term is guaranteed during 

the training iteration. 

 

Index Terms— Convergence, pi-sigma neural network,  

batch gradient method,  inner-penalty, momentum, 

boundedness 

I. INTRODUCTION 

  The traditional conventionally artificial neural networks 

(ANN)  compared together with higher order neural networks 

(HONN), the two models have been used with different 

architecture and learning rules have become popular tool to 

solve wide range of problems like classification, association, 
recognition and control. Thus, in [2,4,7,9] HONN models 

have shown superior performance than traditional ANN in 

[3,8,10,12,18] on forecasting, classification and regression 

problems because the HONN have several unique 

characteristics, including  such that (greater storage capacity, 

stronger approximation property, higher fault tolerance 

capability, faster convergence, ...). The pi-sigma network 

(PSN), which is a class of HONN  shown by Shin and Ghosh 

[1]. This network combines the fast training algorithm 

abilities of single layered networks with the non-linear 

mapping of HONN and utilizes product cells as the output 

units to indirectly the capabilities of higher-order networks 
while using a fewer numbers diminution of weights and 

procession units and have been used effectively in pattern 

classification and approximation. The regularization 

(penalty) method is often append into the learning process 

and have prove to be efficient to improve the generalization 

capability and to the magnitude of the network weights 

[6,11,15,20]. Especially in [16] the penalty term celled 

inner-penalty and it is useful to prove  capability and 

magnitude network training.  
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To speed up and constancy the training iteration procedure, a 

momentum term is often insert to the increment formula for 

the weights so that the new weight updating rule becomes a 
combination of the present gradient of the error function and 

the previous weight updating increment [13,14,17,19,21]. In 

recent years the online and batch gradient method with 

momentum has been widely used under the assumption that 

the error function is quadratic [23-25]. The new error 

function with penalty and is decreasing monotonically and 

the batch gradient method with both penalty and momentum 

is deterministically convergent under the momentum 

coefficient and penalty parameter are both is positive 

constant. For related work we mention [5,22] where a 

feddforward network is considered for two-three layers cases.  

      The rest of this paper is organized as follows. In section 
II, the gradient algorithm with inner-penalty and momentum 

is presented for training pi-sigma neural network.  In section 

III, the main convergence result are presented. The rigorous 

proofs of the main results are provided in Section IV. Finally, 

some conclusions are drawn in Section V. 

In this paper, the notation   ∙   denotes the Euclidean 

vector norm. 

II. BATCH GRADIENT ALGORITHM WITH 

INNER-PENALTY AND MOMENTUM TERM 

         For a given set of training examples   𝜉𝑗 , 𝑦 𝑗  𝑗=1
𝐽

⊂

ℝ𝑝 × ℝ𝐽 , 𝐽  is the numbers of training examples. Let us 
describe the structure of  neural network, which suppose that 

of an input layer, summation layer and product layer are 𝑃, 𝑁, 
and 1 respectively. Let  g:ℝ → ℝ  be a given activation 

function for the output layer, which is often, but not 

necessarily, selected as the logistic function g 𝑥 =

1  1 + 𝑒−𝑥 .   We denote by 𝑤𝑖 =  𝑤𝑖1 , … ,𝑤𝑖𝑝 
𝑇
∈

ℝ𝑝 1 ≤ 𝑖 ≤ 𝑁  the weight vectors connecting the input and 

summing units, and write 𝑤 =  𝑤1
𝑇 , … , 𝑤𝑁

𝑇 𝑇 ∈ ℝ𝑁𝑝 . Here 

we have added a special input unit 𝜉𝑝 = −1 corresponding to 

the biases 𝑤𝑗𝑝  1 ≤ 𝑗 ≤ 𝑁 .  Note that the weights from 

summing units to product unit are fixed to 1.   For any given 

input 𝜉 ∈ ℝ𝑝  the output of the neural network by  𝑦 𝑗 =
g  (𝑤𝑘

𝑁
𝑘=1 ∙ 𝜉𝑗 ) . Our error function with inner-penalty term 

take the form: 

𝐸 𝑊 =  g𝑗    (𝑤𝑘 ∙  𝜉
𝑗

𝑁

𝑘=1

) 

𝐽

𝑗=1

+
𝜆 

2
   𝑤𝑖 ∙  𝜉

𝑗  2

𝑁

𝑖=1

𝐽

𝑗=1

  (1) 

The structure of  pi-sigma 

neural network is shown in 

fig. 1. Below 
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Fig. 1. A Pi-sigma network 

where 𝜆 > 0 is penalty coefficient and 𝑔𝑗  𝑡 =

1

2
 𝑜𝑗 − 𝑔 𝑡  

2

  

(𝑗 = 1, . . , 𝐽, 𝑡 ∈ ℝ). Then gradient of the error function with 

respect to 𝑊s given by: 

𝐸𝑤 𝑖 𝑊 =  g𝑗
′    (𝑤𝑘 ∙ 𝜉

𝑗

𝑁

𝑘=1

)  (𝑤𝑘 ∙ 𝜉
𝑗

𝑁

𝑘=1
𝑘≠𝑖

)𝜉𝑗

𝐽

𝑗=1

+ 𝜆 𝑤𝑖 ∙ 𝜉
𝑗  𝜉𝑗                                             (2) 

Now we introduce the batch gradient algorithm with inner- 

penalty term and momentum (BGPM). Let   𝜉𝑛1, … , 𝜉𝑛𝐽   be a 

stochastic permutation of  𝜉1, … , 𝜉𝐽   in the n-th cycle of the 

training iteration. Given initial weights 𝑤0, we proceed to 
refine them iteratively by  

𝑊𝑛𝐽+𝑗 = 𝑊𝑛𝐽+𝑗−1 + ∆𝑗
𝑛𝑊𝑛𝐽+𝑗                                               (3) 

with 

∆𝑗
𝑛𝑤𝑖

𝑛𝐽+𝑗
= −𝜂𝑛𝐸𝑤𝑖

𝑛𝐽 +𝑗−1 𝑊 + 𝛼𝑖
𝑛 ,𝑗
∆𝑗
𝑛𝑤𝑖

𝑛𝐽+𝑗−1
               (4) 

where  𝑛 = 0,1,… , 𝑗 = 1,2,… , 𝐽  and 𝜂𝑛 > 0  is the learning 

rate in the n-th training cycle, 𝛼𝑖
𝑛 ,𝑗
∆𝑗
𝑛𝜔𝑖

𝑛𝐽+𝑗−1
 is the so-called 

momentum term and 𝛼𝑖
𝑛,𝑗

 is the momentum coefficient. For 

the sake of description, we denote 

𝑝𝑖
𝑛 ,𝑡 ,𝑗

= 𝐸𝑤𝑖
𝑛+𝑡−1 𝑊                                                                   (5) 

Particularly when t = 1 denote 

𝑝𝑖
𝑛,1,𝑗

= 𝑝𝑖
𝑛 ,𝑗

= 𝐸
𝑤𝑖
𝑛𝐽  𝑊                                                           (6) 

Then there holds 

𝐸
𝑤𝑖
𝑛𝐽  𝑊 =  𝑝𝑖

𝑛 ,𝑗

𝐽

𝑗=1

                                                                  (7) 

and the learning rule (4) becomes 

∆𝑗
𝑛𝑤𝑖

𝑛𝐽 +𝑗
= −𝜂𝑛𝑝𝑖

𝑛,𝑗 ,𝑗

+ 𝛼𝑖
𝑛 ,𝑗

 ∆𝑗
𝑛𝑤𝑖

𝑛𝐽+𝑗−1
                                 (8) 

