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Design of Multi-Machine Power System Stabilizers 

using Gravitational Search Algorithm 

M. Ramakrishna, G. Naresh 

Abstract: Power system stabilizers (PSS) are used to 

generate supplementary control signals for the excitation system 

to damp electromechanical oscillations. This paper presents an 

approach based on the law of gravity and mass interactions 

called Gravitational Search Algorithm (GSA) fortuning the 

parameters of PSSs in a multi-machine power system.These 

stabilizers are tuned simultaneously to shift the lightly damped 

and undammed electromechanical modes of all plants to a 

prescribed zone in the s-plane. A multi objective problem is 

formulated to optimize a composite set of objective functions 

comprising the damping factor, and the damping ratio of the 

lightly damped electromechanical modes. The performance of the 

proposed PSS under different disturbances, loading conditions, 

and system configurations is investigated on New England 10-

machine, 39-bus power system. Non-linear time domain 

simulation results are presented under wide range of operating 

conditions and disturbances at different locations to show the 

effectiveness of the proposed GSA based PSS and their ability to 

provide efficient damping of low frequency oscillations.  

Keywords: Power System Stabilizer, Electromechanical 

Oscillations, Gravitational Search Algorithm, Multi-machine 

Power System. 

I. INTRODUCTION 

Damping of low frequency electromechanical 

oscillations is considered to be one of the most interesting 

and challenging tasks in power industry for the secure 

operation of the power system. These oscillations are often 

observed when large power systems are connected with 

weak tie-lines and also due to fast acting exciters with high 

gain Automatic voltage regulators (AVR). Over the past 

three decades, Power System Stabilizer (PSS), which acts as 

a supplementary modulation controller in the excitation 

systems has been the conventional means to curb with this 

problem. The PSS feedback suitable phase compensated 

signals derived from the power, speed and frequency of the 

operating generator either alone or in various combinations 

as input signals so as to generate an additional rotor torque 

to damp out the low frequency oscillations. The gain and the 

required phase lead/lag of the stabilizer are tuned by using 

appropriate mathematical models, supplemented by a good 

understanding of the system operation. The principles of 

operation of this controller are based on the concepts of 

damping and synchronizing torques within the generator. A 

comprehensive analysis of these torques have been dealt 

with by deMello and Concordia in their landmark paper in 

1969 [1]. These controllers have been known to work quite 

well in the field and are extremely simple to implement. 

However, 
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 The tuning of these compensators continues to be a 

formidable task especially in large multi-machine systems 

with multiple oscillatory modes. Larsen and Swann, in their 

three part paper [2], describe in detail the general tuning 

procedure which employs Gradient procedure for 

optimization of PSS parameters. 

The main drawback of the above controllers is their inherent 

lack of robustness. Power systems continually undergo 

changes in the load and generation patterns and in the 

transmission network. This results in an accompanying 

change in small signal dynamics of the system. The fixed 

parameter controllers, tuned for a particular operating 

condition, usually give good performance at that operating 

condition. Their performance, at other operating conditions, 

may at best be satisfactory, and may even become 

inadequate when extreme situations arise. In addition to that, 

conventional optimization methods that make use of 

derivatives and gradients are not able to locate or identify 

the global optimum [3-4]. 

Over the last decades, interests have been focused on 

the optimization of the PSS parameters to provide adequate 

performance for all operating conditions. Hence, many 

optimization techniques such as Simulated Annealing (SA) 

[5], Genetic Algorithms (GA) [6], Particle swarm 

optimization (PSO) [7] have been used to find the optimum 

set of parameters to effectively tune the PSS. The results 

obtained were observed to be promising and confirm the 

potential of these algorithms for optimal PSS design. 

