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Abstract- In this paper, the concepts of distance, eccentricity, 

radius, diameter and center of an intu-itionistic fuzzy tree are 

defined. Some of the domination parameters like independent 

domina-tion, connected domination and total domination on 

intuitionistic fuzzy trees are investigated. The procedure for 

intuitionistic fuzzification for numerical data set is proposed. 

Further, in-tuitionistic fuzzy tree center-based clustering 

algorithm is designed. The e ectiveness of the algorithm is 

checked with a numerical dataset and compared with two existing 

clustering meth-ods. 

Keywords: Intuitionistic fuzzy tree, distance, eccentricity, 

center, connected domination, connec-tivity, clustering. 

I. INTRODUCTION 

Graph theoretical ideas are highly utilized in data 

mining, image segmentation, clustering, image processing 

and networks. Graph theory appears to be very convenient 

to describe clustering prob-lems. The concept of a tree can 

be used to design a data structure of a model. The notion of 

fuzzy sets was introduced by L.A Zadeh as a method of 

representing uncertainty and vagueness in [19]. The theory 

of intuitionistic fuzzy sets (IFSs), introduced by Atanassov( 

[1], [2]), is an extension of fuzzy set theory in which, not 

only membership degree is given, but also non-membership 

degree, which is more or less independent. Fuzziness and 

uncertainty in the real world existing informa-tion, the 

attributes of the data sets are often given with intuitionistic 

fuzzy sets. Intutionistic fuzzy set is a suitable tool to cope 

with imperfectly defined facts and data, as well as with 

imprecise knowledge. A.Rosenfeld introduced and 

examined such concepts as paths, cycle, trees and con-

nectedness in fuzzy graphs [15]. In [10], various types of 

fuzzy cycles, fuzzy trees in fuzzy graphs defined using level 

sets. The concept of domination in fuzzy graphs was studied 

in [16]. R.Parvathi and K.Atanassov [7] defined 

intuitionistic fuzzy trees using index matrix interpretation. 

M.Akram and N.O.Alshehri [3] introduced various types of 

intuitionistic fuzzy trees and investigated some of their 

properties. Zhang and Chen [23] suggested a clustering 

technique of IFSs on the basis of the λ-cutting matrix of an 

interval-valued matrix. Xu and Yager [18] gave a clustering 

technique by transforming an association matrix into an 

equivalent association matrix, from which a k-cutting matrix 

is derived and used to cluster the given IFSs. Cai et al. [6] 

presented a clustering method based on the intuitionistic 

fuzzy equivalent dissimilarity matrix and (α, β)-cutting 

matrices.  
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Zahn [22] proposed clustering algorithm using the 

minimal spanning tree (MST). Distance between IFSs is 

considered to form clusters in [22]. Dong et al. [8] gave a 

hierarchical clustering algorithm based on fuzzy graph 

connectedness. H.Zhao et al.[19] developed an intuitionistic 

fuzzy minimum span-ning tree clustering algorithm to deal 

with intuitionistic fuzzy information. Hence, intuitionistic 

fuzzy clustering techniques are based on distance and 

similarity measure betweem IFSs. In this way, the authors 

are motivated to concentrate on intuitionistic fuzzy 

trees(IFTs) and their struc-ture and to apply these concepts 

to design a clustering algorithm. In this paper, distance, 

radius, diameter and center of intuitionistic fuzzy trees are 

introduced and their domination properties are analyzed. 

Also, intuitionistic fuzzy tree center-based clustering 

algorithm is proposed to cluster the numerical data set. As 

the existing data in real-life are crisp, S-shaped intuitionistic 

fuzzification function is used in the proposed method. These 

values give the membership and non-membership of the 

vertices of the IFT under consideration. A new distance 

measure∗ between two IFSs, is defined and applied it to 

construct the intuitionistic fuzzy distance matrix. Center of 

an IFT is obtained by eccentricity concept. On the basis of 

the (λ, δ)-cutting matrix on distance matrix is used to cluster 

the given dataset. This algorithm is verified with 

classification of the numerical data sets containing nutrients 

in 27 di erent kinds of meat, fish or fowl with five attributes. 

The developed clustering method is compared with two 

existing clustering methods namely Zhang et al.[23] and 

Z.Wang et al.[24]. 

II. PRELIMINARIES 

In this section, some basic definitions relating to 

intuitionistic fuzzy graphs (IFGs) are given. Also, the 

definitions of partial spanning subgraph, spanning subgraph, 

distance, eccentricity, radius, diameter and center of IFTs 

are given. 

 

Definition 2.1. [1] Let a set E be fixed. An intuitionistic 

fuzzy set (IFS) A in E is an object of the form A = {(x, µA(x), 

νA(x)) | x ∈ E}, where the function µA : E → [0, 1] and νA : E 

→ [0, 1] determine the degree of membership and the 

degree of non-membership of the element x ∈ E 

respectively, and 0 ≤ µA(x) + νA(x) ≤ 1, for every x ∈ E. 

Notations 

1. Hereafter,  µi, νi  denotes the degrees of membership 

and non-membership of the 

vertex vi ∈ V such that 0 ≤ 

µi + νi ≤ 1. 
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2.  µij , γij  denotes the degrees of membership and non-membership of the edge ( i , j) ∈ V × V such that 0 ≤ µij + γij 

≤ 1. 