In this work, by choosing an initial 𝜂0 ∈  0
 ,  1  and positive 

constant 𝛽, we inductively determine 𝜂𝑛  in (8) by (cf.[25] ) 

1

𝜂𝑛+1

=
1

𝜂𝑛
+ 𝛽,      𝑛 = 0,1,2…                                              (9) 

It is easy to get from (9) that  𝜂𝑛 = −𝜂0/ 1 + 𝑛𝛽𝜂0  for 

𝑛 = 0,1, …  hence there hold 𝜂𝑛 = 𝑜(1\𝑛)  and for 𝜂𝑛 →

0 𝑎𝑠 𝑛 → ∞  and for the momentum coefficients 𝛼𝑖
𝑛,𝑗

 in  (8), 

then we choose them by the rule 

𝛼𝑖
𝑛,𝑗

=  

𝜂𝑛
2 𝑝𝑖

𝑛,𝑗
 

 ∆𝑗
𝑛𝑤𝑖

𝑛𝐽 +𝑗−1 
     𝑖𝑓 ∆𝑗

𝑛𝑤𝑖
𝑛𝐽+𝑗−1 ≠ 0 

0                                                 𝑒𝑙𝑠𝑒

             (10) 

III. MAIN RESULTS 

The following conditions will be used in this paper  

(A1)  g𝑗  𝑡  ,  g𝑗
′  𝑡  & g𝑗

′′ 𝑡  ≤ 𝐶, ∀𝑡 ∈ ℝ,∀1 ≤ 𝑗 ≤ 𝐽. 

(A2) 𝑚𝑎𝑥1≤𝑗≤𝐽   
 𝜉𝑗 , 𝜉𝑗 

2
   &  𝑤𝑖

𝑘 ∙  𝜉𝑗  ≤ 𝐶, ∀1 ≤ 𝑗 ≤

𝐽, 1 ≤ 𝑖 ≤ 𝑁, 𝑘 = 0,1, … 
(A3)  inequality (50) is valid, and 𝛽 and 𝜂0 in (9) satisfy: 
𝛽 > 𝑚𝑎𝑥 1, 𝛽    and 𝜂0 ≤ 𝑚𝑖𝑛 1,1/𝛽 − 1/𝛽 .  

    Set  
𝛽 = 𝐶12 + 𝐶13                                                                  (11)    

(A4)  The set  Ω0 ∈  𝑤 ∈ Ω: 𝐸𝑤  𝑊 = 0   contains finite 
points,  where Ω is closed bounded region such   that  

 𝑤𝑚  ⊂ Ω. 

Theorem 1 Suppose that  the error function 𝐸 𝑊  be given 

by (1), let Assumptions (A1) and (A2) be satisfied, and let the 

weight  𝑊𝑘   be generated by the algorithm (4). Then there 
hold  

𝐸 𝑊 𝑛+1 𝐽  ≤ 𝐸 𝑊𝑛𝐽   ,   𝑛 = 0,1,⋯ 

Theorem 2 Under the same Assumption of Theorem 1, the 

weight sequence  𝑊𝑘    generated by (4) is uniformly 
bounded. 

Theorem  3 Suppose that the error function 𝐸 𝑊  be defined 

in (1) and the learning rate  𝜂𝑛   be determined by (9). Given 

any initial values 𝑤0, the weights  𝑊𝑘   are generated by the 
algorithm (4). If Assumptions (A1) - (A3) are valid, there 

holds the following weak convergence result: 

lim
𝑘→∞

 𝐸𝑤  𝑊
𝑘   = 0. 

Furthermore,  if Assumption (A4) is also valid, there holds 

the following strong convergence result: There exists 𝑤∗ ∈ Ω 

such that 

lim𝑘→∞𝑊
𝑘 =𝑊∗. 

IV. PROOFS 

        For convergence notation, we denote 

𝜓𝜄
𝑛𝐽+𝑗

=  (𝑤𝑘
𝑛𝐽 +𝑗

∙ 𝜉𝑗
𝑁

𝑘=1

) , 1 ≤ 𝜄 ≤ 𝐽 , 1 ≤ 𝑗 ≤ 𝐽         (12) 

𝜑𝜄 ,𝑖
𝑛𝐽 +𝑗

=  (𝑤𝑘
𝑛𝐽 +𝑗

∙ 𝜉𝑗
𝑁

𝑘=1
𝑘≠𝑖

), 1 ≤ 𝜄 ≤ 𝐽 , 1 ≤ 𝑗 ≤ 𝐽         (13) 

𝑟𝑖
𝑛,𝑗

= 𝑝𝑖
𝑛,𝑗 ,𝑗

− 𝑝𝑖
𝑛 ,𝑗

   , 𝑛 = 0,1,2,… , 𝑗 = 1,2, … , 𝐽.           (14) 

𝑑𝑖
𝑛,𝑗

=   𝑤𝑖
 𝑛+1 𝐽

−  𝑤𝑖
𝑛𝐽

    , 𝑛 = 0,1,2, . . .                         (15) 

         The following Lemmas are useful in proof of our 
convergence results. 

Lemma 2   Suppose that the  𝜂𝑛   be given by (9). There 
hold 

 𝑖    0 < 𝜂𝑛 < 𝜂𝑛+1 ≤ 1,          𝑛 = 1,2,…                          16  

 𝑖𝑖  
𝜏

𝑛
< 𝜂𝑛 <

𝜌

𝑛
,   𝜏 =

𝜂0

1 + 𝜂0𝛽
,    𝜌 =

1

𝛽
,   𝑛 = 1,2,… (17) 

Proof  This Lemma is easy to validate by virtue of (10) 
and 𝜂0 ∈  0

 ,  1 . 

       The next Lemmas 

estimate 𝑟𝑖
𝑛,𝑗

 and the 
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change of error function. 

Lemma 3  Suppose that Assumption (A1) is satisfied, 
there exist a constants 𝐶1 , 𝐶2  , 𝐶3 > 0, such that for any 
𝑛 = 1,2,… 

 𝑖    𝑟𝑖
𝑛 ,𝑗
 

𝐽

𝑗=1

≤ 𝐶1𝜂𝑛   𝑝𝑘
𝑛,𝑡 

𝐽

𝑡=1

𝑁

𝑘=1

                                  (18) 

 𝑖𝑖   𝑑𝑖
𝑛 ,𝑗
 ≤   𝑝𝑘

𝑛 ,𝑡

𝐽

𝑡=1

 

𝑁

𝑘=1

+ 𝐶2𝜂𝑛
2     𝑝𝑘

𝑛 ,𝑡 

𝐽

𝑡=1

𝑁

𝑘=1

       (19) 

 𝑖𝑖𝑖    𝑑𝑖
𝑛 ,𝑗
 

2
≤ 𝐶3𝜂𝑛

2    𝑝𝑘
𝑛 ,𝑡 

2

𝐽

𝑡=1

𝑁

𝑘=1

                                 (20) 

Proof  By (8), we have 

𝑤𝑖
𝑛𝐽 +𝑗−1

−𝑤𝑖
𝑛𝐽

=   𝛼𝑖
𝑛,𝑗
∆𝑗
𝑛𝑤𝑖

𝑛𝐽+𝑗−1

𝐽

𝑗=1

− 𝜂𝑛𝑝𝑖
𝑛,𝑗              (21) 

This together with (9), (14) , 0 < 𝜂𝑛 ≤ 1 gives 

  𝑤𝑖
𝑛𝐽 +𝑗−1

− 𝑤𝑖
𝑛𝐽    

≤  𝛼𝑖
𝑛,𝑗 ∆𝑗

𝑛𝑤𝑖
𝑛𝐽 +𝑗−1  + 𝜂𝑛 𝜂𝑛𝑝𝑖

𝑛,𝑗  + 𝜂𝑛 𝑟𝑖
𝑛,𝑗  

𝐽

𝑗=1

 