However, every such technique is found to have its own 

pros and cons. Simulated Annealing algorithm has 

demonstrated to be an effectual means in escaping from 

local minima, but, its repeatedly annealing schedule is 

observed to be very slow especially if the objective function 

is expensive to compute. GA, a population-based search 

algorithm, which works with a population of strings that 

represent different potential solutions, has the ability to 

arrive at the global solution point swiftly, as it can handle 

the search space from different directions simultaneously. 

Crossover and mutation operators between chromosomes, 

makes the GA far less sensitive of being trapped in local 

optima. However, GA has shown degraded performance 

when dealing with highly epistatic problems. Also, it pains 

from premature convergence which can highly affect the 

effectiveness of the optimal solution [8]. PSO, a stochastic, 

population based algorithm, modelled with swarm 

intelligence is very simple to implement with much less 

parameters to train. However, PSO suffers from the partial 

optimism, which causes the less exact at the regulation of its 

speed and the direction. Also, the algorithm cannot work out 

the problems of scattering and optimization [9].  
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Moreover, the algorithm suffers from slow 

convergence in refined search stage which may lead it to 

possible entrapment in local minima. Several other meta-

heuristic algorithms such as, Bacterial foraging algorithm 

[10,11], Artificial bee colony algorithm [12], Harmony 

search algorithm [13], were also proposed for optimal 

design of PSS to overcome the disadvantages of the above 

described approaches. 

In this paper, a new population-based search algorithm, 

Gravitational search algorithm (GSA), which is based on the 

metaphor of gravitational interaction between the masses, is 

proposed for optimal tuning of PSS parameters. To 

investigate the potential of the proposed approach in shifting 

the unstable and poorly damped electromechanical modes to 

the left in S-plane under wide varied operating conditions, 

an eigenvalue based objective function reflecting the 

combination of damping factor and damping ratio is 

formulated. Finally, the Eigen value analysis and non-linear 

simulations have been carried out to access the effectiveness 

of the proposed GSAPSS under different disturbances and 

loading conditions. Finally the supremacy in the 

performance of the proposed GSAPSS over CPSS,  GAPSS 

and PSOPSS is acknowledged. 

II. PROBLEM STATEMENT 

1.1. Power System Model  

A power system can be modelled by a set of nonlinear 

differential equations as   f( X, U)X 


, where X is the vector 

of the state variables, and U  is the vector of input variables. 

In this study, all the generators in the power system are 

represented by their fourth order model and the problem is 

to design the parameters of the power system stabilizers so 

as to stabilize a system of ‘N’ generators simultaneously. 

The fourth order power system model is represented by a set 

of non-linear differential equations given for any i
th

 

machine, 
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where d  and q  direct and quadrature axes,  

i and i  are rotor angle and angular speed 

of the machine, 

miP and eiP  the mechanical input and 

electrical output power,  

'
diE and

'
qiE  are the d-axis and q-axis transient emf due to 

field flux , 

fdiE , diI  and qiI are the field voltage, d-axis stator 

current and q- axis stator current,  

diX ,  '
diX and qiX , 

'
qiX  are reactance along d-q axes, 

 '
0dT ,  '

0qT  are d-q  axes open circuit time constants, 

aiK , aiT  are AVR gain and time constant 

           
refiV  , tiV  are the reference and terminal voltages of 

the machine 

For a given operating condition, the multi-machine power 

system is linearized around the operating point. The closed 

loop Eigen values of the system are computed and the 

desired objective function is formulated using only the 

unstable or lightly damped electromechanical Eigen values, 

keeping the constraints of keeping all the system modes 

stable under any condition. 