Definition 2.2. [16] Let X be a universal set and let V be an IFS over X in the form V = {  vi, µi, γi  | i ∈ V} such that 0 ≤ µi 

+ γi ≤ 1. Six types of cartesian products of n elements of V over X are defined as  

 

 
 
It must be noted that  i ×t  j is an IFS, where t = 1, 2, 3, 4, 5, 6 such that the sum of their degrees of membership 
and non-membership lies in [0, 1]. 
 
Definition 2.3. [9] An intuitionistic fuzzy graph (IFG) is of the form G = (V, E) where  
(i) V = { 1 , 2 , ..., n } , such that µi : V → [0, 1] and γi : V → [0, 1] denote the degrees of membership and non-

membership of the element vi ∈ V respectively, and 0 ≤ µi + γi ≤ 1 for every 

 iV, i = 1, 2, · · · , n 

(ii) EV × V where µij : V × V → [0, 1] and γij : V × V → [0, 1] are such that 

 

µij ≤ µi ⊘ µj, 

γij ≤ γi ⊘ γj 

and 

0 ≤ µij + γij ≤ 1 

 

where µij and γij are the degrees of membership and non-membership of the edge ( i,  j ); the values µi ⊘ µj and γi 

⊘ γj can be determined by one of the six cartesian products  t, t = 1, 2, 3, 4, 5, 6 for all i and j given in Definition 2.2. 
 
Definition 2.4. An IFG, H = (V 

′
, E

′
) is said to be a partial intuitionistic fuzzy subgraph of G = (V, E) if 

(i) V 
′V, µ

′
i ≤ µi, γi

′
 ≤ γi for all viV 

′
, i = 1, 2, . . . n. 

 

(ii) E
′E, µ

′
ij ≤ µij, γij

′
  ≤ γij for all ( i , i )E

′
 , i, j = 1, 2, . . . n. 

 
Definition 2.5. [9] An IFG, H = (V 

′
, E

′
) is said to be an intuitionistic fuzzy subgraph of G = (V, E) if 

(i) V 
′V, µ

′
i = µi, γi

′
 = γi for all i V 

′
, i = 1, 2, . . . n. 

 

(ii) E
′E, µ

′
ij = µij, γij

′
 = γij for all ( i , i )E

′
 , i, j = 1, 2, . . . n. 

 
Definition 2.6. An IFG, H = (V 

′
, E

′
) is said to be a partial intuitionistic fuzzy spanning subgraph of G = (V, E) if 

 

(i) V 
′
 = V, µ

′
i ≤ µi, γi

′
 ≤ γi for all vi V 

′
 , i = 1, 2, . . . n. 

 

(ii) E
′E, µ

′
ij ≤ µij, γij

′
 ≤ γij for all ( i , i )E

′
, i, j = 1, 2, . . . n. 

 
Definition 2.7. An IFG, H = (V 

′
, E

′
) is said to be an intuitionistic fuzzy spanning subgraph(IFSSG) of G = (V, E) if 

(i) V 
′
 = V, µ

′
i = µi, γi

′
 = γi for all i V 

′
 , i = 1, 2, . . . n. 

 

(ii) E
′E, µ

′
ij = µij, γij

′
 = γij for all ( i , i ) E

′
 , i, j = 1, 2, . . . n. 

 
Definition 2.8. [11] Let G = (V, E) be an IFG, then the cardinality of a subset S of V is defined 
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Definition 2.9. [11] The number of vertices in G is called as order of an IFG, G = (V, E), denoted 

 
 

Definition 2.12. [10] An edge ( i ,  j) is said to be a strong edge of an IFG G = (V, E), if µij ≥ ij
and γij ≥ ij 

. 

 

Definition 2.13. [16] An IFG, G = (V, E) is said to be connected IFG if there exists a path between every pair of vertices i

, j  in V . Connected IFG is also defined using strength of connectedness as follows: 

 

(i) ij
 > 0, and ij 

> 0 
 

(ii) ij
 = 0, and ij 

> 0 
 

(iii) ij
 > 0, and ij 

 = 0 for all i , j V. 

 
Definition 2.14. [17] An IFG, G = (V, E) is said to be intuitionistic fuzzy forest (IFF), if it has an intuitionistic fuzzy spanning 

subgraph H = (V 
′
, E

′
), which is a forest (in crisp sense), where for all edges ( ,i j  ) not in H, µij < 

'

ij 
and γij > 

'

ij 
. 

 
Definition 2.15. [17] An connected IFF, G = (V, E) is said to be intuitionistic fuzzy tree (IFT) if it has an intuitionistic fuzzy 

spanning subgraph H = (V 
′
, E

′
), which is a tree (in crisp sense), where for all edges ( ,i j  ) not in H, µij < 

'

ij 
and γij > 

'

ij 
. 

 
Definition 2.16. [17] A connected IFG, G = (V, E) is said to be intuitionistic fuzzy spanning tree (IFST), if it has an IFSSG, 
H = (V 

′
, E

′
) which is a tree.  

Definition 2.17. [11] A path in an IFG is a sequence of distinct vertices 1 , 2 , . . . n , such that either one of the following 

conditions is satisfied for some i, j = 1, 2, 3 . . . n : 
(i) µij > 0, γij > 0 
(ii) µij = 0, γij > 0  

(iii) µij > 0, γij = 0. 
 

Definition 2.18. [17] A strong path in an IFG is a path P = 1 2 . . . n , in which for every edge ( ,i j  ) P , is strong 

edge. 
 

Definition 2.19. [8] The length of a path P = 1 2  . . . n +1 (n > 0) is n. 
 

