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Abstract— Compressing the ECG signal is considered a feasible 

solution for supporting a system to manipulate the package size, 

a major factor leading to congestion in an ECG wireless 

network. Hence, this paper proposes a compression algorithm, 

called the advanced two-state algorithm, which achieves three 

necessary characteristics: a) flexibility towards all ECG signal 

conditions, b) the ability to adapt to each requirement of the 

package size and c) be simple enough. In this algorithm, the 

ECG pattern is divided into two categories: “complex” durations 

such as QRS complexes, are labelled as low-state durations, and 

“plain” durations such P or T waves, are labelled as high-state 

durations. Each duration type can be compressed at different 

compression ratios, and Piecewise Cubic Spline can be used for 

reconstructing the signal. For evaluation, the algorithm was 

applied to 48 records of the MIT-BIH arrhythmia database 

(clear PQRST complexes) and 9 records of the CU ventricular 

tachyarrhythmia database (unclear PQRST complexes). 

Parameters including Compression Ratio (CR), Percentage Root 

mean square Difference (PRD), Percentage Root mean square 

Difference, Normalized (PRDN), root mean square (RMS), 

Signal-to-noise Ratio (SNR) and a new proposed index called 

Peak Maximum Absolute Error (PMAE) were used to 

comprehensively evaluate the performance of the algorithm. 

Eventually, the results obtained were positive with low PRD, 

PRDN and PMAE at different compression ratios compared to 

many other loss-type compressing methods, proving the high 

efficiency of the proposed algorithm. All in all, with its extremely 

low-cost computation, versatility and good-quality 

reconstruction, this algorithm could be applied to a number of 

wireless applications to control package size and overcome 

congested situations.  

Keywords: ECG compression, Telemedicine, ECG pattern 

classification, adaptive package size. 

I. INTRODUCTION 

ECG telemedicine is developing rapidly and is widely used 

for a variety of medical purposes, such as improving access to 

medical services, monitoring patients with chronic and 

cardiovascular diseases or in ambulatory applications [1], 

[2].  
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Nevertheless, to guarantee the quality of the transmitted 

ECG signal, a medical network often faces congestion 

problems that lead to high Bit Error Rate (BER) and high 

package loss rate, where the size of the transmitted data is a 

major contributing factor [3]-[5]. In low bit rate wireless 

environments, such as GPRS or HSCSD, different package 

lengths could cause significant changes in transport delay 

and jitter, possibly leading to package errors [3]. A larger 

package size will also increase the number of retransmissions 

that, as a consequence, will increase the package loss rate due 

to a higher possibility of packages being discarded [4]. 

However, continuously reducing the package size does not 

always produce better performance, since transmission 

intervals reduce proportionally, and the channels will be 

extremely busy at a certain level [5]. Therefore, optimizing 

package size for ECG devices could be an effective solution 

to maintain performance and utilize channels in a medical 

wireless network. The sampling rate for digitalizing ECG is 

always selected to be at least 250 samples/second for portable 

applications, and up to 1000 samples/second for fully 

functional monitoring systems in hospitals. Hence, it is 

difficult to ensure that quality is maintained and there is 

sufficient channel bandwidth to transmit all the raw data 

with such large package sizes from different systems. In such 

a scenario, compressing the ECG signal would be beneficial 

for transmitting smaller packages without proportionally 

reducing the interval of transmission. In order to adapt to 

various applications and clinical situations, the compression 

algorithm must have three characteristics: 

1)  It must be flexible for applying to the different shapes of 

ECG signals without depending on detecting any 

physiological features, such as P and T wave, QRS 

complex or R peak. 

2)  Immediately satisfy every adjustment of the package size 

to guarantee low delay in critical situations. 

3)  Have a low computational cost at both compression and 

decompression stages to allow the system to undertake 

further processing. 

A detailed classification of previous works can be found in 

the Introduction part of Ref. [6]. There are more than 50 

compression methods that could be divided into two major 

sections: 1-D methods and 2-D methods. In 1-D methods, 

there are also four sub-groups including direct-time domain 

compression methods (DTD), model based compression 

methods (MB), transform domain compression methods 

(TD) and hybrid compression methods (H). Except for DTD 

methods [7]-[10], which can achieve all three characteristics 

mentioned above, the other groups have their own 

disadvantages preventing 

their widespread use in 

different applications. MB 
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methods need to detect QRS complexes or R peaks to capture 

different shapes of beats for storage in their codebooks 

[11]-[14], or for learning mechanism and compression in 

case of using Vector Quantization technique (VQ) [15]-[18]. 