2.2 PSS Structure 

The speed based conventional PSS is considered in the 

study. The transfer function of the PSS is as given below. 
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Where  is the deviation of the speed of the rotor from 

synchronous speed 

The second term in Eq. (6) is the washout term with a time 

constant of wT . The third term is the lead–lag compensation 

to counter the phase lag through the system. The washout 

block serves as a high-pass filter to allow signals in the 

range of 0.2–2.0 Hz associated with rotor oscillations to pass 

unchanged. This can be achieved by choosing a high value 

of time constant ( wT ). However, it should not be so high 

that, it may create undesirable generator voltage excursions 

during system-islanding [14]. Compromising, it may have a 

value anywhere in the range of 1–20 s [15]. On the other 

hand, the lead–lag block present in the system provides 

phase lead (some rare cases lag also) compensation for the 

phase lag that is introduced in the circuit between the exciter 

input (i.e. PSS output) and the electrical torque. In this study 

the parameters to be optimized are 

{ iK , i  T1 , i  T2 ; i=1,2 3,...m },assuming iT1 = iT3  and 

iT2 = iT4 .  

2.3   Objective Function 

 1) To have some degree of relative stability. The parameters 

of the PSS may be selected to minimize the following 

objective function: 
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where ‘ np ’ is the number of operating points considered in 

the design process, and ji,  is the real part of the i
th 

Eigen 

value of the j
th

 operating point, subject to the constraints that 

finite bounds are placed on the power system stabilizer 

parameters. The relative stability is determined by the value 

of 0 . This will place the closed-loop eigen values in a 

sector in which as shown in Fig. 1. 

 

 
 

Figure 1: Closed loop eigen values in a sector 
 

2) To limit the maximum overshoot, the parameters of the 

PSS may be selected to minimize the following objective 

function: 
 

2
],

1
0,

  
0

[  
2 ji

np

j
ji

J 


 









  (9)

 

where ji, is the damping ratio of the i
th  

Eigen value of the 

j
th

 operating point. This will place the closed-loop Eigen 

values in a wedge-shape sector in which ji, > 0 as shown 

in Fig. 2. 

 

 
 

Figure 2: Representation of Eigen values in wedge shape 

sector 

 

3) The single objective problems described may be 

converted to a multiple objective problem by assigning 

distinct weights to each objective. In this case, the 

conditions 0,  ji  and 0,  ji  are imposed 

simultaneously. The parameters of the PSS may be selected 

to minimize the following objective function: 
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This will place the system closed-loop Eigen values in the 

D-shape sector characterized by 0,  ji  and 0,  ji

as shown in Fig. 3. 

 

Figure 3: Representation of Eigen values in D-shape 

sector 

It is necessary to mention here that only the unstable or 

lightly damped electromechanical modes of oscillations are 

relocated. The design problem can be formulated as the 

following constrained optimization problem, where the 

constraints are the PSS parameter bounds: 

 

Minimize J  subject to  

 i   Ki    K iK
maxmin

  

 i   Ti    T iT
max11min1   

 i   Ti    T iT
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   (11)
 

 

The proposed approach employs GA to solve this 

optimization problem and search for optimal or near optimal 

set of PSS parameters { iK , i  T1 , i  T2 ; i=1,2 3,...m} where 

‘m ‘is the number of machines. Typical ranges of the 

optimized parameters are [0.01,50] for iK  and [0.01 to 1.0] 

for  i  T1 and i  T2 . 

III. GRAVITATIONAL SEARCH ALGORITHM 

3.1 Overview 

The basic idea which motivates the proposed approach is 

based on the interaction of masses in the universe in 

accordance with Newtonian gravity law. The gravitation is 

the attraction of masses by other masses. The amount of 

attraction depends on the amount of masses and the distance 

between them. This gravity law defined by Newton is as 

follows, “Every particle in the universe attracts every other 

particle with a force that is directly proportional to the 

product of the masses of the particles and inversely 

proportional to the square of the distance between them”. It 

is formulated by the following equation. 
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2

21

R

MM
GF    (12) 

In this equation, F is the gravitational force (in N), G is 

the gravitational constant with a value of 111067259.6   (in 

N(m2/kg2)), 1M and 2M are the masses of first and second 

particles, respectively(in kg),and R is the straight-line 

distance between the two particles (inm). 