Example 1. Consider an IFG, G = (V, E), such that V = { 1 , 2 , 3 , 4 }, E = {( 1 , 2 ), ( 2 , 4 ), ( 1 , 3 ), ( 3, 4 )}. 

and its IFSSG H = (V 
′
, E

′
) , G = (V, E), such that V = { 1 , 2 , 3 , 4 }, E = {( 1 , 2 ), ( 2 , 4 ), ( 1 , 3 )}. 
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Figure 1: (a) Intuitionistic fuzzy graph G  (b) Spanning subgraph H 

 

Here G is an IFT. 
 
Note 1. Not all intuitionistic fuzzy graphs are intuitionistic fuzzy trees. 
 

Example 2. Consider an IFG, G = (V, E), such that V = { 1 , 2 , 3 , 4 }, E = {( 1 , 2 ), ( 1 , 3 ), ( 3 , 4 ), ( 1 , 4 ), (

2 , 3 )}. 

 

 
Figure 2: Intuitionistic fuzzy graph G 

Here, G is an IFG but not an IFT. 
 

Definition 2.20. Let G = (V, E) be an IFT and let P = 1 2  . . . n be a path. The µ-length of P 

in G, denoted by  (P), is defined as,  (P ) = 
( , )i j

ij
P 




  

i, j = 1, 2, 3. . . n. The γ-length of path P in G, denoted by  (P), is defined as  (P) = 
( , )i j

ij
P 




 , 

i, j = 1, 2, 3. . . n. The length of P in G, denoted by  (P), is defined as  (P) =   (P),  (P)  . 

Definition 2.21. Let G =(V, E) be an IFT. For any two vertices i and j in G, let Ω = {Pi: Pi is a i − j path, i = 1, 2, 3 . . . 

n}. The µ-distance between any two vertices ,i j  V, denoted by δµi,µj, is defined as δµi,µj = min {  (Pi) : Pi Ω, i = 1, 2, 

3 . . . n} . The γ-distance between any two vertices ,i j  V, denoted by δγi,γj, is defined as δγi,γj 

= min {  (Pi): Pi Ω, i = 1, 2, 3 . . . n} . 
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The distance, δ( ,i j  ), is defined as δ( ,i j  ) =  δµi,µj, δγi,γj  . 
    

Definition 2.22. Let G = (V, E) be an IFT. For each i V, the µ- eccentricity of i , denoted by eµi, is defined as eµi = 

max{δµi,µj : i V, i  = j . For each i V, the γ-eccentricity of i , denoted by eγi, is defined
 
as eγi = max {δγi,γj : i 

V, i = j . For each i V, the eccentricity 
 
of i , denoted by e( i ), and is defined as e( i ) =  eµi, eγi  .  

Definition 2.23. Let G = (V, E) be an IFT. The µ-radius of G, denoted by rµ(G), is defined as rµ(G) = min {eµi : i V}. The 

γ-radius of G, denoted by rγ (G), is defined as rγ (G) = min {eγi : i V}. The radius of G, denoted by r(G) is defined as 

r(G) =  rµ(G), rγ (G)  . 
 

Definition 2.24. Let G = (V, E) be an IFT. The µ-diameter of G, denoted by diamµ(G), is defined as diamµ(G) = max {eµi 

: i V}. The γ-diameter of G, denoted by diamγ(G), defined as diamγ(G) = max {eγi : i V}. The diameter of G, 

denoted by diam(G), is defined as diam (G) =  diamµ(G), diamγ(G)  . 
 

Definition 2.25. A vertex i V is called a central vertex of an IFT G = (V, E), if rµ(G) = eµi and rγ(G) = eγi. The set of 

all central vertices of an IFT is denoted by CV (G) 
 
Definition 2.26. An IFSG H = (V 

′
, E

′
) induced by the central vertices of G, is called center of G, denoted by C(G). 

Definition 2.27. A vertex i V is called a peripheral vertex of an IFT G = (V, E), if diamµ(G) = eµi and diamγ(G) = eγi. The 

set of all peripheral vertices of an IFT is denoted by Z(G) . 
Definition 2.28. Let G = (V, E) be an IFT, then the distance function δ : V × V → [0, 1] × [0, 1] is a metric on V, if the 
following conditions are satisfied: 

(i) δ( ,i j  ) ≥ 0 That is, δµi,µj  ≥ 0, δγi,γj ≥ 0, for all ,i j  V 
 

(ii) δ( ,i j  ) =  0, 1  if and only if i = j  

 

(iii) δ( ,i j  ) = δ( j , i ) That is, δµi,µj = δµj ,µi , δγi,γj = δγj,γi 
 

(iv) δµi,µj ≤ δµj, µk + δµk, µj, δγi, γj ≤ δγj, γk + δγk, γj, for all ,i j  ,  k V.  

Definition 2.29. [5] A vertex  k V of an IFG G = (V, E) is called cut vertex if ij
(G− k) < ij

and ij 
(G −  k) > 

ij 
for some ,i j  V.  

Definition 2.30. Let G = (V, E) be an IFG and let Y = { 1 , 2 , . . . n } be the set of cut vertices in G. The µ-strong weight 

of Y in G, denoted by Sµ(Y), is defined as, Sµ(Y) = ,
j

ij

Y

i j





 = 1, 2, 3 . . . n, where µij is the minimum membership weight 

of strong edges incident on i . The γ-strong weight of Y in G, denoted by Sγ(Y), is defined as, Sγ(Y) = ,
j

ij

Y

i j





 = 1, 2, 3. . 

