
International Journal of Soft Computing and Engineering (IJSCE)

 ISSN: 2231-2307, Volume-6 Issue-4, September 2016

64 Retrieval Number: D2910096416/2016©BEIESP

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Module Allocation for Maximizing Reliability of

Distributed Computing Systems using Genetic

Algorithms

Surinder Kumar

Abstract: The problem of the module allocation in distributed

computing system is to need to allocate a number of modules to

different processors for execution. The paper deals with the

problem of module allocation in heterogeneous distributed

computing systems with the goal of maximizing the system

reliability. We present a genetic algorithm to obtain the optimal

solution for this problem. In the performance of the algorithm we

consider more one parameter such as the number of modules, the

number of processors, and module interaction density of

applications. The experimental results illustrate the effectiveness

of this algorithm over conventional algorithms.

 Keywords: Distributed computing systems, Genetic algorithms,

Module allocations and Maximizing reliability.

I. INTRODUCTION

 A distributed computing system (DCS) consists of a

set of multiple processors interconnected by communication

links. A very common interesting problem in DCS is the

module allocation. This problem deals with finding an

optimal allocation of modules to the processors so that the

system reliability is maximized without violating any of the

system constraints. A task to be run on the distributed

system consists of a set of modules. Each of the modules

comprising a module will execute on one of the processors

and communicate with some other modules of the task.

 Many researchers have been presented to improve the

performance of a DCS in several issues arise such as the

maximization of system reliability and safety, [1, 2, 19] and

the achievement of better fault tolerance using software and

hardware redundancy, [3,4]. Meanwhile, resource

constraints may be imposed by memory size of processors

and capacity of communication links. This paper

investigates the module allocation problem that aims to

maximize the system reliability subject to resource

constraints. Distributed system reliability (DSR) has been

defined by [5] as the probability for the successful

completion of distributed programs which requires that all

the allocated processors and involved communication links

are operational during the execution lifetime. There are two

major DSR evaluation approaches in the literature. Kumar,

[5] evaluated the distributed program reliability (DPR) by

searching the entire minimal file spanning trees (MFST’s),

which provide accessibility to the required data files for the

program. Then the DSR can be computed by multiplying the

DPR’s of all distributed programs.

Revised Version Manuscript Received on August 25, 2016.
 Surinder Kumar, Assistant Professor, Department of Mathematics,

D.A.V. College, Chandigarh-160011, India.

However, some system parameters such as the execution

times of programs and communication loads on the links are

not considered in this model.

 They assume that all processors and communication links

have constant reliability. Shatz, [6] proposed another DSR

evaluation model where failures from processors or

communication links are time dependent, which fits the

scenario that modules with longer execution or

communication times will increase the failure probability of

involved processors or communication links. Unfortunately,

the computational complexity for evaluating the DSR has

been shown to be NP-hard, [7]. Researchers, however, have

developed alternative algorithms for tackling this problem.

These methods can be divided into two categories: exact

algorithms and approximation algorithms. The exact

algorithms strive to find an optimal task allocation for small

sized instances. Kartik, and Murthy, [1, 3] used the idea of

branch and bound with underestimates and reorder the

modules according to module independence for reducing the

computations required. Verma, [8] employed the branch and

bound technique for solving the reliability-based multiple

join problems in distributed database management systems.

 The approximation algorithms, on the other hand, derive

sub-optimal module allocations within reasonable times.

Kartik and Murthy, [1, 3] also developed a heuristic

approach from their exact algorithm by assuming that the

best solution is more likely to be found in the least cost path

thereby reducing the worst-case time complexity of the

algorithm. Srinivasan, [2] proposed a clustering- based

heuristic which groups heavily communicating modules into

clusters in order to reduce the inter module communication

(IMC) as much as possible.

 The development of the met heuristic optimization theory

has been flourishing during the last decade [9-11]. Applying

met heuristic algorithms for conquering the module

allocation problem has several benefits. (1) Exact algorithms

search for optimal solutions and are thus computationally

intensive, while Meta heuristic algorithms deriving near-

optimal solutions within reasonable times are more suitable

for real-time applications. (2) Many successful applications,

[12] have shown the superiority of meta heuristic algorithms

over heuristic algorithms in terms of quality of the final

solutions obtained, so that careful design and

implementation of the meta heuristic algorithms can

improve the results substantially. Genetic algorithms (GAs)

have also been adopted for solving the problem and obtained

promising results. Vidyarthi, [13] used a simple GA to

maximize the reliability of

DCS with module allocation.

