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Abstract: Due to the rapid growing demand for electricity, 

power systems nowadays have become operating under 

continually changing in loads and operating conditions which is a 

major cause of instabilities and could potentially result in serious 

consequences. This paper presents a novel design approach by 

employing a robust damping control of power systems based on 

‘Active Disturbance Rejection Control’ (ADRC) algorithm in 

order to improve system stability. The advantage of this algorithm 

is that it requires little information from the plant model since the 

relative order of open loop transfer function information is quite 

sufficient to design a robust controller. This makes the power 

system more robust against a wide range of disturbances that are 

commonly encountered in such systems. Here, the proposed 

ADRC control algorithm is developed for a synchronous machine 

connected to infinite bus (SMIB) through external reactance 

under small-disturbance condition. The effectiveness of the 

proposed algorithm has been verified by comparing it with an 

optimally tuned Conventional Power System Stabilizer (CPSS) 

under various loading conditions. The comparison shows that the 

proposed approach guarantees system stability and exhibits higher 

performance than CPSS which lacks robustness at some severe 

operating points despite being optimally tuned. 

 

Index Terms: Active Disturbance Rejection Control (ADRC); 

Dynamic Analysis; Small Signal Stability; Power system stabilizer 

(PSS); Single Machine Infinite Bus (SMIB).   

I. INTRODUCTION 

  The continuous increasing demand for electricity leads 

modern power systems to be large, complex, and nonlinear 

systems. As a result, these systems become highly influenced 

by any kind of disturbances such as continual load change or 

sudden change in mechanical power given by the prime 

mover. Generally, the disturbances are classified into two 

types (small and large). Disturbances which result in a 

sudden drop in the line voltages are classified as large 

disturbances while the random changes in the load or 

generation are classified as small disturbances [1]. Small 

disturbance is related to the system steady-state stability 

which is defined as the ability of the power system to 

maintain synchronism under small disturbances such as 

variations in loads or generations. Furthermore, a small 

signal analysis is one for which the system dynamics can be 

analysed using linearized model of the system [2]. 

With different powerful techniques and long history of 
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successful implementations, Conventional Power System 

Stabilizer CPSS as well as PID controller have been used as 

well-established ways in order to enhance the stability of 

power systems [3]-[4]. However, the conventional PSSs still 

rather feeble versus the constantly changes in operating 

conditions of the system and therefore, a conventionally 

designed PSS may not guarantee the robustness over all 

possible operating points. To resolving this problem, many 

researches had been published explaining different intelligent 

techniques of optimally tuning the parameters of power 

system stabilizers [5]-[9]. Nevertheless, the robustness of 

these stabilizers is still in doubt, especially at serious 

conditions such as heavy loads. This paper presents a novel 

design of robust damping control of power system. Though 

the proposed controller can be applied to any complex power 

system model, a Single Machine Infinite Bus (SNIB) model 

is chosen here because the main purpose of the study is to 

demonstrate the superiority of the proposed control 

algorithm. The power system under study consists of a 

synchronous machine connected to infinite bus via a 

transmission line having equivalent reactance Xe as shown in 

Fig1. 

 

Fig 1. Single Machine Infinite Bus System 

The proposed control approach is based on Active 

Disturbance Rejection Control (ADRC) which is not 

requiring accurate model information [10]. In this approach, 

the total disturbance including system uncertainty and 

external disturbance is estimated directly and then rejected in 

effective way, resulting in a stabilizer that is inseparably 

robust against structural uncertainties typically found in 

power systems. In addition, from a specific point of view, the 

ADRC has only two tuning parameters, making it simple to 

implement in practice compared to other modern controllers. 

By using MATLAB Simulation Toolbox, the performance of 

proposed controller is evaluated in the presence of system 

parameter uncertainties compared to an optimally tuned 

conventional power system stabilizer. The rest of the paper is 

organized as follows. In Section II, the dynamic modelling of 

the considered power system is presented. Section III 

describes the general structure of the conventional power 

system stabilizer. In Section IV, the design of ADRC is 

introduced.  
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Then simulation results are shown in Section V. Finally, the 

concluding remarks are made in Section VI. 