≤   𝜂𝑛
2   𝑝𝑖

𝑛,𝑗  + 𝜂𝑛 𝑝𝑖
𝑛,𝑗 +  𝜂𝑛 𝑟𝑖

𝑛,𝑗  

𝑗

𝑗=1

 

≤ 𝜂𝑛    2 𝑝𝑘
𝑛,𝑡 

𝐽

𝑡=1

+    𝑟𝑘
𝑛.𝑡 

𝐽

𝑡=1

   

𝑁

𝑖=1

                              (22) 

Using Assumption (A2), (21) and Cauchy-Schwartz, we 
have 
 𝜓𝜄

𝑛𝐽+𝑗−1
−𝜓𝜄

𝑛𝐽   

≤    𝑤𝑘
𝑛𝐽 +𝑗

. 𝜉𝑗  

𝑁−1

𝑘=1

   𝑤𝑁
𝑛𝐽+𝑗−1

− 𝑤𝑁
𝑛𝐽  𝜉𝑗   

+   𝑤𝑘
𝑛𝐽+𝑗−1

. 𝜉𝑗 

𝑁−2

𝑘=1

 𝑤𝑁
𝑛𝐽 −1 . 𝜉𝑗     𝑤𝑁−1

𝑛𝐽+𝑗−1
− 𝑤𝑁−1

𝑛𝐽  𝜉𝑗   

+⋯+    𝑤𝑘
𝑛𝐽

. 𝜉𝑗 

𝑁

𝑘=1

   𝑤1
𝑛𝐽 +𝑗−1

−𝑤1
𝑛𝐽  𝜉𝑗   

≤ 𝐶𝑁−1 𝜉𝑗     2𝑝𝑘
𝑛,𝑡 + 𝑟𝑘

𝑛,𝑡 

𝐽

𝑡=1

   

𝑁

𝑘=1

 

≤ 𝐶4    2 𝑝𝑘
𝑛 ,𝑡 

𝐽

𝑡=1

+    𝑟𝑘
𝑛,𝑡 

𝐽

𝑡=1

   

𝑁

𝑘=1

                             (23) 

where 𝐶4 = 𝐶𝑁 1 ≤ 𝑡 ≤ 𝐽, 1 ≤ 𝑖 ≤ 𝑁 , 𝑛 = 0,1,2,⋯  . 
Similarly, easy to get 

 𝜑𝜄
𝑛𝐽 +𝑗−1

− 𝜑𝜄
𝑛𝐽   

≤ 𝐶4
    2 𝑝𝑘

𝑛,𝑡 

𝐽

𝑡=1

+    𝑟𝑘
𝑛,𝑡 

𝐽

𝑡=1

   

𝑁

𝑘=1

                              (24) 

where 𝐶4
 = 𝐶𝑁−1  1 ≤ 𝑡 ≤ 𝐽, 1 ≤ 𝑖 ≤ 𝑁 , 𝑛 = 0,1,2,⋯  .  

By Assumptions (A1), (A2), (21)- (24) and Mean Value 
Theorem, we have 

 𝑟𝑖
𝑛,𝑗
 =  g𝑗

′  𝜓𝜄
𝑛𝐽+𝑗−1

 𝜑𝜄 ,𝑖
𝑛𝐽 +𝑗−1

𝜉𝑛𝑗 − g𝑗
′  𝜓𝜄

𝑛𝐽  𝜑𝜄,𝑖
𝑛𝐽
𝜉𝑛𝑗   

             +𝜆 𝑤𝑖
𝑛𝐽 +𝑗−1

−𝑤𝑖
𝑛𝐽

   𝜉𝑛𝑗  
2
 

             =  g𝑗
′′  𝑡1  𝜑𝜄 ,𝑖

𝑛𝐽 +𝑗−1  𝜓𝜄
𝑛𝐽+𝑗−1

−𝜓𝜄
𝑚𝐽     𝜉𝑛𝑗    

             + g𝑗
′  𝜓𝜄

𝑛𝐽   𝜑𝜄,𝑖
𝑛𝐽+𝑗−1

−𝜑𝜄 ,𝑖
𝑛𝐽     𝜉𝑛𝑗    

             +𝜆 𝑤𝑖
𝑛𝐽 +𝑗−1

−𝑤𝑖
𝑛𝐽

   𝜉𝑛𝑗  
2
 

≤ 𝐶5𝜂𝑛   2 𝑝𝑘
𝑛 ,𝑡 

𝐽

𝑡=1

+    𝑟𝑘
𝑛,𝑡 

𝐽

𝑡=1

   

𝑁

𝑘=1

            (25) 

where 𝑡1 ∈ ℝ line segment between  𝑤𝑘
 𝑛+1 𝐽

∙ 𝜉𝑛𝑗   and  

𝑤𝑘
𝑛𝐽 ∙ 𝜉𝑛𝑗  and 𝐶5 =  𝐶4𝐶

𝑁+1 + 𝐶4
 𝐶2 + 𝜆𝐶 . Not that for 

denotation functions (6) and (14) imply 

𝑟𝑖
𝑛,1 = 0                                                                                      (26) 

This together with (25) hold 

 𝑟𝑖
𝑛,2 ≤ 𝐶5𝜂𝑛  2 𝑝𝑖

𝑛,1 +  𝑟𝑖
𝑛 ,1  

𝑁

𝑖=1

 

 ≤ 2𝐶5𝜂𝑛  𝑝𝑖
𝑛 ,1 

𝑁

𝑖=1

                                                    (27) 

and 

 𝑟𝑖
𝑛,3 ≤ 𝐶5𝜂𝑛  2 𝑝𝑖

𝑛,2 +  𝑟𝑖
𝑛 ,2  

𝑁

𝑖=1

 

≤ 2𝐶5 1 + 𝐶5 𝜂𝑛   𝑝𝑖
𝑛,2 +  𝑝𝑖

𝑛 ,1  

𝑁

𝑖=1

              (28) 

Applying an induction on  𝑟𝑖
𝑛 ,𝑗 , we have for 2 ≤ 𝑗 ≤ 𝐽 

 𝑟𝑖
𝑛,𝑗

  ≤ 2𝐶5 1 + 𝐶5 
𝑗−2𝜂𝑛   𝑝𝑘

𝑛 ,𝑡 

𝐽

𝑡=1

𝑁

𝑘=1

                      (29) 

A  sum of 𝑗 = 1,2,… , 𝐽  yields  Lemma 3 𝑖 .  Immediately : 

  𝑟𝑖
𝑛 ,𝑗 =   𝑟𝑖

𝑛,𝑗 

𝐽

𝑗=2

≤ 𝐶1𝜂𝑛   𝑝𝑘
𝑛 ,𝑡 

𝐽

𝑡=1

𝑁

𝑘=1

𝐽

𝑗=1

                   (30) 

where 𝐶1 = 2𝐶5   1 + 𝐶5 
𝑗−2𝐽

𝑗=1 .  Next, we prove Lemma 

3 𝑖𝑖 . In view of (15) and (21), we get 

𝑑𝑖
𝑛 ,𝑗

=   𝛼𝑖
𝑛,𝑗

 ∆𝑗
𝑛𝑤𝑖

𝑛𝐽 +𝑗−1
 − 𝜂𝑛𝑝𝑖

𝑛,𝑗
 − 𝜂𝑛𝑟𝑖

𝑛,𝑗  

𝐽

𝑗=1

             (31) 