Hsieh, [4] proposed a hybrid

GA that combines the GA with

Module Allocation for Maximizing Reliability of Distributed Computing Systems using Genetic Algorithms

65 Retrieval Number: D2910096416/2016©BEIESP

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

a local search procedure. The experimental results show that

the hybrid GA produces better module allocation than the

simple GA. Gas, [14] belong to a branch of computational

intelligence called met heuristic.

 In this paper, we present a genetic algorithm for solving

the module allocation problem with the goal of maximizing

the system reliability. The experimental results reveal that

the proposed algorithm produces better module allocation

than other algorithms on a large set of simulated problem

instances, and the difference is larger for large problems.

 The remainder of this paper is organized as follows.

Section 2 describes the module allocation problem for

maximizing reliability. Section 3 shows how to compute the

system reliability. Section 4 presents the proposed genetic

algorithm in detail. Experimental results are presented in

section 5. Finally, Section 6 concludes this work.

Notations:

__
xik Decision variable: xik = 1 if module ‘i’ is allocated to

processor ‘k’, and xik

 = 0 otherwise

‘p’ Number of processors

‘n’ Number of modules

lkb Communication link connecting two processors ‘k’ and

‘b’.

λk Failure rate of processor ‘k’

μkb Failure rate of communication link lkb.

eik Incurred accumulative execution time (AET) if module

‘i’ is executed on processor ‘k’.

cij Incurred inter-module communication (IMC) cost

between module ‘i’ and ‘j’

 if they are executed on different processors.

wkb Transmission rate of communication link lkb.

mi Memory resource requirements of module ‘i’ from its

execution processor.

mk Amount of memory resource capacitated with processor

‘k’.

li Computation resource requirements of module ‘i’ from its

execution processor.

Lk Amount of computation resource capacitated with

processor ‘k’.

 gen: The generation counter.

pm The GA mutation rate.

pc The GA crossover rate.

maxgen The required number of generations

pop_size The population size

__

II. THE PROBLEM DESCRIPTION

The problem is concerned with an optimal allocation of the

modules of a parallel application on to the processors in

DCS. An optimal allocation is one that maximizes the

system reliability function subject to the system constraints.

The distributed system consists of a set of heterogeneous

processors interconnected via a communication network as

shown in Fig 1(a). A distributed application is represented

by a module interaction graph (TIG) as shown in Fig. 1(b).

We consider the following assumptions with the module

allocation problem.

A. The assumptions

 The processors involved in the DCS are heterogeneous.

Hence, the processors may be constrained with various

units of memory and computation resources and they

may have different processing speeds and failure rates.

Moreover, the communication links may have different

bandwidths and failure rates. A communication

subsystem is assumed to handle the inter-processor

communication, and the communication can be

performed concurrently.

 The execution of a module will consume a specific

amount of memory and computation resource from its

assigned processor. Two modules, if executed on

different processors, may communicate with each other

and incur a specific amount of inter-module

communication (IMC) cost measured in some unit of

data quantity.

 A module may take different accumulative execution

time (AET) if it is executed on different processors. An

amount of IMC cost may take different durations of

transmission time if transmitted through different

communication links.

 The state of processors and communication links is either

operational or down. Failures events are statistically

independent.

 (a) (b)

Figure 1: A distributed system and a module interaction

graph (a) A distributed system (b) A module graph.

 The above assumptions are basically similar to those

presented by [6] from which several module allocation

techniques with reliability maximization have been

developed [1-4], [18] Briefly, the purpose of this paper is to

find a module allocation that maximize the system reliability

and satisfies all of the source constraint. A module

execution process in a DCS can be described by the

processor interaction graph (PIG) and the module interaction

graph (TIG). The PIG illustrates how the processors are

connected in the network topology of the Computation

environment. The TIG renders the inter-module

communication cost incurred by the mission. An important

characteristic of TIG is the module interaction density,

denoted by‘d’, which measures how communication

intensive a module is. We define‘d’ as the ratio of the

number of inter-module communication requests to the

number of pairs of different modules. As‘d’ increases, the

inter-module communication becomes more intensive and

the reliability derived could be lower due to involvement of

more communication links. Moreover, the CPU time

required will slightly increase

with large‘d’ because of the

extra computations for the

International Journal of Soft Computing and Engineering (IJSCE)

 ISSN: 2231-2307, Volume-6 Issue-4, September 2016

66 Retrieval Number: D2910096416/2016©BEIESP

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

reliability related to those involved communication links,

[15].