II.  MATHEMATICAL MODEL OF THE SYSTEM 

 As described earlier, the examined system is a single 

machine connected to an infinite bus through a transmission 

line. Fig.2 shows the well-known Heffron-Phillips linearized 

model of Single Machine Infinite Bus system SMIB. More 

details about modelling along with linearizing of this system 

can be found in [11]. 

 

Fig 2. Single Machine Infinite Bus Heffron Phillips 

Model. 

In this model, δ, ω are the rotor angle and rotor speed of the 

generator respectively, Eq is the quadrature-axis transient 

voltage, Efd is the field voltage, Tm is the input mechanical 

torque, H is the inertia constant, D is the damping constant, 

Tdo is the direct-axis open-circuit transient time constant of 

the generator, KA is the gain of the exciter amplifier, TA is the 

exciter time constant and the rest constants K1 to K6 are 

known as Heffron Phillips constants which are determine the 

relation between rotor speed and voltage control within the 

machine [2]. Calculation of these constants will be discussed 

later in Section 5. 

III. CONVENTIONAL POWER SYSTEM STABILIZE 

Fig.3 shows the basic structure of conventional power 

system stabilizer CPSS which is composed of three blocks. 

First one is phase compensator block that used to compensate 

the phase lag between exciter input and generator electrical 

torque. The phase compensator block is connected in series 

with washout block that serves as high pass filter in order to 

restrain the controller influence at steady state conditions. 

The third block is the stabilizer gain Kpss which is an 

important factor for the damping provided by the PSS [11]. 

 

Fig. 3. The Basic Structure of CPSS 

The input signal of CPSS is the rotor speed deviation of the 

machine and the output signal (control signal) is the 

supplementary stabilizing signal fed to the generator 

excitation system. 

IV.  DESIGN OF (ADRC) CONTROLLER  

Based on the Extended State Observer (ESO), ADRC 

offers a new and inherently robust controller block which has 

the ability to actively estimate and then reject any disturbance 

influences the system in real time. The theoretical 

background of the time-domain ADRC can be found in [10]. 

Any system with input U(s) and output Y(s) together with 

disturbance can be represented by (1). 

 

Y s = Pn s  U(s) + D(s)                                             (1) 

 

Where  D(s)  , is the total disturbance contains internal 

uncertain dynamics and external disturbances [12], Pn s  is 

the transfer function of the nominal plant (without 

disturbance) which is described by Eq. (2). 

 

Pn s =
Y s 

U s 
=  

bm sm +bm −1sm −1+⋯+b1s+b0

an sn +an −1sn−1+⋯+a1s+a0
 , n ≥  m                        

                                                                                         (2) 

Dividing both sides of (1) by  Pn s , we get 
1

Pn  s 
 Y s =  U s + D∗ s                                 (3)  

Where  D∗ s =  
D s 

Pn  s 
 , 

1

Pn s 
=  

ansn + an−1sn−1 + ⋯ + a1s + a0

bm sm + bm−1sm−1 + ⋯ + b1s + b0

 

 

       =  cn−m sn−m + cn−m−1sn−m−1 + ⋯ + c1s + c0 +
Gr s ,     n ≥ m                                                                   (4) 

 

Here   ci   i = 0,1, … . , n − m , are coefficients of the 

polynomial 
1

Pn  s 
,  and the remainder Gr s  is      Gr s  =

 
dm −1sm −1+dm −2sm −2+⋯+d1s+d0

bm sm +bm −1sm −1+⋯+b1s+b0
                                           (5) 

 

  Where   di   i = 0,1, … . , m − 1 , are remainder 

nominator’s coefficients 

 Substituting Eq. (4) into Eq. (3), we get  

 

 cn−m sn−m  Y s  = U s −  [cn−m−1sn−m−1 + ⋯ + c1s +
 c0 +   Gr s ] Y s + D∗ s                                                               

(6) 

 

 Diving both sides of Eq. (6) by  cn−m  , we get 

 

     sn−m  Y s  = b U s +  F(s)                                                 

