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Abstract: The problem of the module allocation in distributed 

computing system is to need to allocate a number of modules to 

different processors for execution. The paper deals with the 

problem of module allocation in heterogeneous distributed 

computing systems with the goal of maximizing the system 

reliability. We present a genetic algorithm to obtain the optimal 

solution for this problem. In the performance of the algorithm we 

consider more one parameter such as the number of modules, the 

number of processors, and module interaction density of 

applications. The experimental results illustrate the effectiveness 

of this algorithm over conventional algorithms. 
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I. INTRODUCTION 

   A distributed computing system (DCS) consists of a 

set of multiple processors interconnected by communication 

links. A very common interesting problem in DCS is the 

module allocation. This problem deals with finding an 

optimal allocation of modules to the processors so that the 

system reliability is maximized without violating any of the 

system constraints. A task to be run on the distributed 

system consists of a set of modules. Each of the modules 

comprising a module will execute on one of the processors 

and communicate with some other modules of the task.  

      Many researchers have been presented to improve the 

performance of a DCS in several issues arise such as the 

maximization of system reliability and safety, [1, 2, 19] and 

the achievement of better fault tolerance using software and 

hardware redundancy, [3,4]. Meanwhile, resource 

constraints may be imposed by memory size of processors 

and capacity of communication links. This paper 

investigates the module allocation problem that aims to 

maximize the system reliability subject to resource 

constraints. Distributed system reliability (DSR) has been 

defined by [5] as the probability for the successful 

completion of distributed programs which requires that all 

the allocated processors and involved communication links 

are operational during the execution lifetime. There are two 

major DSR evaluation approaches in the literature. Kumar, 

[5] evaluated the distributed program reliability (DPR) by 

searching the entire minimal file spanning trees (MFST’s), 

which provide accessibility to the required data files for the 

program. Then the DSR can be computed by multiplying the 

DPR’s of all distributed programs.  
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However, some system parameters such as the execution 

times of programs and communication loads on the links are 

not considered in this model. 

 They assume that all processors and communication links 

have constant reliability. Shatz, [6] proposed another DSR 

evaluation model where failures from processors or 

communication links are time dependent, which fits the 

scenario that modules with longer execution or 

communication times will increase the failure probability of 

involved processors or communication links. Unfortunately, 

the computational complexity for evaluating the DSR has 

been shown to be NP-hard, [7]. Researchers, however, have 

developed alternative algorithms for tackling this problem. 

These methods can be divided into two categories: exact 

algorithms and approximation algorithms. The exact 

algorithms strive to find an optimal task allocation for small 

sized instances. Kartik, and Murthy, [1, 3] used the idea of 

branch and bound with underestimates and reorder the 

modules according to module independence for reducing the 

computations required. Verma, [8] employed the branch and 

bound technique for solving the reliability-based multiple 

join problems in distributed database management systems. 

   The approximation algorithms, on the other hand, derive 

sub-optimal module allocations within reasonable times. 

Kartik and Murthy, [1, 3] also developed a heuristic 

approach from their exact algorithm by assuming that the 

best solution is more likely to be found in the least cost path 

thereby reducing the worst-case time complexity of the 

algorithm. Srinivasan, [2] proposed a clustering- based 

heuristic which groups heavily communicating modules into 

clusters in order to reduce the inter module communication 

(IMC) as much as possible.  

  The development of the met heuristic optimization theory 

has been flourishing during the last decade [9-11]. Applying 

met heuristic algorithms for conquering the module 

allocation problem has several benefits. (1) Exact algorithms 

search for optimal solutions and are thus computationally 

intensive, while Meta heuristic algorithms deriving near-

optimal solutions within reasonable times are more suitable 

for real-time applications. (2) Many successful applications, 

[12] have shown the superiority of meta heuristic algorithms 

over heuristic algorithms in terms of quality of the final 

solutions obtained, so that careful design and 

implementation of the meta heuristic algorithms can 

improve the results substantially. Genetic algorithms (GAs) 

have also been adopted for solving the problem and obtained 

promising results. Vidyarthi, [13] used a simple GA to 

maximize the reliability of 

DCS with module allocation. 

Hsieh, [4] proposed a hybrid 

GA that combines the GA with 
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a local search procedure. The experimental results show that 

the hybrid GA produces better module allocation than the 

simple GA. Gas, [14] belong to a branch of computational 

intelligence called met heuristic. 