 The complexity of the TIG can be measured by the

module interaction density‘d’ as follows:

2)1(

||




rr

E
d

where | E | calculates the number of channels of requested

IMC demands in the TIG, and r(r-1)/2 indicates the maximal

number of possible IMC channels among r modules.

Therefore, the module interaction density quantifies the ratio

of the IMC for a TIG and can serve as one of the key factors

that affect the problem complexity, [16].

III. THE SYSTEM RELIABILITY

 The reliability of a distributed computing system for a

given application is the reliability that the application

assigned to the processors in a system by some module

assignment ‘x’ can run successfully during the execution

lifetime [4], [15]. That is the system reliability is the product

of the probability that each processor is operational during

the time of processing the modules assigned to it, and the

probability that each communication path is operational

during the active period of data communication between the

terminal processors of the path, [17].

 The reliability of processor ‘k’ during a time interval ‘t’

is
tke


,[19]. Under a module allocation ‘x’ the time

required to execute all the modules assigned to processor ‘k’

is 


n

i

ikik ex
1

 and then the corresponding processor

reliability can be formulated as follows:


 



n

i

ikikk ex

k exR 1)(


 Similarly, the reliability of the path ‘kb’ during a time

interval ‘t’ is
tkbe


,[19]. Under a module allocation ‘x’

the time required for data communication between the

terminal processors ‘k’ and ‘b’ is

 
 

n

i ij

kbijjbik wcxx
1

, then the corresponding path

reliability can be given by the following equation:

 
  



n

i ij

kbijjbikkb wcxx

kb exR 1)(


As the system reliability requires that all involved

components are operational during the elapsed time for the

execution, the DSR with the module allocation ‘x’ is

computed as follows:

  
 



   


p

k

n

i

p

k kb

n

i ji

kbijjbikkbikikk wcxxexxCost
1 1

1

1 1

)(

That is, we can write R(x) in another form as follows:

)()(xCostexR 

With the system resource constraints taken into account the

module allocation model for system reliability is formulated

as follows:

kix

pkLxl

pkMxm

nix

thatsuch

xCostMin

ik

n

i

kiki

n

i

kiki

p

k

ik

,]1,0[

.,,.........3,2,1

.,,.........3,2,1

..,,.........3,2,11

)(

1

1

1





















IV. THE PROPOSED GENETIC ALGORITHM

To solve the problem of module allocation in DCS via GAs,

it is necessary to find a mapping of a potential candidate for

a solution onto a sequence of binary digits, the so called

chromosome. In the proposed genetic algorithm, we

consider the four components:

 
p

k

p

k bk

kbk xRxRxR
1 1

)()()(
  



Maximizing the system reliability is equivalent to

minimizing the following cost. (I) An encoding method that

is a genetic representation (genotype) of solutions to the

program. (II) A way to create an initial population of

chromosomes, (III) the objective function (IV) the genetic

operators (crossover and mutation) that alter the genetic

composition of offspring during reproduction.

A. Encoding Method

In our case, however, it is more efficient to represent

chromosomes as strings of integers. The length of the

chromosomes is given by the number of modules that should

be allocated. Every gene in the chromosome represents the

processor where the module is running on. Fig. 2 gives an

exemplary mapping of ‘n’ modules on ‘m’ processors.

Module Allocation for Maximizing Reliability of Distributed Computing Systems using Genetic Algorithms

67 Retrieval Number: D2910096416/2016©BEIESP

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Figure 2: The module allocation in the form of

chromosome

B. Initial Population

The initial population is generated according to the

following steps:

• A chromosome ‘x’ in the initial population can be

generated as shown in Fig 1.

• The chromosome must be containing only ‘m’ none zero

element.

• The chromosome must be containing all numbers of the

processors as shown in Fig.1.

• Repeat steps 1 to 4 to generate pop_size number of

chromosomes.

C. The Objective Function

That is finding a module allocation ‘x’ such that the overall

system reliability is maximized.










  

 
p

k

p

k bk

kbk xRxRxRMax
1 1

)()()(

D. The Genetic Operations

• Crossover operations

• Mutation Operations

(a) The Crossover Operation:

The crossover operation is used to breed a child from two

parents by one cut point. The crossover operation will

perform if the crossover ratio (Pc>=0.95) is verified. The cut

point is selected randomly. The crossover operation is

performed as follows:

 Select two chromosomes randomly from the current

population.

