
International Journal of Soft Computing and Engineering (IJSCE)

 ISSN: 2231-2307, Volume-6 Issue-5, November 2016

18 Retrieval Number: E2928116516/2016©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication



Abstract: The ViMo-S, a type 1 hypervisor for ARMv7 and

ARMv8-based ARM server systems, supports full virtualization to

run existing operating systems and applications unmodified. It

uses ARM hardware virtualization extensions to optimize the

performance of virtual machines. Therefore, its virtual machines’

system call latency is near physical machine’s, while other

hypervisors like Xen and KVM show relatively slower and

unstable performances in benchmark tests.

Index Terms: ARM, Hypervisor, Virtualization.

I. INTRODUCTION

The ARM processor dominates the market for mobile

and embedded devices thanks to low-power characteristics.

With the performance of the ARM processor nearing the x86

processor and increasing the clock speed, the attempt to apply

the ARM processors to the server is increasing. Therefore,

high density servers are becoming popular for their low power

consumption and low heat emission properties.

The low-power high-density servers have benefits for their

smaller physical installation space needs and lower power

consumption for computing and cooling. To increase the

benefits more, server consolidation based on virtualization is

very important [1].

Traditional ARM architectures have no hardware support

for virtualization technologies. However, ARM virtualization

extensions (VEs) have been introduced since ARMv7

architecture to support virtualization software [2]. Thanks to

ARM VEs, virtualization software are able to be more

lightweight and efficient.

Traditional ARM architectures support the least privileged

EL0 mode for user applications and the more privileged EL1

mode for kernel. ARM VEs added new EL2 mode which has

more privileged than the EL1 to support hardware

virtualization. Hypervisor software can run in EL2 mode and

support virtualization for existing operating systems (OSs)

and applications unmodified.

Two types of hypervisor software are shown in Fig 1. The

type 1 hypervisors are independent and most privileged

software in the system. The hardware resources of the system

and virtual machines (VMs) are controlled by the hypervisor.

Generally, Type 1 hypervisors support a special VM

(Domain0) to control hardware devices. And, other VMs

(DomainU) can access virtualized resources with domain0

Revised Version Manuscript Received on October 28, 2016.

 Song-Woo Sok, High-Performance Computing Dept., Electronics and

Telecommunications Research Institute, Daejeon, Republic of Korea.

Young-Woo Jung, High-Performance Computing Dept., Electronics and

Telecommunications Research Institute, Daejeon, Republic of Korea.

Prof. Cheol-Hun Lee, Department of Computer Science & Engineering,

Chungnam National University, Daejeon, Republic of Korea.

VM’s support.

The Xen is a popular type 1 hypervisor software that

supports x86 and ARM architectures. Xen ARM executes

before VM’s OS boot. Then it creates a special VM

(Domain0) to control hardware devices. After domain 0

booted, user can create domainU VMs which can executes I/O

helped by the domain0 VM [3].

Figure 1. Software stacks of two types of virtualized

systems.

The type 2 hypervisors are executed as a part of the host OS.

However, this type of hypervisor is not fitted to ARM

architectures because the ARM VEs’ EL2 mode is more

privileged than the EL1 mode which is used for OS’ kernel

and the EL2 mode cannot be accessed from the EL1.

The KVM is a type 2 hypervisor for x86 architectures and

runs as a part of the Linux kernel. However, it was needed to

change its structure to fit to the ARM VEs architectures.

KVM/ARM has two separated parts, one is called highvisor

which is a part of the Linux kernel, and the other is called

lowvisor which runs in EL2 mode to use ARM VEs [4].

This paper presents the ViMo-S which is a type 1

hypervisor for ARM architectures that have ARM VEs. It

supports full-virtualization for CPU and memory and

para-virtualization for I/O with VirtIO interface.

II. VIMO-S

A. Developing of ViMo-S

The ViMo-S is the following project of ViMo

(Virtualization for Mobile), a micro virtual machine monitor

for ARM mobile systems. The ViMo was developed for ARM

architectures which has no VEs, its design was complicated

and inefficient. Its VMs had quite slower performances than

physical machines’ [5].

ViMo-S: A Lightweight Hypervisor based on

ARM Virtualization Extensions

Song-Woo Sok, Young-Woo Jung, Cheol-Hun Lee

ViMo-S: A Lightweight Hypervisor based on ARM Virtualization Extensions

19

Retrieval Number: E2928116516/2016©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

The ViMo-s has relatively simple and efficient design

thanks to support of ARM VEs. Also, it was needed to support

only three types of virtual devices like console, disk, and

network because its main purpose is to support server

applications. While, ViMo was needed to support more

device types like pen, touch screen, and sensors for mobile

applications.

B. CPU Virtualization

The ARM virtualization extensions are more suitable to

type 1 hypervisors than to type 2 hypervisor [1]. The ViMo-S

was planned to be a type 1 hypervisor from the start. As a type

1 hypervisor, The ViMo-S runs in the EL2 mode just after a

boot loader and before any OS boots; then it initializes the

first VM, domain0, and boots its operating system.