TD methods [6], [19]-[39] which use different 

transformations such as Wavelet transform, discrete cosine 

transform, etc., hardly satisfy the change of compressed data 

size without affecting the quality of reconstruction,since they 

depend on the size of processing block. Besides that, 

although the reconstruction were extremely good at very high 

compression ratio due to various modifications in 

transformation techniques or error minimization 

mechanisms, the considerable computational cost causes TD 

methods to be hardly applied in a network with multiple ECG 

devices. Likewise, H[40]-[42] and 2-D methods[43]-[48] are 

even more computationally complex and are difficult for 

implementing in wireless applications as a step. DTD 

methods, such as turning point (TP) [7], amplitude zone time 

epoch coding (AZTEC) [8], the coordinate reduction time 

encoding (CORTES) [9] and scan along polygonal 

approximation (SAPA) [10], are the most flexible ones 

compared to others, since they are simple enough and 

independent of ECG features (these algorithms actually only 

detect slopes in general, not P and T waves or QRS complex). 

Nevertheless, almost all of them except SAPA cannot 

re-produce a reliable ECG signal. A comprehensive review 

about these algorithms was done in Ref. [49]. Therefore, this 

paper aims to add a novel, extremely simple, versatile and 

enough reliable compression algorithm to the DTD group, 

called the advanced two-state algorithm, using two different 

compression ratios to compress two types of durations in the 

ECG signal: complex durations and plain durations, and 

apply Piecewise Cubic Spline, a basic interpolation 

algorithm, for decompressing the signal.  Details of the 

proposed method are given in section 2. In section 3, we 

survey the performance of the algorithm with two types of 

ECG signals: signals with clear PQRST complexes 

(BIH-MIT arrhythmia database [50]) and signals with 

unclear PQRST complexes (CU ventricular tachyarrhythmia 

[51]).  

II. TWO-STATE COMPRESSING ALGORITHM 

A. Principle and overview of the two-state compressing 

algorithm 

Many compressing methods share the same idea of 

separating QRS complexes containing high frequency 

components, from P and T waves, which only consist of low 

frequency components. However, almost algorithms used in 

those methods tend to detect exactly R peaks or QRS 

complexes that can reduce their versatility and flexibility in 

case of irregular ECG signals as well as increase the cost of 

computation. To overcome this problem, the proposed 

algorithm tends to distinguish between complex durations in 

general, in which QRS complexes are particular examples, 

and plain durations in general, which include P and T waves, 

by a simpler method of using two thresholds in the first 

derivative of the signal (Figure 1). The first derivative of the 

ECG signal is calculated by the formula (1). 

 

 

Where, n is the number of ECG samples,  and  are the 

ith ECG’s sample and the ith first derivative sample. As 

clearly seen,  is in fact the difference between  and its 

previous sample, thus it can help distinguish the pattern as a 

low- or high-frequency duration. Considering a short period 

of record number 103 of MIT-BIH arrhythmia (Figure 1), 

which has clear PQRST shapes, the P and T waves exhibit a 

moderately flat pattern in the first derivative, expressing 

their slow changing curves, which could be classified easily 

by a threshold Thr1. If a sample is equal to or larger than 

Thr1, it would indicate a possible upcoming complex 

duration like QRS complexes. To capture sufficient complex 

durations in the first derivative, a smaller threshold Thr2 is 

used. By continuously finding samples smaller than Thr2, 

the end of QRS will be defined, and the threshold is switched 

back to Thr1. As a result, plain durations and complex 

durations could be eventually separated by this extremely 

low-cost computational mechanism. After classification, 

both complex durations and plain durations are compressed 

simply by a downsampling process, which decreases the 

sampling frequency of the signal by just removing the 

samples: 

 ,  with     (2) 

Wherein, h,  is the ith sample of the compressed signal, m 

is the number of samples after compressing, k is the 

downsample factor (DF) and in this case, it is also the 

compression ratio (CR) of that duration. Henceforth, we will 

use the term CR instead of DF throughout the manuscript to 

be more precise in terms of the compressing data. The 

classification mechanism and the downsampling process 

above form the principle of the proposed two-state 

algorithm: the ECG pattern will be divided into two types: (i) 

plain durations like P and T waves (low frequency 

components), which could be downsampled at a higher CR 

(hCR) and are labelled as high-state, and (ii) complex 

durations like QRS (high frequency components), which 

could be downsampled at a lower CR (lCR) and are labelled 

as low-state. As a result, a more optimized overall 

compression ratio (oCR) could be achieved for the signal. In 

this algorithm, the values of hCR and lCR have to satisfy:  