. n, where γij is the maximum non-membership weight of strong edges incident on i . The strong weight of Y in G, denoted 

by S(Y), is defined as S(Y) =  Sµ(Y), Sγ(Y)  . 
 
Definition 2.31. Let G = (V, E) be an IFG, the µ-vertex connectivity of G, denoted by kµ(G), is defined as, kµ(G) = 
min(Sµ(Y)). The γ-vertex connectivity of G, denoted by kγ(G), is defined as, kγ(G) = min(Sγ(Y )). The vertex connectivity of 
G, denoted by k(G), is defined as,  kµ(G), kγ(G)  . 
 

Definition 2.32. An edge ek E of an IFG G = (V, E) is called cut edge if ij
(G − ek) < ij

and ij 
(G − ek) > ij 

for 

some ,i j  V. 
 
Definition 2.33. Let G = (V, E) be an IFG and let E = {e1, e2, . . . en} be set of cut edges in G.  

The µ-strong weight of E in G, denoted by 
'S (E), is defined as 

'S (E) = ,
i

ij

e E




 i, j = 1, 2, 3 . . . n. 

The γ-strong weight of E in G, denoted by
'S (E), is defined as, 

'S (E) = ,
i

ij

e E




 i, j = 1, 2, 3 . . . n, 

The strong weight of E in G, denoted by S
′
 (E), is defined as S

′
 (E) = 

'S (E), 
'S (E)  . 

 

Definition 2.34. Let G = (V, E) be an IFG, the µ-edge connectivity of G, denoted by 
'

k (G), is 

defined as 
'

k (G) = min(
'S (E)). The γ-edge connectivity of G, denoted by 

'

k (G), is defined as 
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'

k (G) = min(
'S (E)). The edge connectivity of G, denoted by k

′ 
(G), is defined as, 

'

k (G), 
'

k (G). 
 

Definition 2.35. A vertex i V of an IFT G = (V, E) is called end vertex if µij ≥ ij
and γij ≥ ij 

for at most one j V. 
 
Note 2. (1) In an IFT, the diameter not necessarily be twice of the radius. 
 

(2) The center of intuitionistic fuzzy tree need not be k1 or k2. 
 

(3) For any spanning subgraph H (which is a tree) of G contains atleast two end vertices and every vertex in G is either 
cut vertex or end vertex. 

 
Example 3. A single-centered intuitionistic fuzzy tree with one central vertex is illustrated here. Consider an IFT, G = (V, E), 

such that V = { 1 , 2 , 3 , 4 , 5 }, E = {( 1 , 2 ), ( 2 , 3 ), ( 1 , 5 ), ( 3 , 4 ), ( 5 , 4 ), ( 3 , 2 )}. 

 

 
Figure 3: Intuitionistic fuzzy tree G 

By routine computations, we have 

(i)  δ( 1 , 2 ) =  0.3, 0.3  , δ( 1 , 3 ) =  0.7, 0.5  , δ( 1 , 4 ) =  0.5, 0.9  , δ( 1 , 5 ) =  0.3, 0.4  , 

      δ( 2 , 3 ) =  0.4, 0.2  , δ( 2 , 4 ) =  0.2, 0.6  , δ( 2 , 5 ) =  0.4, 0.6  , δ( 3 , 4 ) =  0.3, 0.5  , 

      δ( 3 , 5 ) =  0.5, 0.9  , δ( 4 , 5 ) =  0.2, 0.6  . 
 

(ii) Eccentricity of each vertex is e( 1 ) =  0.7, 0.9  , e( 2 ) =  0.4, 0.6  , e( 3 ) =  0.7, 0.9  , e( 4 ) =  0.5, 0.9  ,  

e( 5 ) =  0.5, 0.9   

(iii) Radius of G is  0.4, 0.6  , diameter of G is  0.7, 0.9  . 
 

(iv) The central vertex of G is 2 , that is, r(G) = e( 2 ) 
 

(v) The center of G is displayed in Figure 4 

 

 
Figure 4: Single-centered IFT 

(vi) The peripheral vertices of G are 3 and 1 . 

Example 4. A bi-centered intuitionistic fuzzy tree with two central vertices is discussed here. 

Consider an IFT, G = (V, E), such that V= { 1 , 2 , 3 ,  4}, E = {( 1 , 2 ), ( 4, 3 ), ( 2 ,  4), ( 1 ,  4), ( 2 , 3 )}. 

 

Therefore, 
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Figure 5: Intuitionistic fuzzy tree G 

 

  (i) δ( 1 , 2 ) =  0.2, 0.3  , δ( 1 , 3 ) =  0.3, 0.6  , δ( 1 , 4 ) =  0.2, 0.3  , δ( 2 , 1 ) =  0.2, 0.3  , 

       δ( 2 , 4 ) =  0.2, 0.5  , δ( 2 , 3 ) =  0.2, 0.3  , δ( 3 , 4 ) =  0.1, 0.5   
 

(ii) Eccentricity of each vertex is e( 1 ) =  0.3, 0.6  , e( 2 ) =  0.2, 0.5  , e( 3 ) =  0.3, 0.6  , e( 4 ) =  0.2, 0.5   

 

(iii) Radius of G is  0.2, 0.5  , diameter of G is  0.3, 0.6  . 
 

(iv) The central vertices of G are 2 and 4 . That is r(G) = e( 2 ), r(G) = e( 4 ) 

 
(v) The center C(G) is displayed in Figure 6. 