All VMs can have one to four virtual CPUs (VCPUs) and

the ViMo-S supports virtualized inter-core communications

to support multi-core VMs. VCPUs are data structure kept in

memory, and it is loaded to physical registers when it is

scheduled. If another VCPU is running in the core, ViMo-S

saves the current context of the core to the related VCPU then

loads scheduled VCPU’s context to the core. Therefore, 2 or

more VCPUs can temporally share a core and be executed

simultaneously.

User applications call system calls frequently when they are

running. ViMo-S configures system calls to be routed to EL1,

not to EL2. Because the VM's kernel directly handles all

system calls and there is no intervention of the hypervisor,

system call latency of the VMs on ViMo-S is near to a

physical system.

C. Memory Virtualization

The ARM VEs support hardware 2-stage memory

translation to support memory virtualization for VMs. The

first stage’s page tables are configured by operating systems

of VMs, and its translated address is an intermediate physical

address (IPA). If the second stage page tables are configured

in EL2, then an IPA can be translated to a physical address

(PA) by hardware MMU. The ViMo-S allocates physical

memory and configures second stage page tables for each

VMs. ViMo-S allocates memory area exclusively to each

VMs. However, the ViMo-S can create shared memory space

by configuring second stage page tables of VMs to have same

physical memory address entries.

D. I/O Virtualization

The ViMo-S supports VirtIO interface for para-virtualized

I/O operations. If domainU’s operating system has VirtIO

drivers, it can use a console, disk and network VirtIO virtual

devices to execute I/O operations.

The processing path of virtual I/O requests are shown in Fig

2. Domain U’s VirtIO requests are trapped to ViMo-S and

ViMo-S delivers I/O requests to the domain0’s VirtIO

backend driver. Then, the VirtIO backend driver maps the

requests to real hardware I/O operations and calls hardware

drivers to process the requests.

Figure 2. I/O Virtualization of ViMo-S.

E. Implementation

ViMo-S has been implemented on X-C1 Server

Development Platform board developed by AppliedMicro.

The main SoC of the board is AppliedMicro’s X-Gene 1,

an ARMv8 compliant processor. It has eight cores and runs at

2.4 GHz clock speed. The X-C1 has 16GB of DDR3 RAM,

three ports of Gigabit Ethernet and two SATA ports. A

Samsung 850 EVO 500GB SSD was used as storage device.

We used Linux 3.15-rc8 kernel for domain0 and Linux

3.18.0 for domainUs. Ubuntu 14.04 ARM64 version was used

for both domain0 and domainU’s root file systems.

III. BENCHMARK TESTS AND RESULTS

A. Benchmark test configuration

To evaluate the performance of ViMo-S, we used lmbench

3.0 to check system call latencies of virtualized and

non-virtualized environments on the X-C1 board. The tests

included ViMo-S, Xen ARM, and KVM/ARM

configurations. The lmbench is a benchmark suite to measure

system’s micro performance factors like system calls,

memory accesses, network, and disk performances [6]. Table

1 shows configurations for each system.

Table 1. Configurations for benchmark tests.

 Version

Domain

0/Host

Core/Memo

ry

Domain

0/Host

Kernel

Domain

U/Host

Core/Memor

y

Domain U

Kernel

ViMo-S - 1core/2GB
Linux-3.15-

rc8

1core/512M

B

Linux-3.18

.0

Xen

ARM
4.4.0 1core/2GB

Linux-3.15-

rc8

1core/512M

B

Linux-3.15

-rc8

KVM/A

RM

Linux-3.15-

rc8
1core/2GB

Linux-3.15-

rc8

1core/512M

B

Linux-3.18

.0

B. Raw Linux and Domain0s

First, we conducted lmbench tests of non-virtualized Linux,

ViMo-S and Xen’s domain0 VMs.

Table 2 shows the results of lmbench system call latency

tests of raw Linux and domain0 VMs. For easy comparison, it

includes latency ratios based on raw Linux results also.

International Journal of Soft Computing and Engineering (IJSCE)

 ISSN: 2231-2307, Volume-6 Issue-5, November 2016

20 Retrieval Number: E2928116516/2016©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Table 2. lmbench test results for raw Linux and domain 0s

(unit=microseconds).

Simple

syscall

Simpl

e read

Simple

write

Simple

stat

Simple

fstat

Simple

open/cl

ose

Protect

ion

fault

Pipe

latency

Raw

Linux
0.1318

0.184

5
0.2312 0.8316 0.1936 2.4462 0.2057 4.7348

ViMo-S 0.1316
0.183

3
0.2308 0.8406 0.1951 2.1689 0.1993 4.6733

Xen

ARM
0.3834

0.535

6
0.6008 2.5131 0.4516 5.9182 0.5072

13.632

6

ViMo-S/

Linux
99.8%

99.3

%
99.8% 101%

100.8

%
88.7% 96.9% 98.7%

Xen/Linu

x
291% 290% 260% 302% 233% 242% 247% 288%

As shown in Table 2, raw Linux and ViMo-S have very

similar results, while Xen Domain0 shows relatively slower

performances. Xen’s system call latencies are 2.3 to 3 times

slower than ViMo-S and raw Linux.