 Randomly select the cut point

 Fill the components of the chromosome

1. By taking the components of the first chromosome (from

the first gene to the cut point) and fill up to the child.

2. Also, tacking the components of the second chromosome

(from the cut point+1 to the last gene) and fill up to the

child.

(b) The Mutation Operation:

The mutation operation is performed on bit-by-bit basis. In

the proposed approach, the mutation operation will perform

if the mutation ratio (Pm) is verified. The mutation ratio, Pm

in this approach will be 0.2 and is estimated randomly. The

point to be mutated is selected randomly.

V. THE PROPOSED GENETIC ALGORITHMS

The following algorithm and flowchart explain how we can

use the above assumptions and proposed functions to find a

module allocation ‘x’ such that the overall system reliability

is maximized.

The Proposed Algorithm

1. Input: Set the parameters: pop_size, maxgen, pm, pc.

2. Steps:

3. Generate the initial population as in section 4.2.

4. Rs=0// Initial value for system reliability

5. gen=1

6. While (gen<=maxgen) do

7. P=1

8. While (p<=pop_size) do

9. Genetic operations

 Select two chromosomes from the parent population

randomly.

 Apply crossover according to pc (pc>=0.9).

 Mutate the new child according to pm (pm<=0.2).

10. Compute the reliability of the new child R(x) according

to eq. 3.

11. If (R(x)>Rs) Rs=R(x) and save this child as a candidate

solution ‘x’.

12. pp+1.

13. End do

14. Set gen = gen+1

15. End do

16. Output Rs and ‘x’.

VI. EXPERIMENTAL RESULTS

In this section we show the effectiveness of the above

algorithm by applying it on the following example:

 The number of processors ‘p’ in heterogeneous

distributed computing systems is varied as 6 and 8; the

number of modules ‘n’ varies through the values 10, 20 and

30, to verify the proposed algorithm with different problem

scales. For each pair of (n, p), we consider three different

TIGs with three different module interaction density values

0.2, 0.5, and 0.8. The values of other system parameters are

generated randomly with the ranges listed in Table 1, [17].

 The experimental environment is a 2.93 GHz PC with 4

GB RAM. The parameters setting in this algorithm are:

pop_size = 20, Pm<= 0.1, Pc>=0.9,

maxgen =100. The proposed genetic algorithm is compared

with HBMO algorithm, [17].

Table 1: System parameters and the corresponding

testing ranges

Table 2: shows the distributed system reliability (DSR),

computational time and allocation of modules obtained

using the proposed algorithm and HBMO algorithm,[17].

System parameters Testing ranges

Failure rate of processor 0.00005-0.00010

Failure rate of communication link 0.00015-0.00030

Accumulative execution time

(AET)
15-25

Inter-module communication(IMC)

cost
15-25

Memory resource requirement 5-15

Computation resource requirement 5-15

Memory resource capacity 100-200

Computation resource capacity 100-200

International Journal of Soft Computing and Engineering (IJSCE)

 ISSN: 2231-2307, Volume-6 Issue-4, September 2016

68 Retrieval Number: D2910096416/2016©BEIESP

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Table 2: The reliability, Communication time, and module allocation obtained by the Proposed and HBMO