According to Newton’s second law of motion, when a 

force (here it is gravitational force), F, is applied to a 

particle, its acceleration, a, depends only on the force and its 

mass, M [16] as, 

              
M

F
a      (13) 

Thus, there is an attracting gravity force on every 

particles of the universe where the effect of bigger and the 

closer particle is higher. An increase in the distance between 

two particles means decreasing the gravity force between 

them. 

The proposed algorithm, GSA, is inspired by the above 

physical phenomenon. The agents are considered as objects 

and their performance is measured by their masses. All these 

objects attract each other by the gravity force, and this force 

causes a global movement of all objects towards the objects 

with heavier masses. The masses co-operate using the direct 

form of communication, gravitational force. By lapse of 

time, we expect that masses be attracted by the heaviest 

mass. This mass will present an optimum solution in the 

search space. 

To describe GSA, consider a system with N masses 

(agents) and d dimensions. The solution set X  which 

consists of randomly generated positions of  N  masses for 

d dimensions is shown below, 
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Here, N is the total number of agents, d is the number of 

dimensions in the optimization problem. The position of the 

thi mass can be defined as 

 

 idiii XXXX ..21
   (15) 

 

Here, idX
is the position of 

thi mass in the 
thd dimension. 

The positions of masses correspond to the solutions of the 

problems.  

The mass of each agent is calculated after computing the 

fitness of that current agent as: 
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Where, 
 tM i and

 tfiti represents mass and fitness value of 

agent i  at t . 
 tworst

, 
 tbest

depends on the optimization 

problem. 

 

 i.e., for a minimization problem, 
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(or)for maximization problem,  
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Now, the gravitational force acting on mass i from mass 

j
is given as, 
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Here, G is the gravitational constant, initialized at the 

beginning and will reduce with time in order to control the 

search accuracy, 
 tRij

is the Euclidian distance between 

two agents 
ji,

as defined in (2),  is a small constant added 

to avoid division by zero. 

Thus, by the law of motion as stated earlier, the 

acceleration of agent as in (2) is given by 

 
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d
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Later, the next velocity of an agent
 1tV d

i  is calculated 

as a fraction of its current velocity
 tV d

i  added to its 

Acceleration 
 tad

i  as, 

 

     tatVrandtV d
i

d
i

d
i 1

         (24) 

Here, rand is a uniform random variable with limits  1,0  

Finally, the next position of an agent is calculated as, 

 

     11  tVtXtX d
i

d
i

d
i   (25) 

3.2 IMPLEMENTATION 

Based on the above discussion, the proposed GSA 

is implemented for tuning the parameters of PSS as a multi 

objective optimization problem.  
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The implementation of the proposed technique to 

tune the parameters of PSS was clearly summarized as a 

flow chart in Fig (4).   

   The GSA will be terminated when the termination 

condition is met. This may be usually a sufficiently a good 

objective function value or a maximum number of iterations. 

The maximum number of iterations ( maxn
) criterion is 

employed in this work and maxn
is taken as 100.  The 

number of agents is taken as 50. 

 
Figure 4: Flowchart of Gravitational search Algorithm 

IV. RESULTS AND DISCUSSION 

To demonstrate the effectiveness of the proposed method 

on a larger and more complicated power system, the readily 

accessible 10-generator 39-bus New England system is 

adopted. Fig. 5 shows the configuration of the test system. 

All generating units are represented by fifth-order model 

and their static exciters are equipped with PSS. Details of 

the system data are given in [17]. 

4.1 Eigen value analysis: 

To design the proposed GSAPSS, three different operating 

conditions that represent the system under severe loading 

conditions and critical line outages in addition to the base 

case are considered. These conditions are extremely hard 

from the stability point of view [18]. They can be described 

as; 

 

1) base case (all lines in service); 

2) outage of line connecting bus no. 14 and 15; 

3) outage of line connecting bus no. 21 and 22; 

4) Increase in generation of G7 by 25% and loads at buses 

16 and 21 by 25%, with the outage of line 21–22. 