 with n being an interger and n ≥1, 

which will be further explained in the next section. To keep 

consistency while presenting the method and evaluating the 

results, the terms ―plain” and ―complex‖ in this section, 

which were first propounded by Kim. et.al. [34] will be used 

along with hCR, lCR, oCR, Thr1 and Thr2 terminologies in 

this paper. 
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An overview of the proposed two-state algorithm is presented 

in Figure 2. There are four major compressing steps and 

three major decompressing steps. For the compressing steps, 

a block with the length of L = hCR samples is continuously 

scanned throughout the first derivative of the signal (Figure 

1). The block is first classified as a low-state or high-state 

block (procedure 1), then compressed  with hCR or lCR 

based on its state, but storing the backward differences 

instead of the ECG samples (procedure 2). Next, some 

special samples, called state-changed-markers, are added to 

mark a change of state if available (procedure 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This finally, represents the backward differences to improve 

the overall CR (procedure 4). At the end of the process, this 

block will be compressed to only one sample in case of 

high-state or n = hCR/lCR samples in case of low-state 

before moving to the next block. This kind of sample-unit 

process can help the system to control the size of the package 

easily and continuously in extremely short time. For the 

decompression process, the recipient compressed signals will 

be reclassified based on the marking samples (procedure 5), 

followed by inversing the difference to get complete ECG 

samples (procedure 6) and reconstructed using Cubic Spline 

(procedure 7).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Record 103 of MIT-BIH arrhythmia database (above), its first derivative (below).Tthe complex 

durations and plain durations are distinguished by two thresholds in the first derivative signal 

 

Figure 2. The overview of the advanced two-state algorithm 
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B. Classification of ECG patterns (state-classifying). 

As mentioned above, a block of L = hCR samples (the first 

derivative samples) will be compared to two thresholds Thr1 

and Thr2 before being labelled as a low-state or a high-state 

block. There are two main steps involved in this process, 

which is presented below (Figure 3): Process A (high-state 

classification): first, a block of L consecutive  samples are 

compared to Thr1. If all these samples satisfy the condition: 

 Thr1, with i = 0,1,...,L–1, then this block is classified 

as a high-state block since it only contains plain data. In 

contrast, if at least one component exceeds Thr1, this will be 

labelled as the first low-state block, marking an end of a plain 

duration and the program will switch to process B. Process B 

(low-state classification): here, all the subsequent  

samples will be compared to the smaller value Thr2. If a 

block has at least one sample bigger than Thr2, it is still 

considered to be in low-state duration. In contrast, if all 

samples within a block are smaller than Thr2, then the 

previous block will be the final low-state block and the 

program is switched back to process A. Moreover, since lCR 

will be applied for these blocks, lCR must be a divisor of hCR 

to match the size of the block. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To guarantee a full capture, the low-state duration is 

extended by one block on each side. The structure of each 

block and the corresponding conditions are also presented in 

Figure 4. We also tested with all 48 records of MIT-BIH 

arrhythmia database to find suitable Thr1 and Thr2, and we 

found that Thr1 = 10 and Thr2 = 0.3 × Thr1 would be the 

best conditions to capture enough complex durations. 

Examples of classifying ECG patterns with L = hCR  = 8 in 

records 102, 107, 119 and 123 are shown in Figure 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Flowchart of the ECG pattern classification (state classification) procedure presening two processes: 

Process A for high-state classification (left branch) and Process B for low-state classification (right branch) 

 

Figure 4. The structure of classified blocks within each type of duration. Noting that the low-state durations are 

expanded to each side by 1 block which is originally a high-state block 
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Figure 5. Examples of classifying ECG patterns (hCR = 8, Thr1 = 10) in recordings 102, 107, 119 and 123 with 

grey durations representing the low-state durations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C. State-based backward difference compression 

After classification, the corresponding block will be 

compressed depending on its state. If it is a high-state block, 

only the first sample is stored while the remaining samples 

within that block will be removed (downsample factor = 

hCR). Conversely, in case of a low-state block, this block will 

be downsampled with a lower downsample factor = lCR, or 

in other words, there will be  samples within a low-state 

block, which will be saved into the compressed package. In 

addition, each compressed ECG samples except the first one 

will be immediately replaced by the difference between itself 

and its previous sample, called the backward 

difference: , with  and  is the 

(i+1)th samples of the compressed package and its backwards 

difference. A full overview of this procedure is shown in 

Figure 6. 