 

 
 

Figure 6: Bi-centered IFT 

(vi) The peripheral vertices of G are 1  and 3 . 

Example 5. A tri-centered intuitionistic fuzzy tree with three central vertices is illustrated here. Consider an IFT, G = (V, E), 

such that V = { 1 , 2 , 3 , 4 , 5 }, 

E = {( 1 , 2 ), ( 4 , 3 ), ( 2 , 4 ), ( 1 , 4 ), ( 2 , 3 ), ( 5 , 2 ), ( 1 , 5 ), ( 5 , 4 ), ( 1 , 5 )}. 

 
By routine computations, we have 

(i) δ( 1 , 2 ) =  0.5, 0.2  , δ( 1 , 3 ) =  0.5, 0.2  , δ( 1 , 4 ) =  0.3, 0.5  , δ( 1 , 5 ) =  0.5, 0.3  ,  

    δ( 2 , 3 ) =  0.2, 0.5  , δ( 2 , 4 ) =  0.3, 0.4  , δ( 2 , 5 ) =  0.3, 0.4  , δ( 3 , 4 ) =  0.2, 0.5  ,  

   δ( 3 , 5 ) =  0.5, 0.7  , δ( 4 , 5 ) =  0.5, 0.2   

 

 
Figure 7: Intuitionistic fuzzy tree G 

 

(ii) Eccentricity of each vertex is e( 1 ) =  0.5, 0.5  , e( 2 ) =  0.5, 0.5  , e( 3 ) =  0.5, 0.7

 , e( 4 ) =  0.5, 0.5  , e( 5 ) =  0.5, 0.7   
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(iii) Radius of G is  0.5, 0.5  , diameter of G is  0.5, 0.7  . 
 

(iv) The central vertices C(G) are 1 , 2 and 4 , that is, r(G) = e( 1 ), r(G) = e( 2 ), r(G) = e( 4 ) 

 
(v) The center C(G) is displayed in Figure 8 

 
Figure 8: Tri-centered IFT 

 

(vi) The peripheral vertices of G are 3 and 5 . 

III. DOMINATION IN INTUITIONISTIC FUZZY TREES 

 
Definition 3.1. [11] Let G = (V, E) be an IFG on V. Let u,  V, u is said to dominate  in G if there exists a strong edge 

between them. 

Definition 3.2. [11] A subset S of V is called a dominating set in G if for every  V − S, there exists u S such that u 

dominates  . 
Definition 3.3. [11] A dominating set S of an IFG is said to be a minimal dominating set if no proper subset of S is a 
dominating set. 
Definition 3.4. [11] Minimum cardinality among all minimal dominating set is called lower dom-ination number of G, and is 
denoted by d(G).  
Maximum cardinality among all minimal dominating set is called upper domination number of G, and is denoted by D(G). 
Definition 3.5. [11] Two vertices in an IFG, G = (V, E) are said to be independent if there is no strong edge between them. 

Definition 3.6. [11] A subset S of V is said to be independent set of G if µij < ij
and γij < ij 

for all i , j S. An 

independent set S of G in an IFG is said to be maximal independent, if for every vertex j V − S, the set S  { j } is not 

independent. 
Definition 3.7. [11] The minimum cardinality among all maximal independent set is called lower independence number of G, 
and it is denoted by i(G).  
The maximum cardinality among all maximal independent set is called upper independence number of G, and it is denoted 
by I(G). 

Definition 3.8. [11] Let G = (V, E) be an IFG without isolated vertices. A subset D of V is a total dominating set if for every 

vertex i V , there exists a vertex j D, i  j , such that j dominates i . 
Definition 3.9. [11] The minimum cardinality of a total dominating set is called total domination number of G, and it is 
denoted by dt(G). 

Definition 3.10. [17] Let G be a connected IFG. A subset 
'V of V is called a connected dominating set of G, if 

(i) For every j V - 
'V , there exists i  'V such that µij ≥ ij

and γij ≥ ij 
 

 

(ii) The sub graph H = (
'V , 

'E ) of G=(V, E) induced by 
'V is connected. 

 
Definition 3.11. [17] The minimum cardinality of a connected dominating set is called the con-nected domination number of 
G, and is denoted by dc(G). 
 
Example 6. Consider an IFT, G = (V, E), in Figure 3 in Example 3 

(i) The minimal dominating set of G is { 1 , 4 } and the domination number d(G) is 0.9. 

(ii) The maximal independent set of G is { 1 , 4 } and the independent domination number i(G) is 0.9. 

(iii) The total dominating set of G is { 1 , 4 } and the total domination number dt(G) is 0.9. 

(iv) The connected dominating set of G is { 1 , 2 , 3 } and the connected domination number dc(G) is 0.85 

 
Theorem 3.1. Let G = (V, E) is an IFT, then the distance between any two vertices in V is a metric. 
Proof:  
Let G = (V, E) be a connected IFT. Then, there exists a unique strong path between any two 
vertices in V. 
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That is, ,i j  ≥ 0, ,i j  ≥ 0, which implies δ( ,i j  ) ≥ 0 for every ,i j  V . 

,i j  = 0, ,i j  = 0, this implies that δ( ,i j  ) = 0. 

The reversal of a path from ,i j  is a path from j i and vice versa. That is, ,i j  = 0, ,i j  = 0, 

 

 
 

The path P1 followed by P2 is a ,i j  walk and since every walk contains one path, there exists a ,i j  path in G whose 

length is at most ,i k  + ,k j  , ,i k  + ,k j  .
 