Setting 𝐶2 =  1 + 𝐶1  and using  (15) and (30), there holds 

 𝑑𝑖
𝑛 ,𝑗
 ≤ 𝜂𝑛    𝑝𝑘

𝑛,𝑡  

𝐽

𝑡=1

 

𝑁

𝑘=1

+𝜂𝑛    𝑟𝑘
𝑛,𝑡 

𝐽

𝑡=1

𝑁

𝑘=1

+  𝛼𝑖
𝑛 ,𝑡 ∆𝑡

𝑛𝑤𝑘
𝑛𝐽+𝑡−1 

𝐽

𝑡=1

𝑁

𝑘=1

 

            ≤ 𝜂𝑛    𝑝𝑘
𝑛,𝑡  

𝐽

𝑡=1

 

𝑁

𝑘=1

+ 𝐶2𝜂𝑛
2    𝑝𝑘

𝑛,𝑡 

𝐽

𝑡=1

𝑁

𝑘=1

+ 𝜂𝑛
2    𝑝𝑘

𝑛 ,𝑡 

𝐽

𝑡=1

𝑁

𝑘=1

 

≤ 𝜂𝑛    𝑝𝑘
𝑛 ,𝑡  

𝐽

𝑡=1

 

𝑁

𝑘=1

+ 𝐶3𝜂𝑛
2    𝑝𝑘

𝑛,𝑡 

𝐽

𝑡=1

𝑁

𝑘=1

          (32) 

Finally, we prove Lemma 3 𝑖𝑖𝑖  by virtue of  (32). Again 

using 0 < 𝜂𝑛 ≤ 1, the estimation (32) can be rewritten as  
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 𝑑𝑖
𝑛 ,𝑗 ≤  1 + 𝐶2   𝜂𝑛    𝑝𝑘

𝑛,𝑡 

𝐽

𝑡=1

𝑁

𝑘=1

                                  (33) 

Squaring two sides of  (33) and applying Cauchy-Schwartz 

inequality, we have 

 𝑑𝑖
𝑛 ,𝑗
 

2
≤  1 + 𝐶2 

2𝜂𝑛
2     𝑝𝑘

𝑛 ,𝑡 

𝐽

𝑡=1

𝑁

𝑘=1

 

2

 

≤ 𝐶3𝜂𝑛
2    𝑝𝑘

𝑛 ,𝑡 
2

𝐽

𝑡=1

𝑁

𝑘=1

                                           (34) 

where 𝐶3 = 𝐽 1 + 𝐶2 
2 .  The proof it is completed.    

Lemma 4  If Assumption (A1) is valid and 𝜂𝑛  satisfies (9), 

there hold 

 i   −𝜂𝑛

𝑁

𝑖=1

   𝑝𝑖
𝑛 ,𝑗
∙ 𝑟𝑖

𝑛,𝑗  

𝐽

𝑗=1

  ≤ 𝐶6𝜂𝑛
2    𝑝𝑘

𝑛 ,𝑡 
2

𝐽

𝑡=1

𝑁

𝑘=1

(35) 

 𝑖𝑖     𝑝𝑖
𝑛,𝑗
∙ 𝛼𝑖

𝑛 ,𝑗
∆𝑗
𝑛𝑤𝑖

𝑛𝐽+𝑗−1 

𝐽

𝑗=1

𝑁

𝑖=1

 

≤ 𝐽𝜂𝑛
2    𝑝𝑘

𝑛 ,𝑡 
2

𝐽

𝑡=1

𝑁

𝑘=1

                           (36) 

Proof.   It is similar to the proof of Lemma 3 in [26] and thus 

omitted.  

Lemma 5   There is a positive constant  𝛾 independent of 𝑛  
such that 

𝐸 𝑊 𝑛+1 𝐽  −  𝐸  𝑊𝑛𝐽   

≤ −𝜂𝑛    𝑝𝑘
𝑛 ,𝑡

𝐽

𝑡=1

 

2
𝑁

𝑘=1

+ 𝛾𝜂𝑛
2    𝑝𝑘

𝑛 ,𝑡 
2

𝐽

𝑡=1

𝑁

𝑘=1

   (37) 

Proof Let  𝜉𝑛1, … , 𝜉𝑛𝐽   be a permutation of  𝜉1, … , 𝜉𝐽    in 

the n-th cycle of training iteration. Let 𝜉 𝑛+1 𝑗 = 𝜉𝑛𝑕𝑗  
 𝑗 = 1,2, … , 𝐽 , where  𝑕1 , … , 𝑕𝐽   is a stochastic permutation 

of the subscript set  𝑗 = 1,2, … , 𝐽 . In view of (2) and (4), 

there holds that for 𝑖 = 1,2, … , 𝑁 

𝐸𝑤  𝑊
𝑛𝐽  =  𝑝

𝑖

𝑛 ,𝑕𝑗

𝐽

𝑗=1

=  𝑝𝑖
𝑛 ,𝑗

𝐽

𝑗=1

   𝑖 = 0,1,… , 𝑁        (38) 

By the Taylor Expansion, (31), (38) , we have 

g𝑗  𝜓𝜄
(𝑛+1)𝐽  − g𝑗 𝜓𝜄

𝑛𝐽  = g𝑗
′  𝜓𝜄

𝑛𝐽    𝜓𝜄
(𝑛+1)𝐽  

𝑁

𝑖=1

 𝑑𝑖
𝑛,𝑗  𝜉𝑛𝑕𝑗  

+
1

2
g ′′  𝑡2  𝜓𝜄

(𝑛+1)𝐽
−𝜓𝜄

𝑛𝐽  
2

    

+
1

2
   𝑡3

𝑁

𝑘=1
𝑘≠𝑖1 ,𝑖2

 ∙  𝑑𝑖1
𝑛,𝑗
∙ 𝑑𝑖2

𝑛,𝑗  ∙  𝜉𝑛𝑕𝑗  
2

𝑁

𝑖1 ,𝑖2 =1
𝑖1≠𝑖2

             (39) 

where 𝑡2,𝑡3ℝ is a vector between  (𝑤𝑘
 𝑛+1 𝐽

∙ 𝜉𝑗𝑁
𝑘=1 ) and  

 (𝑤𝑘
𝑛𝐽 ∙ 𝜉𝑗𝑁

𝑘=1 ).  By  the Taylor Expansion, (2), (4), (31), 

(38) and (39) ,  we get 

𝐸 𝑊 𝑛+1 𝐽   

=  g 𝑛+1 𝑗   𝜓𝜄
(𝑛+1)𝐽

 

𝐽

𝑗=1

+
𝜆

2
   𝑤𝑖

 𝑛+1 𝐽
∙ 𝜉 𝑛+1 𝑗  

2
𝐽

𝑗=1

𝑁

𝑖=1

 

  =  g𝑛𝑕𝑗   𝜓𝜄
𝑛𝐽  

𝐽

𝑗=1

+
𝜆

2
   𝑤𝑖

 𝑛+1 𝐽
∙ 𝜉𝑛𝑕𝑗  

2
𝐽

𝑗=1

𝑁

𝑖=1

 

 =  g𝑛𝑕𝑗   𝜓𝜄
𝑛𝐽  

𝐽

𝑗=1

+
𝜆

2
   𝑤𝑖

𝑛𝐽
∙ 𝜉𝑛𝑕𝑗  

2

𝐽

𝑗=1

𝑁

𝑖=1

 