Figure 6. The compressed package structure. In a high-state block, only the first sample is reserved while in a 

low-state block, there will be n = hCR/lCR =L/L’ samples are kept. Additionally, only the first sample is the ECG 

sample while the next samples are the backward differences: , with  and  is the (i+1)
th

 samples 

of the compressed package and its backwards difference. 

D. State-changed-markers 

This procedure is an important part because it helps the 

receiver re-classify the pattern of the received package before 

reconstructing the signal. Some special samples, called 

state-changed-markers, will be added into the intersections 

between low-state durations and high-state durations. 

Importantly, this procedure is only enabled when a switch 

from Process A to Process B (Procedure 1) or vice versa 

occurs, and the marking samples have to be unique in order 

to be recognized clearly. It is worth noting that these marking 

samples must have the same presentation as the ECG sample, 

and it is in 2-byte form in case of BIH-MIT arrhythmia 

database and CU ventricular tachyarrhythmia database. 

Specifically, if a high-to-low transition occurs, then an 

all-bit-1 sample, which has a 

decimal value of -32768 

(signed form) in terms of 
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2-byte presentations, is added between the final high-state 

sample and the first low-state sample in the compressed 

package (Figure 6). In contrast, if a low-to-high happens, two 

marking samples will be inserted between the final low-state 

sample and the first high-state sample, including an all-bit-1 

sample and an all-bit-0 sample (decimal value of 0) (Figure 6) 

to mark the end of a low-state duration.        

E. Backward difference representation 

This procedure will represent the compressed package, 

which possibly contains samples with 2-byte format, and 

convert samples into 1-byte format, if possible, to enhance 

the overall compression ratio (Figure 7). The backward 

difference samples are considered subject to satisfying the 

condition: . Samples that meet the 

demand could be shortened into 1-byte format without 

problems, while those that do not meet the criteria will be 

represented in 2-byte format, in which the first byte is -128 (if 

) or 127 (if ), and the second byte 

stores the difference:  (if 

) or  (if ). 

In case of state-changed-markers, all-bit-1 sample will be 

reserved (2 bytes, each byte = -128), while all-bit-0  

sample will be shortened into 1 byte (1 byte = 0). 

 

 

 

 

 

 

 

 

 

 

 

 

F. State re-classification 

After receiving a package, the receiver first checks the 

package to re-detect complex durations and plain durations 

based on state-changed-markers. The beginning of complex 

duration will be recognized by detecting two consecutive 

bytes of -128, while the end will be marked by two bytes of 

-128 and one byte of 0. Due to the fact that state changes 

alternatively, successfully re-classifying complex durations 

also lead to successfully re-detecting plain durations. The 

state-changed-markers are also simultaneously removed in 

this procedure. 

G. Inverse difference 

Before interpolating the compressed signal, the package 

needs to be reversed to ECG samples instead of samples of 

differences. Hence, each difference sample will be 

re-converted into 2-byte form and the corresponding ECG 

sample will be calculated based on the previous ECG sample 

and the difference, starting from the first ECG sample.  

H. Cubic Spline Interpolation 

Finally, the signal will be reconstructed using Cubic Spline 

noting that different durations will have different distances 

between samples. 

III. EXPERIMENTS AND RESULTS 

A. Indexes for evaluating compression algorithm 

The performance of the proposed algorithm was evaluated by 

some common indexes presented below, which were also 

used by many other studies: 

The compression ratio (CR): 

 

 is the original size and  is the size of the 

compressed signal. The CR calculated here is the overall CR 

(oCR) after applying hCR and lCR to compress the whole 

signal. 

Percentage RMS difference (PRD): 

 
This is also most commonly used to evaluate the performance 

of an ECG compression method. 

Percentage RMS difference, normalized (PRDN): 

 

    is the average of the original data. 

Root mean square error (RMS):           

 
 

Signal-to-noise ratio (SNR): 

 
Peak Maximum Absolute Error (PMAE): 

Of note, we also proposed a new index to support the 

evaluation of the attenuation level of P, R and T peaks known 

as the Peak Maximum Absolute Error (PMAE) presented 

below: 

 

Figure 7. The structure of backward difference representation. 
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With  = -  

 is the P, R or T peak of the original data,  is 

the P, R or T peak of the reconstructed data,  and  are 

the starting index and the final index of the corresponding 

duration containing this peak (P wave, QRS or T wave), 

respectively.  is the maximum difference of this 

wave from index  to index  of the original data. This 

index aims to compare each peak’s attenuation level to the 

maximum difference of the wave holding that peak. 

Therefore, a high PMAE, about 10% and above, could lead to 

clear visibility of attenuation in shape and affect the outcome 

of the medical diagnosis.   