 

The tuned parameters of the ten PSS using conventional root 

locus approach, genetic algorithm, particle swarm 

optimization and proposed gravitational search algorithm 

are shown in the Table 1.  

  The small signal analysis of the test system was carried out 

without connecting the PSS. The electromechanical modes 

and the damping ratios obtained for all the above cases with 

CPSS, GAPSS, PSOPSS and proposed GSAPSS in the 

system are given in Table 2. The unstable modes for 

different operating conditions were found out and 

highlighted in the above Table. 

 
 

Figure 5: New England 10 generator 39 bus system 

Table 1: Parameters of Conventional, GA, PSO and 

Proposed GSA 
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It is clear that these electromechanical modes are poorly damped 

and some of them are unstable. Here 30 parameters are optimized 

namely, iii  and  T , TK 31 ; i=1,2,3,..10. The time constant wT is set to 

be 10. In this study 0  and 0  are chosen to be -1.0 and 0.2 

respectively. Several values for weight ‘a’ were tested. The results 

presented here are for a=10. 

For base case from the Eigen value analysis, it is clear that 

all modes are well shifted in the D-stability region with min

increased from -4.22% to 16.09% 0.0764 and max from 

0.2579 to -1.6941. 

Similarly for case-1, min  increased from -4.9% to 

16.14% and max  from 0.2997 to -1.7396; for case-2,  

min  increased from -4.43% to 16.27%  and max  from 

0.2018 to -1.7204 ; and for case-3 min  increased from -

6.44% to 16.35% and max  from 0.2352 to -1.7094. 

Therefore, it is obvious that the critical mode Eigen values 

have been shifted to the left in s-plane and the system 

damping is greatly improved and enhanced with the 

proposed GAPSSs. 

Table 7: Comparison of eigenvalues and damping ratios for different cases 

 Case -1 Case-2 Case -3 Case -4 

Without PSS 

 