+  g𝑛𝑕𝑗
′  𝜓𝜄

𝑛𝐽  (𝜑𝜄,𝑖
𝑛𝐽 ) + 𝜆 𝑤𝑖

𝑛𝐽 ∙ 𝜉𝑛𝑕𝑗   

𝐽

𝑗=1

∙  𝑑𝑖
𝑛 ,𝑗
∙ 𝜉𝑛𝑕𝑗   

+
1

2
 g ′′  𝑡2  (𝜓𝜄

(𝑛+1)𝐽
) − (𝜓𝜄

𝑛𝐽 ) 
2

𝐽

𝑗=1

+
𝜆 

2
  𝑑𝑖

𝑛,𝑗
∙ 𝜉𝑛𝑕𝑗  

2
𝐽

𝑗=1

 

+
1

2
 g𝑛𝑕𝑗

′  𝜓𝜄
𝑛𝐽  

𝐽

𝑗=1

   𝑡3

𝑁

𝑘=1
𝑘≠𝑖1 ,𝑖2

 (𝑑𝑖1
𝑛,𝑗
∙ 𝑑𝑖2

𝑛,𝑗
) 𝜉𝑛𝑕𝑗  

2
𝑁

𝑖1 ,𝑖2 =1
𝑖1≠𝑖2

 

≤ 𝐸 𝑊𝑛𝐽  +  𝑝
𝑖

𝑛,𝑕𝑗 ∙ 𝑑𝑖
𝑛,𝑗  

𝐽

𝑗=1

+
1 

2
𝐶7    𝑝𝑘

𝑛,𝑡 
2

𝐽

𝑡=1

𝑁

𝑘=1

 

≤ 𝐸 𝑊𝑛𝐽  − 𝜂𝑛    𝑝𝑘
𝑛,𝑡

𝐽

𝑡=1

 

2
𝑁

𝑘=1

 

+
1 

2
𝐶7  𝜂𝑛   𝑝𝑘

𝑛 ,𝑡 
2

𝐽

𝑡=1

𝑁

𝑘=1

+ ∆𝑚                                            (40) 

where 𝑡3 ∈ ℝ is a vector between 𝑤𝑘
 𝑛+1 𝐽 ∙ 𝜉𝑗 ) and  𝑤𝑘

𝑛𝐽 ∙ 𝜉𝑗 ,  

𝐶7 =
𝐶

2
(𝐶 4

2 + 𝜆𝐽𝐶 + 𝐶2𝐶3) and  

∆𝑚=   −𝜂𝑛   𝑝𝑖
𝑛,𝑗
∙ 𝑟𝑖

𝑛 ,𝑗  

𝐽

𝑗=1

 

𝑁

𝑖=1

 

       +     𝑝𝑖
𝑛 ,𝑗
∙ 𝛼𝑖

𝑛,𝑗
 ∆𝑗
𝑛𝑤𝑖

𝑛𝐽+𝑗−1 

𝐽

𝑗=1

 

𝑁

𝑖=1

 

Then we have 

𝐸 𝑊 𝑛+1 𝐽  − 𝐸 𝑊𝑛𝐽  ≤ − 𝜂𝑛   𝑝𝑘
𝑛,𝑡

𝐽

𝑡=1

 

2
𝑁

𝑘=1

 

+ 𝐽 + 𝐶7 + 𝐶8 𝜂𝑛
2    𝑝𝑘

𝑛 ,𝑡 
2

𝐽

𝑡=1

𝑁

𝑘=1

               (41) 

       Set  
  𝛾 = 𝐽 + 𝐶6 + 𝐶7                                                    (42) 

      Obviously, 𝛾  is a positive constant independent of the 

iteration n. Immediately and finish the proof of this Lemma. 

 

     The next Lemma is also a critical step to the proof a 

monotonicity of the error  𝐸  𝑊𝑛𝐽    

Lemma  6  Let  𝜂𝑛   be given by (10) and, if  Assumption 
(A1) - (A3) are valid, there holds 

   𝑝𝑘
𝑛 ,𝑡

𝐽

𝑡=1

 

2
𝑁

𝑘=1

≥ 𝛾𝜂𝑛    𝑝𝑘
𝑛 ,𝑡 

2

𝐽

𝑡=1

𝑁

𝑘=1

,                              (43) 

then  
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   𝑝𝑘
𝑛+1,𝑡

𝐽

𝑡=1

 

2
𝑁

𝑘=1

≥ 𝛾𝜂𝑛+1    𝑝𝑘
𝑛+1,𝑡 

2

𝐽

𝑡=1

𝑁

𝑘=1

                   (44) 

Proof By (13), noting that 𝑝
𝑖

𝑛 ,𝑕𝑗 = 𝑝𝑖
𝑛,𝑗

 and the mean value 

theorem and, we get 

𝑝𝑖
𝑛+1,𝑗

= 𝑝𝑖
𝑛 ,𝑗

+ 𝑟𝑖
𝑛,𝑗

                                                                (45) 

Applying the triangle inequality to (45) and using  (25) 
and (33), we get 

 𝑝𝑖
𝑛+1,𝑗

 ≤  𝑝𝑖
𝑛,𝑗
 +𝐶5𝜂𝑛   2 𝑝𝑘

𝑛,𝑡 

𝐽

𝑡=1

+   𝑟𝑘
𝑛,𝑡,𝑡 

𝐽

𝑡=1

  

𝑁

𝑘=1

 

≤  𝑝𝑖
𝑛,𝑗 + 𝐶8𝜂𝑛   𝑝𝑘

𝑛 ,𝑡 

𝐽

𝑡=1

𝑁

𝑘=1

                         (46) 

where 𝐶8 = 𝐶5 1 + 𝐶1 . Thus 

   𝑝𝑘
𝑛+1,𝑡 

2

𝐽

𝑡=1

𝑁

𝑘=1

≤   𝑝𝑘
𝑛,𝑡 

2

𝐽

𝑡=1

𝑁

𝑘=1

 

+2𝐶8𝜂𝑛    𝑝𝑘
𝑛 ,𝑡 

𝐽

𝑡=1

 

2
𝑁

𝑘=1

+ 𝐶8
2𝜂𝑛

2     𝑝𝑘
𝑛 ,𝑡 

𝐽

𝑡=1

 

2
𝑁

𝑘=1

 

≤  1 + 𝐶9𝜂𝑛 1 + 𝜂𝑛      𝑝𝑖
𝑛,𝑡 

2

𝐽

𝑡=1

𝑁

𝑘=1

                            (47) 

where 𝐶9 = 𝑚𝑎𝑥 2𝐶8𝐶8
2 .  A combining this with (46), we 

have  

   𝑝𝑘
𝑛 ,𝑡

𝐽

𝑡=1

 

2
𝑁

𝑘=1

≥ 𝛾𝜂𝑛    𝑝𝑘
𝑛 ,𝑡 

2

𝐽

𝑡=1

𝑁

𝑘=1

 

≥
𝛾𝜂𝑛

1 + 𝐶9𝜂𝑛 1 + 𝜂𝑛  
   𝑝𝑘

𝑛 ,𝑡 
2

𝐽

𝑡=1

𝑁

𝑘=1

    (48) 

On the other hand, it follows from  (43) and    0 ≤ 𝜂𝑛 ≤
𝜂0 ≤ 1 that 

    𝑝𝑘
𝑛 ,𝑡 

𝐽

𝑡=1

 

𝑁

𝑘=1

2

≤ 𝐽   𝑝𝑘
𝑛 ,𝑡 

2

𝐽

𝑡=1

𝑁

𝑘=1

≤
1

𝛾𝜂𝑛
   𝑝𝑘

𝑛,𝑡

𝐽

𝑡=1

 