C. Domain Us and KVM/ARM guest

We did same lmbench tests on KVM/ARM’s guest,

ViMo-S and Xen’s domain U VMs.

Table 3 shows the results of lmbench system call latency

tests of KVM guest, domain U VMs. The raw Linux results

from Table 2 are also included for comparison.

Table 3. lmbench test results for KVM/ARM guest and

domain Us (unit=microseconds).

Simple

syscall

Simple

read

Simple

write

Simple

stat

Simple

fstat

Simple

open/cl

ose

Protect

ion

fault

Pipe

latency

Raw

Linux
0.1318 0.1845 0.2312 0.8316 0.1936 2.4462 0.2057 4.7348

ViMo-S 0.1221 0.2279 0.3104 1.0876 0.1825 3.0000 0.0992 6.8388

Xen

ARM
0.3935 0.6091 0.6129 2.3186 0.4395 5.7837 0.3724

14.029

1

KVM/A

RM
0.1218 0.1963 0.2913 2.7275 0.1964 6.9162 0.2673

108.66

65

ViMo-S/

Linux
93% 124% 134% 131% 94% 122% 48% 144%

Xen/Lin

ux
299% 330% 265% 279% 227% 236% 181% 296%

KVM/Li

nux
92% 106% 126% 328% 101% 283% 130% 2295%

ViMo-S’s domain U has relatively slower performance

than ViMo-S’s domain 0. However,But its latencies did

notoesn’t exceed 1.5 times of raw Linux’s.

Xen’s domain U shows similar performance with Xen’s

domain 0’s. It has 1.8 to 3.3 times slower than raw Linux.

KVM/ARM’s guest VM shows interesting results. For

some system call tests, its latencies are slightly faster than

ViMo-S, but significantly slower for simple stat, simple

open/close and pipe latency tests.

IV. CONCLUSION AND FUTURE WORKS

This paper proposed ViMo-S, a new type 1 hypervisor for

ARM architecture. ViMo-S supports ARM virtualization

extensions to optimize VM’s performance and minimize

virtualization overheads. We showed that ViMo-S has

minimized system call latency for VMs and provides similar

performance with bare metal machines.

According to our experiment results, ViMo-S has better

and more stable system call latency performances compared

to Xen and KVM/ARM. We are trying to optimize I/O

performance of ViMo-S and doing more benchmark tests with

more complex benchmark tools and real world applications.

ACKNOWLEDGMENT

This work was supported by Institute for Information &

communications Technology Promotion (IITP) grant funded

by the Korea government (MSIP) [R0101-16-237,

Development of General-Purpose OS and Virtualization

Technology to Reduce 30% of Energy for High-density

Servers based on Low-power Processors]

REFERENCES

1. Dall, C., Li, S. W., Lim, J. T., Nieh, J., and Koloventzos, G. (2016,

June) “ARM Virtualization: Performance and Architectural

Implications,” In Proceedings of International Symposium on

Computer Architecture (ISCA 2016).

2. Varanasi, P., and Heiser, G. (2011, July). Hardware-supported

virtualization on ARM. In Proceedings of the Second Asia-Pacific

Workshop on Systems (p. 11). ACM.

3. Stabellini, S., and Campbell, I. (2012). Xen on arm cortex a15. Xen

Summit North America, 2012.

4. Dall, C., and Nieh, J. (2014, February). KVM/ARM: the design and

implementation of the Linux ARM hypervisor. In ACM SIGPLAN

Notices (Vol. 49, No. 4, pp. 333-348). ACM.

5. Oh, S. C., Kim, K., Koh, K., and Ahn, C. W. (2010). ViMo

(virtualization for mobile): a virtual machine monitor supporting full

virtualization for ARM mobile systems. In Proceedings of Advanced

Cognitive Technologies and Applications, COGNITIVE.

6. McVoy, L. W., & Staelin, C. (1996, January). lmbench: Portable Tools

for Performance Analysis. In USENIX annual technical conference

(pp. 279-294).

AUTHORS PROFILE

Song-Woo Sok Senior Researcher, High-performance Computing

System Lab., High-performance Computing Dept., Electronics and

Telecommunications Research Institute, Republic of Korea.

 Young-Woo Jung Chief Researcher, High-performance Computing

System Lab., High-performance Computing Dept., Electronics and

Telecommunications Research Institute, Republic of Korea.

Prof. Cheol-Hun Lee PhD, Department of Computer Science &

Engineering, Chungnam National University, Republic of Korea.