   In this paper, we present a genetic algorithm for solving 

the module allocation problem with the goal of maximizing 

the system reliability. The experimental results reveal that 

the proposed algorithm produces better module allocation 

than other algorithms on a large set of simulated problem 

instances, and the difference is larger for large problems.  

   The remainder of this paper is organized as follows. 

Section 2 describes the module allocation problem for 

maximizing reliability. Section 3 shows how to compute the 

system reliability. Section 4 presents the proposed genetic 

algorithm in detail. Experimental results are presented in 

section 5. Finally, Section 6 concludes this work. 

Notations: 

________________________________________ 
xik Decision variable: xik = 1 if module ‘i’ is allocated to 

processor ‘k’, and xik  

      = 0 otherwise 

‘p’ Number of processors 

‘n’ Number of modules 

lkb Communication link connecting two processors ‘k’ and 

‘b’. 

λk  Failure rate of processor ‘k’ 

μkb Failure rate of communication link lkb. 

eik  Incurred accumulative execution time (AET) if module 

‘i’ is executed on processor ‘k’. 

cij Incurred inter-module communication (IMC) cost 

between module ‘i’ and ‘j’  

     if they are executed on different processors. 

wkb Transmission rate of communication link lkb. 

mi Memory resource requirements of module ‘i’ from its 

execution processor. 

mk Amount of memory resource capacitated with processor 

‘k’. 

li Computation resource requirements of module ‘i’ from its 

execution processor. 

Lk Amount of computation resource capacitated with 

processor ‘k’. 

 gen:  The generation counter. 

pm The GA mutation rate. 

pc The GA crossover rate. 

maxgen The required number of generations 

pop_size The population size 

________________________________________ 

II. THE PROBLEM DESCRIPTION 

The problem is concerned with an optimal allocation of the 

modules of a parallel application on to the processors in 

DCS. An optimal allocation is one that maximizes the 

system reliability function subject to the system constraints. 

The distributed system consists of a set of heterogeneous 

processors interconnected via a communication network as 

shown in Fig 1(a). A distributed application is represented 

by a module interaction graph (TIG) as shown in Fig. 1(b). 

We consider the following assumptions with the module 

allocation problem. 

A. The assumptions 

 The processors involved in the DCS are heterogeneous. 

Hence, the processors may be constrained with various 

units of memory and computation resources and they 

may have different processing speeds and failure rates. 

Moreover, the communication links may have different 

bandwidths and failure rates. A communication 

subsystem is assumed to handle the inter-processor 

communication, and the communication can be 

performed concurrently. 

 The execution of a module will consume a specific 

amount of memory and computation resource from its 

assigned processor. Two modules, if executed on 

different processors, may communicate with each other 

and incur a specific amount of inter-module 

communication (IMC) cost measured in some unit of 

data quantity. 

 A module may take different accumulative execution 

time (AET) if it is executed on different processors. An 

amount of IMC cost may take different durations of 

transmission time if transmitted through different 

communication links. 

 The state of processors and communication links is either 

operational or down. Failures events are statistically 

independent. 

 
       (a)                                               (b) 

Figure 1: A distributed system and a module interaction 

graph (a) A distributed system (b) A module graph. 

    The above assumptions are basically similar to those 

presented by [6] from which several module allocation 

techniques with reliability maximization have been 

developed [1-4], [18] Briefly, the purpose of this paper is to 

find a module allocation that maximize the system reliability 

and satisfies all of the source constraint. A module 

execution process in a DCS can be described by the 

processor interaction graph (PIG) and the module interaction 

graph (TIG). The PIG illustrates how the processors are 

connected in the network topology of the Computation 

environment. The TIG renders the inter-module 

communication cost incurred by the mission. An important 

characteristic of TIG is the module interaction density, 

denoted by‘d’, which measures how communication 

intensive a module is. We define‘d’ as the ratio of the 

number of inter-module communication requests to the 

number of pairs of different modules. As‘d’ increases, the 

inter-module communication becomes more intensive and 

the reliability derived could be lower due to involvement of 

more communication links. Moreover, the CPU time 

required will slightly increase 

with large‘d’ because of the 

extra computations for the 
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reliability related to those involved communication links, 

[15]. 

    The complexity of the TIG can be measured by the 

module interaction density‘d’ as follows: 

2)1(

||




rr

E
d  

where | E | calculates the number of channels of requested 

IMC demands in the TIG, and r(r-1)/2 indicates the maximal 

number of possible IMC channels among r modules. 