(7) 

 

 Where F s  is the modified total disturbance given by 

                                          

F s = −
1

Cn−m
 [ cn−m−1sn−m−1 + ⋯ + c1s + c0 +

 Gr s ] Y s +  
1

Cn−m
 D∗ s                                                 (8) 

And   b =  
1

Cn−m
=  

bm

an
 , n ≥ m                                    (9) 

 

   The proposed controller will be designed based on the 

system model given by (7). Hence, the accurate estimation of 

F s  plays a vital role for the effectiveness of the ADRC 

controller so, an Extended State Observer (ESO) is needed to 

estimate the F s  in real time.  
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Consequently the state variables of the system described 

by (7) should be augmented to include F s  as follows: 

 

  Let  x1 = y ,    x2 =  y(1) , … ,   xn−m+1 =  y(n−m)  

 

 The system model represented by (7) can be rewritten as 

 

  x = A x + B u + E f  1  ,      y = C x                       (10)  

 

Where       x =   x1 x2 … xn−m xn−m+1 T ,   

A n−m +1 ×(n−m+1) =  

0 1
0

. . . 1
0

 ,  

 

 B n−m+1 ×(1) =    0 0 … b 0 T  , 

 

           E n−m+1 × 1 =     0 0 … 1 T  ,   

  
           C 1 ×(n−m+1) =   1 0 … 0  , 

 
And  f (1) , is the first derivative of the total disturbance 

which is assumed bounded within domain of interests [13]. 

From [12], the ESO dynamics can be represented as 

 

   z = A z + B u + L (y −  y  ),   

    y  = C z                                                                      (11) 

 

Where 

  z = [ z1 ⋯ zn−m zn−m+1]T , is the estimated state 

vector of  x. 

 y  , is the estimated output vector of  y. 

And  L =  [ β1 ⋯ βn−m βn−m+1]T , is the observer 

gain vector which is designed in order to locate all the 

eigenvalues of the ESO at a desired location (− ω0).  

With a well tuning of ESO we can get 

 

 Zn−m+1 s =   F  s ≈ F(s)                                                          

(12) 

 

Where  F  s  , is the estimation of  F s   

 

If the control input is designed as  

 

    u =  
u0− zn−m +1

b
                                                       (13)  

 

The Eq. (7) will be reduced to 

 

   sn−m  Y s  = b (
U0(s)− zn−m +1(s)

b
) +  F(s) =  U0 s −

 F  s + F s  ≈  U0 s                                                      (14) 

 

 The control goal is to regulate the output y to zero. This 

can be achieved by using traditional PD controller. 

Therefore, the control law U0 s  is chosen as   

  

 U0 s =  K0 R s − Z1 s  −  K1Z2 s −  …−

 Kn−m−1Zn−m (s)                                                             (15) 

 

With the control law given by (15), Y(s) will be driven to 

the reference input R(s), which is zero for our case. In order 

to further simplify the tuning process, all the closed-loop 

poles of the PD controller are set to a certain location  −ωc .   
 

V. SIMULATION RESULTS 

In this section, the effectiveness of ADRC is tested through 

single machine infinite bus power system. As shown in Fig. 

4, the system output y is the deviation of the angular speed of 

the rotor ∆ω. The input signal u is the output of the controller 

which is fed to the generator exciter. The change in 

mechanical torque ∆Tm is considered as an external 

disturbance d. 

 
Fig. 4. Simulation Model Including Controller & 

External Disturbance Blocks. 

The performance of the proposed controller is evaluated in 

terms of rejection the total disturbance which is consisting of 

sudden change in mechanical torque and unexpected change 

in operation conditions. The effectiveness of proposed 

ADRC controller is tested compared to an optimally tuned 

conventional power system stabilizer. The parameter values 

of the system under study as well as the data of applied 

conventional power system stabilizer are considered from the 

test system in [15] and are given in appendix A.  