-1.1878 ±10.6655i,   0.1107 

-0.3646 ± 8.8216i,   0.0413 

-0.3063 ± 8.5938i,   0.0356 
-0.2718 ± 8.1709i,   0.0332 

-0.0625 ± 7.2968i,   0.0086 

-0.1060 ± 6.8725i,   0.0154 

0.2579 ± 6.1069i,  -0.0422 

0.0620 ± 6.1767i,  -0.0100 

0.0794 ± 3.9665i,  -0.0200 

-1.1888 ±10.6603i,   0.1108 

-0.3642 ± 8.8221i,   0.0412 

-0.3087 ± 8.5753i,   0.0360 
-0.2727 ± 8.1706i,   0.0334 

-0.0643 ± 7.2859i,   0.0088 

-0.1000 ± 6.7243i,   0.0149 

0.2997 ± 6.1030i,  -0.0490 

0.0824 ± 5.7423i,  -0.0143 

0.0844 ± 3.8066i,  -0.0222 

-1.1686 ±10.6268i,   0.1093 

-0.3413 ± 8.7548i,   0.0390 

-0.3013 ± 8.4738i,   0.0355 
-0.2575 ± 8.0464i,   0.0320 

-0.0615 ± 7.3143i,   0.0084 

0.1283 ± 6.1862i,  -0.0207 

0.0427 ± 6.0556i,  -0.0070 

0.2018 ± 5.8565i,  -0.0344 

0.1659 ± 3.7438i,  -0.0443 

-1.1645 ±10.6163i,   0.1090 

-0.3256 ± 8.8902i,   0.0366 

-0.2977 ± 8.4483i,   0.0352 
-0.2587 ± 8.0346i,   0.0322 

-0.0575 ± 7.3333i,   0.0078 

0.1557 ± 6.1630i,  -0.0253 

0.0586 ± 6.0959i,  -0.0096 

0.2089 ± 5.6778i,  -0.0368 

0.2352 ± 3.6446i,  -0.0644 

Conventiona

l 

PSS 

-1.5226 ±11.7232i,   0.1288 
-1.3326 ±11.2726i,   0.1174 

-1.9859 ±11.1499i,   0.1753 

-0.9837 ± 9.0350i,   0.1082 
-0.5380 ± 8.5014i,   0.0632 

-0.1568 ± 7.3758i,   0.0213 

-1.0658 ± 7.2601i,   0.1452 

-0.0046 ± 6.3800i,   0.0007 

-1.2016 ± 4.5676i,   0.2544 

-1.5173 ±11.7109i,   0.1285 
-1.3362 ±11.2695i,   0.1177 

-1.9880 ±11.1547i,   0.1755 

-0.9669 ± 9.0331i,   0.1064 
-0.5240 ± 8.4869i,   0.0616 

-0.1593 ± 7.3687i,   0.0216 

-0.0826 ± 6.1146i,   0.0135 

-1.0081 ± 6.0958i,   0.1632 

-1.9766 ± 6.0065i,   0.3126 

-1.3152 ±11.2723i,   0.1159 
-1.4305 ±11.2210i,   0.1265 

-2.0125 ±11.0700i,   0.1789 

-0.5674 ± 8.4623i,   0.0669 
-0.7944 ± 8.1979i,   0.0964 

-0.1547 ± 7.3961i,   0.0209 

-0.0051 ± 6.3664i,   0.0008 

-0.9179 ± 5.9988i,   0.1513 

-0.9712 ± 3.5259i,   0.2656 

-1.3405 ±11.3267i,   0.1175 
-1.3380 ±11.2101i,   0.1185 

-2.0206 ±11.0315i,   0.1802 

-0.5650 ± 8.4482i,   0.0667 
-0.7508 ± 8.1182i,   0.0921 

-0.1506 ± 7.4154i,   0.0203 

-0.0023 ± 6.3596i,   0.0004 

-0.6910 ± 5.8629i,   0.1171 

-0.7668 ± 3.3898i,   0.2206 

GAPSS 

-1.1509 ±11.4696i,   0.0998 

-0.4693 ±11.4972i,   0.0408 

-0.3012 ±11.5151i,   0.0261 

-0.9554 ±10.1115i,   0.0941 
-0.6069 ± 8.9271i,   0.0678 

-1.0313 ± 7.9303i,   0.1290 

-0.5381 ± 7.1383i,   0.0752 
-3.5472 ± 2.9544i,   0.7684 

-1.2658 ± 2.8107i,   0.4106 

-1.1545 ±11.4461i,   0.1004 

-0.4779 ±11.4935i,   0.0415 

-0.3024 ±11.5189i,   0.0262 

-0.9581 ±10.1115i,   0.0943 
-0.6022 ± 8.8041i,  0.0682 

-1.2073 ± 7.9923i,   0.1494 

-0.4442 ± 6.9509i,   0.0638 
-1.2449 ± 2.6661i,   0.4231 

-2.1581 ± 2.4042i,   0.6680 

-1.1550 ±11.3826i,   0.1010 

-0.5047 ±11.4755i,   0.0439 

-0.3348 ±11.3197i,   0.0296 

-1.0116 ±10.0916i,   0.0997 
-0.6046 ± 8.2732i,   0.0729 

-1.3450 ± 7.0309i,   0.1879 

-0.3260 ± 7.1950i,   0.0453 
-1.1795 ± 2.8455i,   0.3829 

-2.1806 ± 2.4528i,   0.6644 

-1.1638 ±11.3603i,   0.1019 

-0.5379 ±11.4627i,   0.0469 

-0.2791 ±11.4750i, 0.0243 
-1.0219 ±10.0795i,   0.1009 
-0.6143 ± 8.2200i,   0.0745 