Therefore, the module interaction density quantifies the ratio 

of the IMC for a TIG and can serve as one of the key factors 

that affect the problem complexity, [16]. 

III. THE SYSTEM RELIABILITY 

   The reliability of a distributed computing system for a 

given application is the reliability that the application 

assigned to the processors in a system by some module 

assignment ‘x’ can run successfully during the execution 

lifetime [4], [15]. That is the system reliability is the product 

of the probability that each processor is operational during 

the time of processing the modules assigned to it, and the 

probability that each communication path is operational 

during the active period of data communication between the 

terminal processors of the path, [17].  

      The reliability of processor ‘k’ during a time interval ‘t’ 

is 
tke


,[19]. Under a module allocation ‘x’ the time 

required to execute all the modules assigned to processor ‘k’ 

is 


n

i
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 and then the corresponding processor 

reliability can be formulated as follows:  
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        Similarly, the reliability of the path ‘kb’ during a time 

interval ‘t’ is
tkbe


,[19]. Under a module allocation ‘x’ 

the time required for data communication between the 

terminal processors ‘k’ and ‘b’ is 
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, then the corresponding path 

reliability can be given by the following equation: 
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As the system reliability requires that all involved 

components are operational during the elapsed time for the 

execution, the DSR with the module allocation ‘x’ is 

computed as follows: 
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That is, we can write R(x) in another form as follows: 

)()( xCostexR   

With the system resource constraints taken into account the 

module allocation model for system reliability is formulated 

as follows: 
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IV. THE PROPOSED GENETIC ALGORITHM 

To solve the problem of module allocation in DCS via GAs, 

it is necessary to find a mapping of a potential candidate for 

a solution onto a sequence of binary digits, the so called 

chromosome. In the proposed genetic algorithm, we 

consider the four components:  

 
p

k

p

k bk

kbk xRxRxR
1 1

)()()(
  

  

Maximizing the system reliability is equivalent to 

minimizing the following cost. (I) An encoding method that 

is a genetic representation (genotype) of solutions to the 

program. (II) A way to create an initial population of 

chromosomes, (III) the objective function (IV) the genetic 

operators (crossover and mutation) that alter the genetic 

composition of offspring during reproduction. 

A. Encoding Method 

In our case, however, it is more efficient to represent 

chromosomes as strings of integers. The length of the 

chromosomes is given by the number of modules that should 

be allocated. Every gene in the chromosome represents the 

processor where the module is running on. Fig. 2 gives an 

exemplary mapping of ‘n’ modules on ‘m’ processors. 
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Figure 2: The module allocation in the form of 

chromosome 

B. Initial Population 

The initial population is generated according to the 

following steps: 

• A chromosome ‘x’ in the initial population can be 

generated as shown in Fig 1. 

• The chromosome must be containing only ‘m’ none zero 

element. 

• The chromosome must be containing all numbers of the 

processors as shown in Fig.1. 

• Repeat steps 1 to 4 to generate pop_size number of 

chromosomes. 

C. The Objective Function 

That is finding a module allocation ‘x’ such that the overall 

system reliability is maximized. 


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D. The Genetic Operations 

• Crossover operations 

• Mutation Operations 

(a) The Crossover Operation: 

The crossover operation is used to breed a child from two 

parents by one cut point. The crossover operation will 

perform if the crossover ratio (Pc>=0.95) is verified. The cut 

point is selected randomly. The crossover operation is 

performed as follows: 

 Select two chromosomes randomly from the current         

population. 

 Randomly select the cut point 

 Fill the components of the chromosome 

1. By taking the components of the first chromosome (from 

the first gene to the cut point) and fill up to the child. 

2. Also, tacking the components of the second chromosome 

(from the cut point+1 to the last gene) and fill up to the 

child. 

(b) The Mutation Operation: 

The mutation operation is performed on bit-by-bit basis. In 

the proposed approach, the mutation operation will perform 

if the mutation ratio (Pm) is verified. The mutation ratio, Pm 

in this approach will be 0.2 and is estimated randomly. The 

point to be mutated is selected randomly. 

V. THE PROPOSED GENETIC ALGORITHMS 

The following algorithm and flowchart explain how we can 

use the above assumptions and proposed functions to find a 

module allocation ‘x’ such that the overall system reliability 

is maximized. 