2
𝑁

𝑘=1

                           49  

and 

𝜂𝑛    𝑝𝑘
𝑛,𝑡 

𝐽

𝑡=1

≤  
𝐽𝜂𝑛
𝛾

  

𝑁

𝑘=1

   𝑝𝑘
𝑛 ,𝑡

𝐽

𝑡=1

 

𝑁

𝑘=1

≤  
𝐽

𝛾
    𝑝𝑘

𝑛,𝑡

𝐽

𝑡=1

 

𝑁

𝑘=1

                            (50) 

This together with (19) yields 

  𝑑𝑖
𝑛 ,𝑗
 ≤ 𝜂𝑛    𝑝𝑘

𝑛 ,𝑡

𝐽

𝑡=1

 

𝑁

𝑘=1

+ 𝐶2𝜂𝑛
2      𝑝𝑘

𝑛 ,𝑡 

𝐽

𝑡=1

𝑁

𝑘=1

 

≤  1 + 𝐶2 
𝐽

𝛾
  𝜂𝑛    𝑝𝑘

𝑛 ,𝑡

𝐽

𝑡=1

 

𝑁

𝑘=1

                        (51) 

By (48) and (38), we deduce that 

 𝑝𝑖
𝑛+1,𝑗

𝐽

𝑗=1

=  𝑝𝑖
𝑛 ,𝑗

𝐽

𝑗=1

+ 𝑟𝑖
𝑛 ,𝑗

𝐽

𝑗=1

                                           (52) 

It follows from (25), (45) and (51) that 

   𝑝𝑖
𝑛+1,𝑗

𝐽

𝑗=1

 ≥  𝑝𝑘
𝑛,𝑗 

𝐽

𝑗=1

− 𝐽 𝑟𝑖
𝑛,𝑗  

                          ≥   𝑝𝑖
𝑛,𝑗

𝐽

𝑗=1

 − 𝐽𝐶9𝜂𝑛  𝑝𝑖
𝑛 ,𝑗 

𝐽

𝑗=1

 

≥  1 − 𝐽𝐶8  1 + 𝐶2 
𝐽

𝛾
  𝜂𝑛      𝑝𝑘

𝑛 ,𝑡

𝐽

𝑡=1

 

𝑁

𝑘=1

            (53) 

It can be easily verified that for any positive 𝑥 ≥ 𝑦 − 𝑧, 
then 

                    𝑥2 ≥ 𝑦2 − 2yz                                              (54) 

Substitution (54) into(53) and noting (48), there holds 

  𝑝𝑘
𝑛+1,𝑗

𝐽

𝑗=1

 

2

≥  1 + 𝐶9𝜂𝑛    𝑝𝑘
𝑛 ,𝑡

𝐽

𝑡=1

 

𝑁

𝑘=1

2

 

≥
𝛾𝜂𝑛  1 + 𝐶10𝜂𝑛 

1 + 𝐶9𝜂𝑛 1 + 𝜂𝑛   
   𝑝𝑘

𝑛+1,𝑡 
2

𝐽

𝑡=1

𝑁

𝑘=1

  (55) 

where 𝐶10 = 2𝐽𝐶8 1 + C2 𝐽 𝛾  . Comparing (47) with 

(58), we see that if  

𝛾𝜂𝑛  1 + 𝐶10𝜂𝑛 

1 + 𝐶8𝜂𝑛 1 + 𝜂𝑛   
≥ 𝛾𝜂𝑛+1                                     (56) 

From this easy to get  (44) is proved. Hence we need only 
to verify (56).  Substituting  (9) into (56), we get 

𝛽 − 𝐶8 − 𝐶10 ≥  𝐶8 + 𝛽𝐶10 𝜂𝑛                                       (57) 

Recalling the definition of 𝛽 = 𝐶8 + 𝐶9 in (11), we see 
that if  𝜂0  and 𝛽  in (9) satisfy the conditions in 
Assumption (A3) 

𝛽 > 𝑚𝑎𝑥 1, 𝛽   and 0 ≤ 𝜂0 ≤ 𝑚𝑖𝑛  1,
1

𝛽 
−

1

𝛽
                (58) 

There holds 

0 ≤ 𝜂𝑛 ≤ 𝜂0 ≤
1

𝛽 
−

1

𝛽
=
𝛽 − 𝛽 

𝛽𝛽 
 ≤

𝛽 − 𝐶8 − 𝐶10

𝐶8 + 𝛽𝐶10

      (59) 

Which validates (57) and also (56). Thus, the inequality 
(44) has been proved. 

The next two Lemmas will be used to prove our 
convergence results. Their proofs are omitted since they 
are quite similar to those of Lemma 3.5 in [27] and 
Theorem 3.5.10 in [28] , respectively 

Lemma 7. Suppose that the series   an
2 n ∞

n=1 < ∞,  that 
an > 0 𝑓𝑜𝑟 𝑛 = 1,2,…. and that there exists a constant 
μ > 0 such that   𝑎𝑛+1 − 𝑎𝑛  < 𝜇 𝑛  , 𝑛 = 1,2,… then, we 
have limn→∞ an = 0. 

Lemma 8. Let 𝐹:Φ ⊂ 𝑅𝑝 → R  𝑝 ≥ 1  be continuous for 
a bounded closed region Φ.   If the set Φ0 =  𝑥 ∈
Φ: Fxx=0 has finite points and the sequence 𝑥𝑛∈Φ 
satisfy: 

 𝑖   lim𝑛→∞ 𝐹𝑥 𝑥𝑛  =
0  
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 𝑖𝑖  lim𝑛→∞ 𝑥𝑛−1 − 𝑥𝑛 = 0.  

        Then, there exists 𝑥∗ ∈ Φ0  such that lim𝑛→∞ 𝑥𝑛 = 𝑥∗  

           Now we are ready to prove the main Theorems. 

Proof  of Theorem 1. In virtue of (37), if for any 
nonnegative integer 𝑛 

   𝑝𝑘
𝑛 ,𝑡

𝐽

𝑡=1

 

𝑁

𝑘=1

2

≥ 𝛾𝜂𝑛    𝑝𝑘
𝑛 ,𝑡 

2

𝐽

𝑡=1

  

𝑁

𝑘=1

                        (60) 

then Theorem 1 is proved. 

For 𝑛 = 0, if the left hand side of (60) is zero, then by 

(2) 𝐸𝑤 𝑖 𝑤
0 =  𝑝𝑖

𝑛,𝑖𝐽
𝑖=1 = 0.  Hence, we have already 

reached a local minimum of the error function, and the 

iteration can be terminated. Otherwise, if   𝑝𝑖
𝑛,𝑖𝐽

𝑖=1  ≠ 0 

Such that  

   𝑝𝑘
0,𝑡

𝐽

𝑡=1

 

𝑁

𝑘=1

2

≥ 𝛾𝜂𝑛    𝑝𝑘
0,𝑡 

2

𝐽

𝑡=1

  

𝑁

𝑘=1

                        (61) 

Recalling Lemma 8, we know that Inequality(60) holds 
for all nonnegative integer 𝑛. Hence, the monotonicity of 
the error sequence  𝐸 𝑊𝑛𝐽    is proved.  