 B. Experiments with MIT-BIH arrhythmia database 

The first lead of all 48 MIT-BIH arrhythmia records with 

values ranging from 0 to 2048 were compressed and 

decompressed by the two-state algorithm, in which 4 

different ratios of hCR / lCR from 2 to 5 were tested. These 

included (hCR-lCR) 2-2, 4-2, 6-2, 8-2, 10-2, 6-3, 9-3, 12-3, 

15-3, 8-4, 12-4, 16-4, 20-4, 10-5, 15-5, 20-5 and 25-5, and 

two thresholds Thr1 = 10 and Thr2 = 0.3 x Thr1 = 3. To 

evaluate the whole signal reconstruction, CR (overall 

compression ratio - oCR), PRD, PRDN, RMS and SNR were 

calculated for the full period of 30 minutes for each record. 

Moreover, to assess the influence of the selection of two 

compression ratios (hCR and lCR) in re-building the signal, 

10 consecutive P waves, T waves and QRS of each recording 

were surveyed through PRD, and 10 consecutive P, R and T 

peaks were assessed for their attenuation through PMAE. 

The overall performance of the algorithm in compressing 

and reconstructing all 48 arrythmia records is presented in 

Figure 8. In terms of overall CR (oCR), although an increase 

in both hCR and lCR led to an increase in oCR, when hCR 

was large enough (lCR ≥ 15), the oCR showed no further 

signifcant improvements, such as in cases of hCR-lCR (oCR) 

16-4 (14.125) versus 20-4 (14.046), or 15-5 (15.556) versus 

20-5 (15.932) versus 25-5 (15.559). Generally, the increase 

in the ratio hCR/lCR from 2 to 5 caused an increase on 

average by 0.6% in PRD, 1.5% in PRDN, 0.45 bit in RMS 

and a decrease on average by 2.75dB in SNR in all cases of 

lCR. Table 1 shows the detailed results of five indexes of each 

recording with two cases of hCR-lCR = 25-5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Refering to PRD boxplots of a total of 480 P waves, QRS 

complexes and T waves of all 48 records (Figure 9), it seemed 

that reconstructions of QRS results were very stable among 

cases with the same lCR, but there were a big difference in 

both the median value and the data range between lCR = 2, 3, 

4 and 5. Except for some outliers, the PRD results of QRS 

were all smaller than 0.5% if lCR < 4 was selected and below 

1% with lCR = 4. With the highest lCR of 5, only 75% of all 

QRS complexes were re-built with PRD below 1%, and this 

result will heavily affect medical diagnosis. In contrast, the 

PRD results of P waves and T waves expanded proportionally 

mostly to the rise in hCR, 

but not in lCR, and the level 

of the data’s expansion was 

Figure 8. The overall performance of the proposed algorithm through five evaluation indexes of 

all 48 records of MIT-BIH arrhythmia database 
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much lower in all cases with PRD being smaller than 0.75%, except for a very small number of outliers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In terms of attenuation of the peaks (Figure 10), the PMAE of 

R peaks were almost under 10% (a value that could lead to 

medical misintepretation) except for a very small number of 

outliers with lCR ≤ 4. In contrast, higher PMAE results of 

both the median value and the range were found in T peaks 

and especially in P peaks when compared to R peaks within 

the same cases. Nevertheless, with lCR ≤ 4 and hCR ≤ 10, all 

peaks could obtain less than 10% PMAE as shown in Figure 

10.  

 

 

 