Therefore, ,i j  ≤ ,j k  + ,k j  , ,i j  ≤ ,j k  + ,k j  . This implies 

that δ( ,i j  ) ≤ δ( i , k ) + δ( k , j ). Hence, the distance δ is a metric on V. 
 
Theorem 3.2. For any IFT G = (V, E), the radius and diameter satisfy rµ(G) ≤ diamµ(G) ≤ 2rµ(G) and rγ(G) ≤ diamγ(G) ≤ 2rγ 
(G). 
Proof: 

By the definition of radius and diameter, rµ(G) ≤ diamµ(G) and rγ(G) ≤ diamγ(G). Let k be a 

central vertex and ,i j  be two peripheral vertices of G. Then rµ(G) = eµ( k ), rγ(G) = eγ( k and diamµ(G) = eµ( i ), 

diamγ(G) = eγ( i ) diamµ(G) = eµ( j ), diamγ(G) = eγ( j ). 

By triangle inequality, 

,i j  ≤ ,j k  + ,k j  = rµ(G) + rµ(G) = 2rµ(G) 

,i j  ≤ ,j k  + ,k j  ,
 = rγ (G) + rγ (G) = 2rγ(G)

 

Therefore, rµ(G) ≤ diamµ(G) ≤ 2rµ(G) and rγ(G) ≤ diamγ(G) ≤ 2rγ(G). 

Theorem 3.3. For any two vertices ,i j  in an IFT G = (V, E), |eµ( i ) − eµ( j )| ≤ ,i j  and |eγ( i ) − eγ( j )| ≤ ,i j  . 

Proof: 

By the Definition 2.22, 
i

e = max { ,i j  : i V,
 

i  j } and 
i

e = max { ,i j  : i V,
 

i   j  

Let k be a vertex farthest from i such that 
i

e = ,i k  and 
i

e = ,i k  . Then, by triangle inequality 
i

e = ,i k  ≤ ,i j 

+ ,j k  for any k of G. Therefore, 

i
e ≤ ,i k  + ,k j  for any k of G. That is, 

i
e ≤ ,i j  + 

j
e , since ,k j  ≤ 

j
e which implies, 

i
e − 

j
e ≤ ,i j  . 

Interchanging of vi and j , we get 
j

e − 
i

e ≤ ,j i  , i , That is − ,j i  ≤ 
i

e − 
j

e . 

Combining these results give − ,j i  ≤ 
i

e − 
j

e ≤ ,j i  . Similarly, − ,j i  ≤ 
i

e − 
j

e ≤ ,j i  . 

Hence, | e ( i ) − e  ( j )| ≤ ,i j  and | e ( i ) − e ( j )| ≤ ,i j  . 

 

Theorem 3.4. Let i and j be any two vertices in an IFT G = (V, E). Then ,i k  − ,k j  ≤ 

 
Theorem 3.5. Let G = (V, E) be an IFT on with minimum 3 vertices. Let M (H) be the maximum cardinality of end vertices 
in any spanning forest H = (V 

′
, E

′
) in G, then dc = o(G) − M(H). 

Proof: 

Let H be spanning forest of G and let X = { i V 
′
, i is an end vertex of H}. Clearly, V − X is a 

connected dominating set of G and the cardinality of V − X is o(G) − M (H). Hence dc(G) ≤ o(G) 

− M(H). 
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Now, let S be a connected dominating set of G. Let HS be any spanning forest of the induced subgraph G[S]. Since S is a 

connected dominating set G, for each i in V − S, there exists a vertex j in S such that ij ≥ ij
and ij ≥ ij 

. Let H be 

the subgraph adding the vertices of V − S and the edges i j for each i in V − S. Clearly H is a spanning forest 

of G and M(H) ≥ o(G) − dc(G). 
Hence, dc(G) = o(G) − M(H). 

Theorem 3.6. Let G = (V, E) be an IFT with minimum three vertices. Suppose that d(G − 
jie ) = d(G), where 

ie is a strong 

edge in G. Then for each strong edge 
jie , there exists a dominating set D satisfying either one of the following conditions: 

(i) ,i j  D 
 

(ii) ,i j   V − D 
 

(iii) If i D and j V − D, then there exists k D − { j } such that 
kj

 ≥ jk
 and 

kj
 ≥ jk 

. 

Proof:  
Suppose there is no dominating set D in G satisfying any of the statements (i),(ii), (iii). Then, any dominating set D of G is 

not a dominating set of G −
jie . Further, any dominating set of G − 

jie is a dominating set of G also. Hence, it follows that, 

d(G − 
jie )  d(G). 

 
Theorem 3.7. In an IFT G = (V, E), set of all cut vertices is a dominating set of G. 
Proof:  
Let D be the set of all cut vertices of G. Since, every vertex in a spanning subgraph is either a cut vertex or an end vertex. 

Then, V − D is the set of all end vertices of G. Then, for each i V − D, there exists a strong neighbor i D. Hence, 

each i V − D, is dominated by some j D. So D is a dominating set of G. 
 
Theorem 3.8. If G = (V, E) is an IFT, then G is not complete. 
Proof: 

Suppose G be a complete IFG. Let H be spanning subgraph of G. Then ij
= ij and ij 

= ij for all ,i j  in V. Now G 

being an IFT, ij < ij
and ij < ij 

for all ,i j  not in H, where H is a spanning subgraph of G. Thus, ij
< ij and ij 

< 

ij , contradicting the definition of complete 

IFG. 