Algorithm

n p D R (x) m Propose Algorithm (x) R (x) m

10 6 0.2 0.998 0.062 1131334433 0.995 0.45

 0.5 0.995 0.078 5361161126 0.993 0.55

 0.8 0.991 0.078 3316623626 0.993 0.67

 8 0.2 0.998 0.109 5358845582 0.990 0.67

 0.5 0.996 0.141 442222441331 0.990 0.48

 0.8 0.992 0.140 8481768886 0.991 0.51

20 6 0.2 0.989 0.280 31266211411311111421 0.976 1.69

 0.5 0.981 0.265 21131121122613222261 0.982 2.06

 0.8 0.955 0.281 42342654452244153634 0.982 1.96

 8 0.2 0.989 0.421 85358312354174284141 0.981 2.48

 0.5 0.971 0.468 35477244334543536357 0.977 3.19

 0.8 0.942 0.421 77576456442244452342 0.982 3.01

30 6 0.2 0.964 0.577 65442546566554634242635355364 0.973 4.20

 0.5 0.917 0.577 44446343446413634113636161253 0.975 3.53

 0.8 0.915 0.561 321525255521116435531225534511 0.970 4.13

 8 0.2 0.971 0.967 55514554522451185353357265838 0.974 5.04

 0.5 0.930 0.983 3835585788348815485848837251 0.975 6.74

 0.8 0.906 1.014 77875572676576333545574275576 0.978 7.58

VII. CONCLUSION

 In this paper, we have proposed a genetic algorithm

which maximizes the distributed system reliability (DSR) of

executing successfully a module consisting of several

modules. The performance of the proposed algorithm is

evaluated in comparison with HBMO algorithm, [17] for a

number of randomly generated the solution quality of the

proposed algorithm is better than HBMO for all the test

cases, mapping problem instances. The results showed that

the solution quality of the proposed algorithm is better than

HBMO for all the test cases.

REFERENCES

1. Kartik, S., Murthy, S.R., “Task allocation algorithms for maximizing

reliability of distributed computing systems,” IEEE Transactions on

Computers 46, 719–724, 1997.
2. Srinivasan, S., Jha, N.K., “Safety and reliability driven task allocation

in distributed systems,” IEEE Transactions on Parallel and Distributed

Systems 10, 238–251, 1999.
3. Kartik, S., Murthy, S.R., “Improved task-allocation algorithms to

maximize reliability of redundant distributed computing systems,”

IEEE Transactions on Reliability 44, 575–586, 1995.
4. Hsieh, C.C., Hsieh, Y.C., “Reliability and cost optimization in

distributed computing systems,” Computers and Operations Research

30, 1103–1109, 2003.
5. Kumar, V.K.P., Raghavendra, C.S., Hariri, S., “Distributed program

reliability analysis,” IEEE Transactions on Software Engineering 12,

42– 50, 1986.
6. Shatz, S.M., Wang, J.P., Goto, M., “Task allocation for maximizing

reliability of distributed computer systems,” IEEE Transactions on

Computers 41, 1156–116, 1992.
7. Lin, M.S., Chen, D.J., “The computational complexity of the

reliability problem on distributed systems,” Information Processing

Letters 64, 143- 147, 1997.
8. Verma, A.K., Tamhankar, M.T., “Reliability-based optimal task

allocation in distributed-database management systems,” IEEE

Transactions on Reliability 46, 452–459, 1997.
9. Glover, F., “Tabu search – Part I,” ORSA Journal of Computing 1,

190–206, 1989.

10. Dorigo, M., Gambardella, L., “Ant colony system: a cooperative
learning approach to the travelling salesman problem,” IEEE

Transaction on Evolutionary Computation 1, 53–66, 1997.

11. Kennedy, J., Eberhart, R.C., “Particle swarm optimization,”
Proceedings of the IEEE International Conference on Neural

Networks IV, 1942– 1948, 1995.

12. Shigenori, N., Takamu, G., Toshiku, Y., Yoshikazu, F., “A hybrid
particle swarm optimization for distribution state estimation,” IEEE

Transaction on Power Systems 18, 60–68, 2003.

13. Vidyarthi, D.P., Tripathi, A.K., “Maximizing reliability of distributed
computing system with task allocation using simple genetic

algorithm,”Journal of Systems Architecture 47, 549–554, 2001.

14. Goldberg, D.E., “Genetic Algorithms in Search, Optimization and

Machine Learning.,”Addison-Wesley, Reading, MA.1989.,

15. Peng-Yeng Yin., Shiuh-Sheng Yu, Pei-Pei Wang, Yi-Te Wang, “Task

allocation for maximizing reliability of a distributed system using
hybrid particle swarm optimization,” The Journal of Systems and

Software 80 ,724–735, 2007.

16. Peng-Yeng Yin., Shiuh-Sheng Yu, Pei-Pei Wang, Yi-Te Wang,
“Multi-objective task allocation in distributed computing systems by

hybrid particle swarm optimization,” Applied Mathematics and

Computation 184, 407– 420, 2007.
17. Qin- Ma Kang, Hong He., “Task allocation for maximizing reliability

of distributed computing systems using honeybee mating
optimization, “The journal of Systems and Software 83, 2165-2174,

2010.

18. Hsieh, C.C., “Optimal task allocation and hardware redundancy
policies in distributed computing systems,” European Journal of

Operational Research 147, 430–447, 2003.

19. Gamal Attiya, Yskandar Haam, “Task allocation for maximizing
reliability of distributed systems: A simulated annealing approach,”

Journal Parallel Distribution Computer- 66,1259-1266, 2006.