Rec.  CR PRD PRDN RMS SNR  Rec.  CR PRD PRDN RMS SNR 

100  17.538 0.418 21.023 4.154 13.545  201  19.456 0.239 12.126 2.409 18.325 

101  18.600 0.410 15.273 4.083 16.321  202  17.018 0.270 8.927 2.719 20.985 

102  15.881 0.491 25.145 4.903 11.989  203  11.444 0.440 8.743 4.435 21.166 

103  17.353 0.423 12.859 4.236 17.815  205  15.872 0.340 16.810 3.384 15.488 

104  14.667 0.642 25.078 6.428 12.013  207  17.503 0.337 9.366 3.395 20.568 

105  14.225 0.410 9.916 4.113 20.072  208  12.299 0.447 9.126 4.506 20.793 

106  15.063 0.469 12.549 4.725 18.027  209  12.136 0.486 17.869 4.903 14.957 

107  10.393 0.543 6.215 5.458 24.130  210  15.220 0.271 10.226 2.733 19.805 

108  16.339 0.427 13.875 4.274 17.155  212  11.277 0.585 17.414 5.901 15.181 

109  13.945 0.305 5.990 3.058 24.450  213  10.402 0.435 6.361 4.370 23.929 

111  15.813 0.304 11.667 3.070 18.660  214  13.650 0.344 7.214 3.472 22.835 

112  15.859 0.301 7.235 1.655 22.811  215  10.355 0.378 13.205 3.812 17.584 

113  17.297 0.718 17.148 7.241 15.315  217  11.624 0.481 7.699 4.854 22.270 

114  18.825 0.340 19.563 3.431 14.170  219  16.678 0.456 7.807 4.406 22.149 

115  17.925 0.519 13.607 5.060 17.324  220  17.502 0.628 18.682 6.090 14.571 

116  13.231 0.671 9.183 6.245 20.740  221  15.326 0.301 9.838 3.029 20.141 

117  21.069 0.331 12.679 3.102 17.938  222  15.969 0.394 20.925 3.977 13.586 

118  12.408 0.593 12.680 5.555 17.937  223  15.062 0.353 8.238 3.431 21.682 

119  15.946 0.551 9.427 5.167 20.512  228  16.001 0.354 10.093 3.577 19.919 

121  20.662 0.416 12.703 3.919 17.921  230  16.060 0.370 10.284 3.732 19.756 

122  14.504 0.375 9.408 3.523 20.529  231  19.985 0.438 15.888 4.422 15.978 

123  20.465 0.443 14.045 4.176 17.049  232  18.739 0.306 18.256 3.087 14.771 

124  19.561 0.281 5.599 2.647 25.037  233  12.244 0.373 6.771 3.767 23.386 

200  12.586 0.398 10.387 4.041 19.669  234  14.836 0.313 9.138 3.157 20.782 

Table 1. Overall CR, PRD, PRDN, RMS, SNR of 48 records of MIT-BIH arrhythmia after decompressing with 

hCR/lCR = 25-5 

Figure 9. PRD of a total of 480 P waves, T waves and QRS complexes of all 48 records of 

MIT-BIH arrhythmia database 
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Figure 11, 12, 13 and 14 respectively exhibit the 

reconstruction of record 113 (with worst PRD), record 117, 

record 119 and record 112 (with best PRD) after compression 

by the proposed algorithm with four hCR- lCR of 10-2, 15-3, 

20-4 and 25-5. The differences became visually clear when 

lCR > 3 in record 113 however, no significant differences 

were seen between all 4 cases for other 3 records. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Reconstruction of record 113 (worst PRD) at different compression ratios. (a) Original data, 

(b) hCR/lCR = 10-2, CR = 10.72, PRD = 0.179%, (c) hCR/lCR = 15-3, CR = 13.73, PRD = 0.264% (d) 

hCR/lCR = 20-4, CR = 15.86, PRD = 0.453% (e) hCr/lCR = 25-5, CR = 17.29, PRD = 0.718%. 

 

Figure 12. Reconstruction of record 117 at different compression ratios. (a) Original data, (b) hCR/lCR = 

10-2, CR = 11.86, PRD = 0.213%, (c) hCR/lCR = 15-3, CR = 15.78, PRD = 0.225% (d) hCR/lCR = 20-4, 

CR = 18.82,  PRD = 0.254% (e) hCr/lCR = 25-5, CR = 21.06, PRD = 0.331%. 

 

Figure 10.  PMAE of a total of 480 P, R and T peaks of all 48 records of all 48 records of MIT- 

BIH arrhythmia database 
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C. Experiments with CU ventricular tachyarrhythmia 

database 

A period of 1-minute of each record in 9 ventricular 

tachyarrhythmia records (CU04, CU06, CU07, CU10, CU12, 

CU16, CU20, CU22, CU24), which do not have clear PQRST 

shapes and have values ranging from 0 to 4095, was 

extracted, compressed and decompressed by our algorithm 

with the same parameters used in MIT-BIH arrythmia 

database.  For evaluation, the overall CR, PRD, PRDN, RMS 

and SNR were chosen. Generally, due to the large continuous 

fluctuations that make most of the signals to be classified as 

low-state, the accuracy of these ventricular tachyarrhythmia 

records only depended on lCR as shown in Table 2, where 

results of cases with same lCR were grouped and expressed 

by a mean value and its corresponding standard deviation. It 

can be seen that there were minor variances (small standard 

deviations) in all five indexes with all values of lCR ranging 

from 2 to 5 in 9 records. Moreover, all recordings 

experienced the same tendency of continous increase in PRD 

(an average of ~0.12%) , PRDN (~ 2%) and RMS (~ 6 bits), 

and a decrease of SNR (~ 6dB) when increasing lCR by 1, 

except for CU04 and CU20 whose indexes were relatively 

consistent when changing lCR. There were also examples of 

the reconstruction of CU04 (best PRD) (Figure 15) and CU12 

(worst PRD) (Figure 16) with hCR-lCR = 10-2, 15-3, 20-4 

and 25-5. It is difficult to visually recognize the real 

differences in the reconstruction in all five cases, including 

record CU12 although its PRD was 3.914% at the highest 

compression ratios (when hCR-lCR = 25-5). 