Proof  of Theorem 2. Note that   𝜉𝑛1, 𝜉𝑛2, … , 𝜉𝑛𝐽   is the 
permutation of  𝜉1, 𝜉2, … , 𝜉𝐽    in the n-th cycle of training 
iteration,  there holds for any 𝑤 ∈ ℝ𝑝  and 𝑛 = 0,1,… that 

 𝐸 𝑊𝑛𝐽  =  g𝑛𝑗   𝜓𝜄
𝑛𝐽  

𝐽

𝑗=1

+
𝜆 

2
   𝑤𝑖

𝑛𝐽
∙  𝜉𝑛𝑗  

2
𝑁

𝑖=1

𝐽

𝑗=1

 

=  g𝑗   𝜓𝜄
𝑛𝐽  

𝐽

𝑗=1

+
𝜆 

2
   𝑤𝑖

𝑛𝐽 ∙  𝜉𝑗 
2

𝑁

𝑖=1

𝐽

𝑗=1

          (62) 

Form Lemma 6, write 

𝐸 𝑊𝑛𝐽  ≤ 𝐸 𝑊0 =  g𝑗   𝜓𝜄
0 

𝐽

𝑗=1

+
𝜆 

2
   𝑤𝑖

0 ∙  𝜉𝑗  2

𝑁

𝑖=1

𝐽

𝑗=1

≤ 𝐶14                                                          (63) 

where 𝐶11 = 𝐽𝐶 +  𝜆 2  𝐽𝐶2 𝑤𝑖
0 

2
. From (1) and (63) , 

we have  

𝜆 𝑤𝑖
𝑛𝐽 ∙  𝜉𝑗  

2
≤ 2𝐸 𝑊𝑛𝐽  ≤ 2𝐶11  , 𝑗 = 1,2,… , 𝐽      (64) 

This together with the definition of 𝐶6 in (25) indicates 

   𝑝𝑘
𝑛,𝑡 

𝐽

𝑡=1

𝑁

𝑘=1

≤ 𝐶6 +
2

𝜆
𝐶11                                             (65) 

Combining  (2) with (62) we have 

𝑤𝑖
𝑛𝐽

= 𝑤𝑖
0 − 𝜂𝑛    g𝑗

′   𝜓𝜄
𝑚𝐽 +𝑗−1

 (𝜑𝜄
𝑚𝐽 +𝑗−1

)

𝐽

𝑗=1

𝑛−1

𝑚=1

+ 𝜆 𝑤𝑖
𝑚𝐽 +𝑗−1

∙ 𝜉𝑗   𝜉𝑗                          (66) 

Let the second part of above  equation be 𝑤𝑖1
𝑛𝐽

, Denote 

ℝ1 = 𝑠𝑝𝑎𝑛  𝜉1 , 𝜉2 , . . , 𝜉𝐽   ⊂ ℝ𝑛  and ℝ2 = ℝ1
⊥  be the 

orthogonal complement space of ℝ1 .  Denote the second part 

of (66) by 𝑤𝑖1
𝑛𝐽

, obviously 𝑤𝑖1
𝑛𝐽 ∈ ℝ1  . we divide 𝑤𝑖

0  into 

𝑤𝑖
0 = 𝑤𝑖1

0 +𝑤𝑖2
0 , where 𝑤𝑖1

0 ∈ ℝ1  and 𝑤𝑖2
0 ∈ ℝ2 . Then 

𝑤𝑖
𝑛 =  𝑤𝑖1

0 +𝑤𝑖1
𝑛𝐽  ⊕ 𝑤𝑖2

0 = 𝑤 𝑖1
𝑛𝐽 ⊕𝑤𝑖2

0 . Applying this to 

(66),  we have 

 𝑠𝑡  ≔  𝑤 𝑖1
𝑛𝐽 ∙ 𝜉𝑡  =  𝑤𝑖

𝑛𝐽 ∙ 𝜉𝑗  ≤  
𝐶11

𝜆
, 𝑡 = 1,2, . . , 𝑇  (67) 

Suppose  𝜉𝑗1 , 𝜉𝑗2 , . . , 𝜉𝑗𝑇    𝑗𝑡 ∈  1,… , 𝐽 , 𝑡 = 1,2,… , 𝑇  is a 

base of the space ℝ1. There are 𝑎𝑡 ∈ ℝ  𝑡 = 1,2,… , 𝑇  such 

that 𝑤 𝑖1
𝑛𝐽

= 𝑎1𝜉
𝑗1 +⋯+ 𝑎𝑇𝜉

𝑗𝑇 . Then  𝑎1𝜉
𝑗1 +⋯+

𝑎𝑇𝜉𝑗𝑇∙𝜉𝑗𝑡=𝑠𝑡 ,𝑡=1,….,𝑇. we get  

 
𝜉𝑗1 ∙
⋮

𝜉𝑗1 ∙

 𝜉𝑗1

⋮
𝜉𝑗𝑡

     

…   
⋮

…    
  
𝜉𝑗𝑡 ∙
⋮

𝜉𝑗𝑡 ∙

𝜉𝑗1

⋮
𝜉𝑗𝑡
  

𝑎1

⋮
𝑎𝑇

 =  

𝑠1

⋮
𝑠𝑇

                 (68) 

Is a base, the coefficient determinant equal to zero, and 
the system of the linear equations has a unique solution. 
Assume that the coefficient determinant equals to: 

𝐶 =  
𝜉𝑗1

⋮
𝜉𝑗1

𝜉𝑗1 

⋮
𝜉𝑗𝑡

…
⋮
…

 𝜉𝑗𝑡−1 ∙
⋮

 𝜉𝑗𝑡−1 ∙

𝜉𝑗1

⋮
𝜉𝑗𝑡

  
𝒅𝟏
⋮
𝒅𝒕

  
  𝜉𝑗𝑡−1 ∙

⋮
  𝜉𝑗𝑡−1 ∙

 𝜉𝑗1

⋮
𝜉𝑗𝑡

  

…
⋮
…

  
𝜉𝑗1 ∙
⋮
𝜉𝑗1

 𝜉𝑗1    

⋮
𝜉𝑗𝑇

  

Then the solution is as follows 

𝑎𝑡 = 𝐶 ∙ 𝑆−1                                                                    (69) 

Let the maximum absolute value of all the sub determinant 

with rank  𝑇 − 1  of the coefficient determinant is 𝑆′ , then 
 𝑎𝑡  ≤  𝑆′  ∙  𝑆−1 ∙   𝑠𝑡  

𝑇
𝑡=0 . By (67) we have  𝑎𝑡  ≤  𝑆′  ∙

 𝑆−1 ∙ 𝑇 ∙  2𝐶11 /𝜆.  𝑡 = 1,2,… , 𝑇.  Denote 𝐶11
′ =

max1≤𝑡≤𝑇 𝜉
𝑗1  , then  

 𝑤 𝑖1
𝑛𝐽  =  𝑎1𝜉

𝑗1 +⋯+ 𝑎𝑇𝜉
𝑗𝑇  

≤  𝑆′  ∙  𝑆−1 ∙ 𝐶11
′ ∙ 𝑇2  ∙  

2𝐶11

𝜆
                            (70) 

That is 𝑤 𝑖1
𝑛𝐽  are bounded uniformly bounded. So from 

(67), we know 𝑤𝑖
𝑛𝐽  are uniformly bounded. In all, we get 

 𝑤𝑖
𝑛𝐽  

𝑛=0

∞
 are uniformly bounded, i.e., there exist a 

bounded closed region S ⊂ ℝ𝑛  such that  𝑤𝑖
𝑛𝐽  ⊂ 𝑆.  