The Proposed Algorithm 

1. Input: Set the parameters: pop_size, maxgen, pm, pc. 

2. Steps: 

3. Generate the initial population as in section 4.2. 

4. Rs=0// Initial value for system reliability 

5. gen=1 

6. While (gen<=maxgen) do 

7. P=1 

8. While (p<=pop_size) do 

9. Genetic operations 

 Select two chromosomes from the parent population 

randomly. 

 Apply crossover according to pc (pc>=0.9). 

 Mutate the new child according to pm (pm<=0.2). 

10. Compute the reliability of the new child R(x) according 

to eq. 3. 

11. If (R(x)>Rs) Rs=R(x) and save this child as a candidate 

solution ‘x’. 

12.  pp+1. 

13.  End do 

14.  Set gen = gen+1 

15.  End do 

16.  Output Rs and ‘x’. 

VI. EXPERIMENTAL RESULTS 

In this section we show the effectiveness of the above 

algorithm by applying it on the following example: 

        The number of processors ‘p’ in heterogeneous 

distributed computing systems is varied as 6 and 8; the 

number of modules ‘n’ varies through the values 10, 20 and 

30, to verify the proposed algorithm with different problem 

scales. For each pair of (n, p), we consider three different 

TIGs with three different module interaction density values 

0.2, 0.5, and 0.8. The values of other system parameters are 

generated randomly with the ranges listed in Table 1, [17]. 

        The experimental environment is a 2.93 GHz PC with 4 

GB RAM. The parameters setting in this algorithm are: 

pop_size = 20, Pm<= 0.1, Pc>=0.9, 

maxgen =100. The proposed genetic algorithm is compared 

with HBMO algorithm, [17]. 

Table 1: System parameters and the corresponding 

testing ranges 

Table 2: shows the distributed system reliability (DSR), 

computational time and allocation of modules obtained 

using the proposed algorithm and HBMO algorithm,[17]. 

 

 

 

System parameters Testing ranges 

Failure rate of processor 0.00005-0.00010 

Failure rate of communication link 0.00015-0.00030 

Accumulative execution time 

(AET) 
15-25 

Inter-module communication(IMC) 

cost 
15-25 

Memory resource requirement 5-15 

Computation resource requirement 5-15 

Memory resource capacity 100-200 

Computation resource capacity 100-200 
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Table 2: The reliability, Communication time, and module allocation obtained by the Proposed and HBMO 

Algorithm 

n p D R (x) m Propose Algorithm (x) R (x) m 

10 6 0.2 0.998 0.062 1131334433 0.995 0.45 

  0.5 0.995 0.078 5361161126 0.993 0.55 

  0.8 0.991 0.078 3316623626 0.993 0.67 

 8 0.2 0.998 0.109 5358845582 0.990 0.67 

  0.5 0.996 0.141 442222441331 0.990 0.48 

  0.8 0.992 0.140 8481768886 0.991 0.51 

20 6 0.2 0.989 0.280 31266211411311111421 0.976 1.69 

  0.5 0.981 0.265 21131121122613222261 0.982 2.06 

  0.8 0.955 0.281 42342654452244153634 0.982 1.96 

 8 0.2 0.989 0.421 85358312354174284141 0.981 2.48 

  0.5 0.971 0.468 35477244334543536357 0.977 3.19 

  0.8 0.942 0.421 77576456442244452342 0.982 3.01 

30 6 0.2 0.964 0.577 65442546566554634242635355364 0.973 4.20 

  0.5 0.917 0.577 44446343446413634113636161253 0.975 3.53 

  0.8 0.915 0.561 321525255521116435531225534511 0.970 4.13 

 8 0.2 0.971 0.967 55514554522451185353357265838 0.974 5.04 

  0.5 0.930 0.983 3835585788348815485848837251 0.975 6.74 

  0.8 0.906 1.014 77875572676576333545574275576 0.978 7.58 

 

VII. CONCLUSION 

      In this paper, we have proposed a genetic algorithm 

which maximizes the distributed system reliability (DSR) of 

executing successfully a module consisting of several 

modules. The performance of the proposed algorithm is 

evaluated in comparison with HBMO algorithm, [17] for a 

number of randomly generated the solution quality of the 

proposed algorithm is better than HBMO for all the test 

cases, mapping problem instances. The results showed that 

the solution quality of the proposed algorithm is better than 

HBMO for all the test cases. 
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