 

 

 

 

 

 

Figure 13. Reconstruction of record 119 at different compression ratios. (a) Original data, (b) hCR/lCR = 

10-2, CR = 10.08, PRD = 0.226%, (c) hCR/lCR = 15-3, CR = 12.81, PRD = 0.282% (d) hCR/lCR = 20-4, 

CR = 14.56, PRD = 0.390% (e) hCr/lCR = 25-5, CR = 15.94, PRD = 0.551%. 

 

Figure 14. Reconstruction of record 201 (best PRD) at different compression ratios. (a) Original data, (b) 

hCR/lCR = 10-2, CR = 11.33, PRD = 0.129%, (c) hCR/lCR = 15-3, CR = 14.75, PRD = 0.152% (d) 

hCR/lCR = 20-4, CR = 17.37, PRD = 0.188% (e) hCr/lCR = 25-5, CR = 19.45, PRD = 0.239%. 
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.  

Table 2. Overall CR, PRD, PRDN, RMS and SNR of 10 reconstructed records (CU ventricular tachyarrhythmia 

database). Results of cases having the same lCR were grouped in one group expressed by mean value and standard 

deviation 

 
      a: Group of cases having lCR = 2: 2/2, 4/2, 6/2, 8/2, 10/2. 

    b: Group of cases having lCR = 3: 6/3, 9/3, 12/3, 15/3. 

    c: Group of cases having lCR = 4: 8/4, 12/4, 16/4, 20/4. 

    d: Group of cases having lCR = 5: 10/5, 15/5, 20/5, 25/5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Reconstruction of record CU04 (best PRD) at different compression ratios. (a) Original data, 

(b) hCR-lCR = 10-2, CR = 3.99, PRD = 0.022%, (c) hCR-lCR = 15-3, CR = 5.98, PRD = 0.034%,  

(d) hCR-lCR = 20-4, CR = 7.91, PRD = 0.048%, (e) hCR-lCR = 25-5, CR = 9.63, PRD = 0.067%. 
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IV. DISCUSSION 

A. The influence of choosing compression ratios on the 

algorithm’s performance 

As seen in Figure 8, the overall performance of the algorithm 

applied in MIT-BIH arrhythmia database showed its 

dependence on the selection of hCR and lCR. Although lCR 

had a greater impact on the overall results than hCR, their 

roles were determined more clearly when looking at the 

reconstruction of each feature including P wave, QRS 

complex, T wave and their peaks. While P and T waves were 

mostly affected by hCR, the peak of lCR completely 

influenced the reconstruction of QRS complexes. However, 

despite the fact that the R peaks were maintained very well at 

lCR = 4 with PAME < 10%, the shapes of QRS complexes 

were only reconstructed well with lCR < 4 with PRD < 

0.75%. Therefore, based on the results, it seems that lCR = 3 

should be the highest possible CR applied for complex 

durations to avoid any significant errors. Regarding hCR, 

although the shape of P and T waves were well preserved 

even at the highest hCR of 25 with PRD < 0.75% except for 

very few cases, the PMAE of P and T peaks started to exceed 

10% at hCR > 10. However, it is important to note that 

because the 60Hz noises are still present in all records, many 

P and T peaks are not quite correctly detected and this could 

have affected the PMAE results. Hence, hCR could be 

expanded to 15 with most of the P peaks were attenuated by 

less than 12.5% of the waves maximum. Therefore, lCR = 3 

and hCR = 15 corresponding with PMAE < 10%, PRD < 

0.75% should be the limitations for the reconstruction of 

11-bit ECG signals (value ranging from 0 to 2047).  This is 

for critical applications that are needed to preserve the ECG 

signals well for diagnosis and critical treatment. In CU 

ventricular tachyarrhythmia database, which offered more 

difficult curves with unclear PQRST, the role of lCR was 

shown to be dominant over hCR since all indexes were 

determined solely by lCR. Meanwhile, the change of hCR 

only created a very small variance. In addition, an increase by 

1 unit in lCR also  

 

heavily affected the performance of the algorithm. It seemed 

that lCR = 3 should be a safe choice for such difficult 

conditions such as CU ventricular tachyarrhythmia. 