IV. INTUITIONISTIC FUZZY TREE CENTER-BASED CLUSTERING ALGORITHM 

The objective of clustering is to classify the observations 

into groups such that the degree of associ-ation is high 

among the members of a group and is less among the 

members of other groups. Graph theoretical clustering is 

nothing but partitioning the graph based on qualitative 

aspects of the data. Most of the clustering methods group the 

data based on distance and similarity. Rosenfeld [15] 

introduced distance based clustering on fuzzy graphs. Xu 

and Wu [20] developed an intuitionistic fuzzy c-means 

algorithm to cluster IFSs, which is based on the well-known 

fuzzy c-means clustering method and the basic distance 

measures between IFSs such as the Hamming distance, 

normalized Hamming distance, Euclidean distance and 

normalized Euclidean distance. Zhang and Chen [23] 

defined the concept of intuitionistic fuzzy similarity matrix 

and presented a clustering method based on λ-cutting 

matrix. Zhong Wang et al. [24] presented a netting method 

to make cluster analysis of intuitionistic fuzzy sets. Zhao et 

al. [21] developed an intuitionistic fuzzy minimum spanning 

tree clustering algorithm to deal with intuitionistic fuzzy 

information. In this section, a new clustering method 

namely, intuitionistic fuzzy tree center-based clustering 

method is proposed to classify the given crisp data set. The 

intuitionistic fuzzification of the data set is obtained by S-

shaped intuitionistic fuzzification function. The classical 

similarity and distance measures are characterized by real 

numbers. The proposed distance measure is an intuitionistic 

fuzzy value. Cluster center is obtained by using eccentricity 

concept in IFTs instead of random selection. The 

computation procedure of this method is comparatively 

easier. The proposed clus-tering algorithm is verified with a 

numerical data set. 
 

4.1 Notations and assumptions 

Let V = { 1 , 2 , 3 . . . n } be the data set of n objects to be clustered. Let A = {A1, A2, A3 · · · , Am} is the set of m 

attributes for each object vi. The data set is represented as a matrix G =
p

i   , i = 1, 2, 3 . . . , n, p = 1, 2, 3 . . . , m. The 

columns (i) of the matrix G indicate the set of n objects and rows (p) represent the number of numerical attributes of 

each data. The object 
p

i in the data matrix represents i
th

 object with p
th

 attribute. 

The entries of the data matrix G are of the form IG = ,p p

i i     n×m, i = 1, 2, 3, . . . , n p = 1, 2, 3 . . . , m where 

,p p

i i   represents the degree of membership and non-membership of i
th

 object with p
th

 

attribute. 
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Definition 4.1. Let D = (dij )n×n be an intuitionistic fuzzy distance matrix, where dij =  µij, γij  , i, j = 

 

Definition 4.2. [23] Let α, β X1×n, where X1×n denotes the set of intuitionistic fuzzy vectors. Then (α, β) = (max {min 

{µαi, µβi}} , min {max {γαi, γβi}}) is called the inner product of α and β. 

4.2 Algorithm 
The step by step procedure of proposed intuitionistic fuzzy tree center based algorithm is described here. 

Step 1: Consider the set of n objects V = { 1 , 2 , 3 · · · , n } , and a set of m attributes A = {A1, A2, A3 · · · , Am} in a 

data set. Form the data matrix G. 
Step 2: The intuitioistic fuzzification for the data set of n objects is done as follows: 

The degree of membership 
p

i , is calculated using 

 

             (2) 

The degree of non-membership 
p

i is calculated by 
 

                                       (3) 

 

where a, b, c are arbitrary constants. 
Step 3: Calculate the distance between two objects using the formula 

           (4) 

Form the IF distance matrix D = d( ,i j  )n×n. 

Step 4: Draw the IFT G = (V, E) with n vertices associated with the objects i in the data set V to be clustered. The distance 

d( ,i j  ) is treated as the membership and non-membership values of the edges. 

Step 5: Compute the eccentricity of each data object i V by using the formula 

e( i ) =  ,i i
e e   =  max(dµ( ,i j  ), max(dγ( ,i j  )  . 

 
Step 6: Calculate the radius as r(G) =  rµ(G), rγ(G)  , where, rµ(G) = min   e

i
 : i V  and rγ(G) = min {e

i
 : i V}. 

Step 7: The threshold for the center of the cluster is 

 

[i] e( i ), if rµ(G) = e
i

 and rγ(G) = e
i

 or the corresponding 
j

e of 
j

e = rγ(G) is less than 
j

e . 

[ii] e( i ), if rµ(G) = e
i

 and rγ(G) = 
j

e , the corresponding 
j

e of 
j

e = rγ(G) is greater than or equal to e
i

 . 

Step 8: Treat the center e( i ) obtained in Step 7 as  λ, δ  −cut. 

Step 9: Calculate the  λ, δ  -cutting matrix on  λ, δ  d( ,
i j

  ) using Definition 4.1. 



 

Intuitionistic Fuzzy Tree Center-Based Clustering Algorithm 

61 

Published By: 

Blue Eyes Intelligence Engineering 
& Sciences Publication  

Retrieval Number: A2800036116/2016©BEIESP 

Step 10: Calculate the inner products of the column vectors of the (λ, δ)d( ,
i j

  )-cut matrix. Then, the objects are clustered 

based on the inner product values (1, 1) or (1, 0) using Definition 4.2. Step 11: Go to Step 6, repeat the process until the 
desired number of clusters are obtained. 