-1.3956 ± 6.9823i,   0.1960 

-0.2836 ± 7.1579i,   0.0396 
-1.1205 ± 2.8562i,   0.3652 

-2.1899 ± 2.4765i,   0.6624 

PSOPSS 

-0.9915 ±11.5183i,  0.0858 

-0.5632 ±11.4961i,  0.0489 
-0.6291 ±10.9112i,  0.0576 

-0.6834 ± 9.1428i,  0.0745 
-0.5136 ± 8.9236i,   0.0575 

-0.8267 ± 8.1990i,   0.1003 

-1.6706 ± 5.7218i,   0.2803 
-1.8618 ± 3.9108i,   0.4298 

-1.6860 ± 2.3731i,   0.5792 

-0.9168 +11.6394i,   0.0785 

-0.8251 +11.2328i,   0.0733 
-0.6219 +10.9108i,   0.0569 

-0.7473 + 9.0848i,   0.0820 
-0.5132 + 8.9283i,   0.0574 

-0.8192 + 8.1967i,   0.0994 

-1.8578 + 5.3899i,   0.3259 
-1.7728 + 3.8749i,   0.4160 

-1.6719 + 2.3755i,   0.5756 

-0.6179 ±11.5357i,   0.0535 

-0.9475 ±11.4362i,   0.0826 
-0.6076 ±10.5625i,   0.0574 

-0.6441 ± 8.9993i,   0.0714 
-0.7516 ± 8.7792i,   0.0853 

-0.7348 ± 7.3412i,   0.0996 

-2.0102 ± 5.0676i,   0.3687 
-1.5293 ± 4.1431i,   0.3463 

-1.6825 ± 2.3776i,   0.5776 

-0.6119 ±11.5859i,   0.0527 

-0.9591 ±11.4054i,   0.0838 
-0.5862 ±10.6328i,   0.0550 

-0.6408 + 8.9672i,   0.0713 
-0.7675 + 8.7534i,   0.0874 

-0.6984 + 7.2067i,   0.0965 

-2.2909 + 5.0736i,   0.4115 
-1.2519 + 4.0795i,   0.2934 

-1.6807 + 2.3779i,   0.5772 

GSAPSS 

-2.3839 ±12.1489i,   0.1926 

-1.7425 ±10.6879i,  0.1609 
-2.0266 ± 9.5388i,   0.2078 

-3.0727 ± 7.8507i,   0.3645 

-3.9310 ± 5.4583i,   0.5844 
-3.0714 ± 5.4133i,   0.4935 

-2.7128 ± 4.7631i,   0.4949 

-2.9894 ± 4.6979i,   0.5369 
-1.6941 ± 2.8920i,   0.5055 

-3.5974 ±13.2498i,   0.2620 

-2.3598 ±12.1237i,   0.1911 
-1.7476 ±10.6834i,   0.1614 

-1.9953 ± 9.4884i,   0.2058 

-2.8412 ± 7.8042i,   0.3421 
-3.0658 ± 5.4133i,   0.4928 

-2.7104 ± 4.7786i,   0.4934 

-1.7547 ± 2.8701i,   0.5216 
-1.7396 ± 2.1330i,   0.6320 

-2.4048 ±12.0169i,   0.1962 

-1.7545 ±10.6376i,  0.1627 
-1.9679 ± 9.4833i,   0.2032 

-2.8786 ± 7.8106i,   0.3458 

-3.9318 ± 5.4390i,   0.5858 
-3.0602 ± 5.4160i,   0.4919 

-2.7036 ± 4.7913i,   0.4914 

-2.9866 ± 4.7132i,   0.5353 
-1.7204 ± 2.8837i,   0.5123 

-2.4092 ±11.9944i,   0.1969 

-1.7582 ±10.6104i,  0.1635 
-1.9203 ± 9.5042i,   0.1980 

-2.9048 ± 7.8205i,   0.3482 

-3.9397 ± 5.4247i,   0.5876 
-3.0614 ± 5.4148i,   0.4922 

-2.7015 ± 4.7993i,   0.4905 

-2.9874 ± 4.7217i,   0.5347 
-1.7094 ± 2.8331i,   0.5166 

 