B. The versatility of the algorithm 

The proposed algorithm was proven to be applicable for 

different kinds of ECG without depending on detecting or 

extracting any features of ECG. The results obtained from the 

assessment of MIT-BIH arrhythmia and CU ventricular 

tachyarrhythmia databases were also very positive with an 

acceptable level of error at moderate compression ratios. 

Moreover, the algorithm also offers an extremely low-cost 

computational compressing and decompressing method. 

Specifically, with N being the size of original data and M 

being the size of compressed data, there are only N equations 

that need to be calculated in the compressing method for 

finding the first derivative of the signal, with only one 

operation (-) in each equation, and M equations in minimum 

to compress and store data. In the decompressing method, the 

time of calculation is nearly equal to the time of calculating 

the inverse difference (~2M equations) and executing Cubic 

Spline Interpolation (O(M) equations in minimum if using 

LU decomposition to solve), since the first procedure of 

re-classifying state consumes a very short time. This will 

provide redundant time for the system to implement other 

digital processing if needed. Besides that, the compressed 

package can stop at any size (number of bytes) due to its 

block-unit processing mechanism without affecting the 

reconstruction at the receiver. Therefore, the algorithm is 

very suitable for use in many wireless applications as a step, 

such as an optimization solution to handle congested network 

as seen in ECG data.  

C. Performance 

comparison 

Figure 16. Reconstruction of record CU12 (worst PRD) at different compression ratios. (a) Original data, 

 (b) hCR-lCR = 10-2, CR = 3.37, PRD = 0.938%, (c) hCR-lCR = 15-3, CR = 4.783, PRD = 1.542%, (d) hCR-lCR = 

20-4,  

CR = 6.09, PRD = 2.803%, (e) hCR-lCR = 25-5, CR = 7.24, PRD = 3.914%. 
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The proposed two-state algorithm was compared to other 

loss-type methods, which were also applied in MIT-BIH 

arrhythmia database in cases of CR < 25 (table 3). Together, 

the results prove the great performance of our proposed 

algorithm with CR < 25 compared to many other methods, 

even including some TD methods which exhibited very 

promising results. However, as be seen in comparison with 

the Miaou et. al. algorithm [32]  at CR > 18 which has far 

excellent performance, the proposed algorithm cannot ensure 

the quality of reconstruction at high CR  as perfectly as some 

TD methods or H methods containing error minimization 

mechanism embedded in. In exchange, those methods are 

much more complex compared to the proposed algorithm 

and cannot adapt various sizes of the compressed packages 

like the proposed algorithm does.  

V. CONCLUSIONS 

Compressing ECG data is an effective solution to reduce the 

size transmitted of packages, which help avoid the 

congestions as well as decrease BER and the package loss 

rate. In this study, an extremely low-cost computational, 

general-purposed ECG compression algorithm, called the 

advanced two-state algorithm, was proposed, which could: 

(i) adapt various ECG conditions including both regular and 

irregular ECG, (ii) satisfy every size of the compressed 

package without affecting the quality of reconstruction, and 

(iii) is quite simple to implement in any kinds of network. 

This algorithm aims to separate the ECG signal into two 

parts: plain durations (P and T wave), labelled as high-state 

durations and compressed at higher CR (hCR), and complex 

durations (QRS complex), labelled as low-state durations 

compressed at lower CR (lCR). In the experiments with all 

48 records of MIT-BIH arrhythmia database and 9 records of 

CU ventricular tachyarrhythmia database, the performance 

result of the proposed algorithm were very promising at 

moderate CR. Almost the signals was reserved well at CR < 

15. In the comparison with other loss-type methods even 

including some advanced methods like SPIHT or JPEG2000, 

the proposed method showed a superior result with lower 

PRD at the same CR despite of its simplicity in both 

compressing and decompressing process. Nevertheless, the 

proposed method cannot reach a higher CR without 

significantly damaging the signal like many other methods 

containing error minimization mechanism. In exchange, it 

can achieve many necessary requirements for a medical 

wireless network and, due to its dependence in physiological 

feature, the proposed algorithm can be used for other signals 

asides from ECG. 

 

 

 

 

 

Table 3. Performance comparison of different loss-type ECG compression schemes in record 100, 117 and 119. In each 

record, the similarity of CR produced by different methods was grouped in 1 group and the order ranges from highest 

PRD (at the top of each group) to lowest PRD (at the bottom of the corresponding group). The proposed method was 

abbreviated as Proposed (hCR-lCR) and was highlighted in bold. 
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