V. EXPERIMENTAL ANALYSIS 

The algorithm has been implemented and tested with 
datasets available in the University of Cologne, Germany 
[25]. The data sets contains the nutrients in 27 di erent kinds 
of meat, fish or fowl with five attributes as food energy, 

protein, fat, calcium and iron. The data set is divided into 
five disjoint subsets. The data set with 5 attributes is given 
in Table 1. The intuitionistic fuzzification of the data set is 
presented in Table 2. 

 
5.1 Step wise algorithm 
The steps involved to cluster the numerical data set with 27 nutrients and 5 attributes, are given as follows: 
Step 1. Consider the data set given in Table 1 to produce cluster.  
Step 2. Compute the degrees of membership and non-membership for the given data set using S-shape intuitionistic 
fuzzification function using Equation 2, 3 These values are displayed in Table 2. 

Step 3. Obtain IFT, by treating 27 nutrients as vertices 1 , · · · , 27 . The distance between i and j is treated as the 

weight of
jie . Calculate distance between the objects ,i j  using the Equation 4. 

Step 4. The eccentricities are given by 

e( 1 ) =  0.9960, 0.6559  , e( 2 ) =  0.9358, 0.4994  , e( 3 ) =  0.8847, 0.6653  ,  

e( 4 ) =  0.9771, 0.6739  , e( 5 ) =  0.9614, 0.4516  , e( 6 ) =  0.8838, 0.5522  ,  

e( 7 ) =  0.9949, 0.4859  , e( 8 ) =  0.8329, 0.6653  , e( 9 ) =  0.9358, 0.5393  ,  

e( 10 ) =  0.9266, 0.5928  , e( 11 ) =  0.9360, 0.6599  , e( 12 ) =  0.9847, 0.6513  ,  

e( 13 ) =  0.9847, 0.6666  , e( 14 ) =  0.9353, 0.4003  , e( 15 ) =  0.9439, 0.4710  ,  

e( 16 ) =  0.9486, 0.5089  , e( 17 ) =  0.9669, 0.6739  , e( 18 ) =  0.9669, 0.6717  ,  

e( 19 ) =  0.9393, 0.5115  , e( 20 ) =  0.9393, 0.4524  , e( 21 ) =  0.9353, 0.4421  ,  

e( 22 ) =  0.9298, 0.4815  , e( 23 ) =  0.9295, 0.3819  , e( 24 ) =  0.9298, 0.5129  ,  

e( 25 ) =  0.7802, 0.6589  , e( 26 ) =  0.9949, 0.49907  , e( 27 ) =  0.9106, 0.5545  .  

Step 5. The radius is calculated as  0.7802, 0.3819    
Step 6. The center is e23. Treat e23 as  λ, δ  -cut in the distance matrix d( ,i j  ), and obtain the clusters. 

If  λ, δ  =  0.9295, 0.3819  , then the objects vi, 1 = 1, 2 . . . , 27 fall into the following eighteen cate-gories: 

{ 1 , 4 , 10 , 11 , 12 , 3 }, { 5 , 7 , 26 }, { 17 , 18 }, { 22 , 24 }, 

{ 2 }, { 3 }, { 6 }, { 8 }, { 9 }, { 14 }, { 15 }, { 16 }, { 19 }, { 20 }, { 21 }, { 23 }, { 25 }, { 27 } 

If  λ, δ  =  0.9266, 0.5928  , then the objects i , 1 = 1, 2 . . . , 27 fall into the following seventeen categories: 

{ 1 , 4 , 10 , 11 , 12 , 3 }, { 5 , 7 , 16 , 26 }, { 17 , 18 }, { 22 , 24 }, 

{ 2 }, { 3 }, { 6 }, { 8 }, { 9 }, { 14 }, { 15 }, { 19 }, { 20 }, { 21 }, { 23 }, { 25 }, { 27 } 
 
If  λ, δ  =  0.9106, 0.5545  , then the objects i , 1 = 1, 2 . . . , 27 fall into the following sixteen categories: 

{ 1 , 4 , 10 , 11 , 12 , 3 }, { 5 , 7 , 16 , 26 }, { 17 , 18 }, { 22 , 24 }, 

{ 2 , 9 }, { 3 }, { 6 }, { 8 }, { 14 }, { 15 }, { 19 }, { 20 }, { 21 }, { 23 }, { 25 }, { 27 }. 

 
5.2 Comparison 

There are many clustering algorithm existing in the literature. The results of the proposed algorithm is compared with 
two algorithms namely Zhang et al. [23] and netting method by Z.Wang et al.[24]. The derived results are compared 

and presented in Table 3. Though, all the three methods produce same clusters, the proposed IFT center-based 
algorithm reduces the complexity of calculations in forming equivalence matrix, which ultimately reduces the running 

time of the algorithm. 
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Table 1: Data set with 5 attributes and 27 objects 

 
 

Table 2: Intuitionistic fuzzification of Data set 

 

 

Table 3: Comparisons of the derived results 
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VI. CONCLUSION 

In this paper, the concept of distance, center, eccentricity 

of an intuitionistic fuzzy tree is intro-duced. The procedure 

for intuitionistic fuzzification for numerical data set is 

proposed. This paper also provides intuitionistic fuzzy tree 

center based clustering techniques for numerical data set 

with multiple attributes to produce clusters. The algorithm is 

tested on a data set containing informa-tion of 27 nutrients 

with five features . 
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