4.2 Nonlinear time domain simulation: 

To demonstrate the effectiveness of the PSSs tuned using 

the proposed multi objective function over a wide range of 

operating conditions, the following disturbance is 

considered for nonlinear time simulations.To show the 

system performance using the proposed method, the 

performance index, Integral of Time multiplied Absolute 

value of Error(ITAE) is being used and is given by 

ITAE = )dtω...ωωωt.( 10Δ3Δ2Δ
10

0
1Δ 

                                 
(26) 

 

It is worth mentioning that the lower the value of this index 

is, better the system response in terms of time domain 

characteristics. 

Case (a): A six-cycle three-phase fault, very near to the 14th 

bus in the line 4–14, is simulated. The fault is cleared by 

tripping the line 4–14. The speed deviation of generators 

G2& G3 are shown in   Fig. 6.  

 

 
 



International Journal of Soft Computing and Engineering (IJSCE) 

ISSN: 2231-2307, Volume-6 Issue-1, March 2016 

13 

Published By: 

Blue Eyes Intelligence Engineering 
& Sciences Publication  

Retrieval Number: A2792036116/2016©BEIESP 

Case (b): A six-cycle fault disturbance at bus 33 at the end 

of line 19-33 with the load at bus-25 doubled. The fault is 

cleared by tripping the line 19-33 with successful reclosure 

after 1.0 s. Fig. 7 shows the oscillations of 4
th

and 

5
th

generators. 
 

Case (c) Another critical five cycle three-phase fault is 

simulated very near to the 22nd bus in the line 22–35 with 

load at bus-21 increased by20%, in addition to 25th bus load 

being doubled as in Case(b). The speed deviations of 

generators G7& G8 are shown in Fig. 8. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6:  Speed deviations of 2
nd

and 3
rd

generators for Case (a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7: Speed deviations of 4
th

and 5
th

 generators for Case (b). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig 8: Speed deviations of 6
th

 and 7
th

 generators for Case (c). 
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In all the above cases, the system performance with the 

proposed GSAPSS is much better than that of PSOPSS, 

GAPSS and CPSS and the oscillations are damped out much 

faster. In addition, the proposed GSAPSSs are quite efficient 

to damp out local and inter area modes of oscillations. This 

illustrates the potential and superiority of the proposed 

design approach to get optimal set of PSS parameters. 

Table 8: Values of Performance Index (ITAE) 

 
Performance Index 

GAPSS PSOPSS GSAPSS 

Contingency 

(a) 
7.0502 6.7726 5.0979 

Contingency 

(b) 
7.2017 6.7284 4.8425 

Contingency 

(c) 
7.1769 6.6971 4.8042 

It is also clear from the above table that performance indices 

for GSA based PSS are less than the corresponding values 

of GA and PSO based PSS 

V. CONCLUSIONS 

In this study, optimal multi objective design of robust 

multi-machine power system stabilizers (PSS) using GSA is 

proposed. The approach effectiveness is validated New 

England multi-machine power system. In this paper, the 

performance of proposed GSAPSS is compared with 

conventional speed-based lead-lag PSS, GA based PSS and 

PSO based PSS. A multi objective problem is formulated to 

optimize a composite set of objective functions comprising 

the damping factor, and the damping ratio of the lightly 

damped electromechanical modes. The problem of tuning 

the parameters of the power system stabilizers is converted 

to an optimization problem which is solved by GSA with the 

eigenvalue-based multi-objective function. Eigen value 

analysis under different operating conditions reveals that 

undammed and lightly damped oscillation modes are shifted 

to a specific stable zone in the s-plane. These results show 

the potential of GSA for optimal settings of PSS parameters. 

The nonlinear time-domain simulation results show that the 

proposed GSAPSS work effectively over a wide range of 

loading conditions and system configurations. 
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