Proof  of Theorem 3. Denote 

𝜎𝑛 = 𝜂𝑛    𝑝𝑘
𝑛 ,𝑡

𝐽

𝑡=1

 

𝑁

𝑘=1

2

− 𝛾𝜂𝑛
2    𝑝𝑘

𝑛 ,𝑡 
2

𝐽

𝑡=1

  

𝑁

𝑘=1

             (71) 

We observe from the proof of Theorem 1 that  𝜎𝑛 ≥ 0 for 
∀ 𝑛 = 0,1,…. 
        In view Lemma 7  and Theorem 1, there holds 

𝐸 𝑊 𝑛+1 𝐽  ≤ 𝐸 𝑊𝑛𝐽  − 𝜎𝑛 ≤ ⋯ ≤ 𝐸 𝑊0 − 𝜎𝑘
𝑛

𝑘=1

(72) 

Note that 𝐸 𝑊 𝑛+1 𝐽  ≥ 0 for any 𝑛 > 0. Setting 𝑛 → ∞, 

we have  

 𝜎𝑛
∞

𝑛=0

≤ 𝐸 𝑊𝑛𝐽  < ∞                                                         (73) 

A combination of (65) and Lemma  2 𝑖𝑖  gives 

  𝛾𝜂𝑛
2    𝑝𝑘

𝑛,𝑡 
2

𝐽

𝑡=1

 

𝑁

𝑘=1

 

∞

𝑛=0

≤ 𝐶12  𝜂𝑛
2

∞

𝑛=0
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< 𝜎𝑛  
𝐶12

𝜂𝑛

∞

𝑛=1

< ∞,                                (74) 

where 𝐶13 = 𝛾𝐽𝐶12
2 . Thus and (73) holds 

  𝜂𝑛    𝑝𝑘
𝑛 ,𝑡

𝐽

𝑡=1

 

𝑁

𝑘=1

2

< ∞                                                  (75)

∞

𝑛=0

 

Thus  

 
1

𝑛
 𝐸 𝑊𝑛𝐽    2

∞

𝑛=1

<
1

𝜏
 𝜂𝑛

∞

𝑛=0

   𝑝𝑘
𝑛,𝑡

𝐽

𝑡=1

 

𝑁

𝑘=1

2

< ∞       (76) 

Let  𝐸𝑤𝑤  𝑊 =  𝜕2𝐸/𝜕𝑤 𝑖𝜕𝑤𝑗  1≤𝑖,𝑗≤𝑝
 be the Hessian 

matrix of 𝐸 𝑊 . By (A1),theorem 2 and  Lemma 2, there 
is  𝐶13 > 0 such that 

 𝐸𝑤 𝑖𝑤 𝑖 𝑊  =  𝐸𝑤 𝑖𝑤 𝑖 𝑊  < 𝐶14 ,      𝑤 ∈ ℝ𝑝           (77) 

In addition, by (33) and (65) , there is  𝐶15 > 0 such that 

 𝑑𝑖
𝑛 ,𝑗 ≤   1 + 𝐶2   𝜂𝑛    𝑝𝑘

𝑛,𝑡 

𝐽

𝑡=1

𝑁

𝑘=1

<
𝐶15

𝑛
                    (78) 

Again using the Taylor Expansion, holds 
  𝐸𝑤 𝑖 𝑊

 𝑛+1 𝐽   −  𝐸𝑤 𝑖 𝑊
𝑛𝐽     

≤  𝐸𝑤 𝑖 𝑊
 𝑛+1 𝐽  − 𝐸𝑤 𝑖 𝑊

𝑛𝐽  − 𝐸𝑤 𝑖𝑤 𝑖 𝑊
𝑛𝐽  𝑑𝑖

𝑛,𝑗 

+  𝐸𝑤 𝑖𝑤 𝑖 𝑊
𝑛𝐽  𝑑𝑖

𝑛,𝑗   

≤  0  𝑑𝑖
𝑛,𝑗  + 𝐶14 𝑑𝑖

𝑛 ,𝑗  < 𝐶16 𝑑𝑖
𝑛,𝑗 <

𝐶17

𝑛
             (79) 

 

where 𝐶17 = 𝐶14𝐶16.  A combination of (78), (79) and 
Lemma 7 gives  

lim
𝑛→∞

 𝐸𝑤 𝑖 𝑊
𝑛𝐽    = 0.                                                  (80) 

Similarly as (79), there 𝐶18 > 0 for any unit vector, gives 

 𝐸𝑤 𝑖 𝑊
𝑛𝐽+𝑗  − 𝐸𝑤 𝑖 𝑊

𝑛𝐽   <
𝐶18

𝑛
, 𝑗 = 1,2,… , 𝐽         (81) 

Thus  
 𝐸𝑤 𝑖 𝑊

𝑛𝐽+𝑗   ≤  𝐸𝑤 𝑖 𝑊
𝑛𝐽   

+  𝐸𝑤 𝑖 𝑊
𝑛𝐽+𝑗  − 𝐸𝑤 𝑖 𝑊

𝑛𝐽   

<  𝐸𝑤 𝑖 𝑊
𝑛𝐽   +

𝐶18

𝑛
→ 0                    (82) 

Namely, we come to the weak convergence result: 

lim
𝑘→∞

 𝐸𝑤 𝑖 𝑊
𝑘   = 0                                                   (83) 

Next, we prove the strong convergence. By (80), we get 

lim
𝑚→∞

 𝑤𝑖
𝑛𝐽 +𝑗

−  𝑤𝑖
𝑛𝐽  = lim

𝑛→∞
 𝑑𝑖

𝑛 ,𝑗 = 0              (84) 

Recalling Lemma 8  and noting (80) ,  (84) and 
Assumption (A3) there exists 𝑤∗ ∈ Ω0 such that 

lim
𝑚→∞

𝑊𝑛𝐽 = 𝑊∗ ,    𝐸𝑤 𝑖 𝑤𝑖
∗  = 0                     (85) 

Note that for 𝑗 = 1,2,… . . , 𝐽, there is 𝐶19 > 0 such that 

 𝑤𝑖
𝑛𝐽 +𝑗

−𝑤𝑖
𝑛𝐽  ≤   𝛼𝑖

𝑛,𝑗
 ∆𝑗
𝑛𝑤𝑖

𝑛𝐽 +𝑗−1
 − 𝜂𝑛𝑝𝑖

𝑛,𝑗 ,𝑗   

𝐽

𝑗=1

(86) 

≤   𝛼𝑘
𝑛 ,𝑡  ∆𝑡

𝑛𝑤𝑘
𝑛𝐽+𝑡−1

− 𝜂𝑛𝑝𝑘
𝑛,𝑡,𝑡 

𝐽

𝑡=1

𝑁

𝑘=1

≤ 𝐶19𝜂𝑛 → 0     (87) 

Combining this with (85) yields 

lim
𝑛→∞

 𝑤𝑖
𝑛𝐽 +𝑗

−  𝑤𝑖
∗ = 0,      𝑗 = 1,2,… . . 𝐽             (88) 

Hence 

lim
𝑘→∞

𝑊𝑘 = 𝑊∗  ,        𝐸𝑤 𝑖 𝑊
∗  = 0                        (89) 

which completes the proof. 

V. CONCLUSION 

In this paper, we study boundedness and convergence of  
batch gradient method with inner-penalty and 
momentum for Pi-sigma neural network. The penalty 
term it is celled inner-penalty and it is useful to prove  
capability and magnitude network training.  The 
momentum of the error function with penalty term is 
often insert to the increment formula for the weights so 
that the new weight updating rule prove increment 
during the training iteration. In this way, the network tends 

to respond not only to the local gradient but also to recent 

trends in the error surface. Both weak and strong 
convergence of the algorithm are considered for the net- work 

with a weights on the connections between the product node 

and the summation nodes are fixed to 1, which is the fast 

process during the training iteration. sufficient conditions 

for this convergence results are offered. Under this condition, 

we prove that the error function is decreasing monotonically, 

and the batch gradient method with inner-penalty and 

momentum is deterministically convergent. 
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