As mentioned in Section 2, the interaction between the 

speed and voltage control equations of the machine is often 

expressed in terms of six constants K1 to K6. The values of 

these constants depend upon the loading conditions, namely 

real power P and reactive power Q as well as the excitation 

level in the machine. These constants are modelled in [2] and 

the expressions that used to determine their values are 

illustrated in appendix B. Fig.5 shows the variation of 

K-constants for different operating conditions( P,Q). 

 

Fig.5. Variation of K-Constants for Different 

Operating Conditions. 

The proposed ADRC controller can be designed according 

to the discussions in Section 4 as follows: 

   Substituting the parameter values of the system into (2) 

at operating point {light load  (P = 0.5, Q = 0) pu (per 

unit)}, we will have 
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Pn s =  
−145.1 S

S4+50.49 S3+ 382.2 S2+2739 S+13560
                    (16) 

 

From (16) we get:  n = 4  , m = 1  , b =
bm

an
= −145.1   

 

Consequently the ESO dynamics is   

 z = (A − L C) z + B u + L y                                          (17) 

 Where 

 A =  

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

   , B =  

0
0
b
0

   , C =  1 0 0 0  

 

   In order to locate all the eigenvalues of the ESO to 

specific location (−ω0), the observer gain L is chosen as 

  

 L =    4ω0 6ω0
2 4ω0

3 ω0
4 T  

 

   And the control input can be represented by the 

following equations. 

 

U0 s =  K0 R s − Z1 s  −  K1Z2(s) − K2Z3(s)   (18) 

 

  U(s) =  
U0(s)− Z4(s)

b
                                                     (19) 

 

   For purpose of simplify the tuning process, all the 

closed-loop poles of the controller are set to (−ωc). So, the 

controller gains in Eq. (18) are chosen as 

 

  K0 = ωc
3  , K1 = 3 ωc

2  , K2 = 3 ωc
  . 

 

   The observer bandwidth (ω0) is often chosen as three to 

five times of controller bandwidth (ωc) [13]. As a   result, 

there are only two tuning parameters for the ADRC design 

which are the controller gain (b) and the controller bandwidth 

(ωc ). Moreover, as we have good information about the 

system transfer function (i.e. (b) is known), the ADRC tuning 

parameters are reduced to only one[14]. After some trial and 

error (tuning), the controller parameters of the ADRC are 

chosen as   

 

ωc  
  = 5   , ω0 = 3 ωc  

   , b =  −145.1 

 

   To test the effectiveness of the proposed controller, a 

wide range of loading conditions is studied. Namely, three 

different cases are considered as system structural 

uncertainties. During the simulation process, the mechanical 

torque reference ∆Tm  is increased and the system operating 

point (load) is changed. The numerical values of the three 

cases that considered in the simulation are listed in Table 1. 

The time domain response of the system is observed in the 

comparison of the rotor angle deviation and the rotor speed 

deviation of the machine with proposed ADRC control, with 

optimally tuned conventional power stabilizer, and without 

control taking into consideration that the parameter values of 

ADRC controller are designed at the light load operating 

point  P = 0.5, Q = 0.0 pu  and then remain unchanged in 

the three considered cases whereas the parameter values of 

CPSS controller are fixed as designed in [15] which is used as 

a benchmark. The simulation results for all cases are 

demonstrated in Figures (6 to 11). 

 

 

 

 

 

 

 

Table 1 The Numerical Values Used for Case Studies 

Case Load  𝐏, 𝐐  𝐩. 𝐮 ∆𝐓𝐦 

(1) 

Light  𝟎. 𝟓, 𝟎. 𝟎          ,       𝐭 < 6 𝑠 

Normal   𝟎. 𝟗, 𝟎. 𝟑    ,       𝐭 ≥ 𝟔 𝐬 

0
 %

 , 
   

   
 𝐭

<
1

 𝑠
 

𝟏
𝟎
𝟎

 %
 ,

𝐭
≥

𝟏
 𝐬

 

(2) 

Light   𝟎. 𝟓, 𝟎. 𝟎       ,        𝐭 < 6 𝑠 

Heavy   𝟏. 𝟎, 𝟎. 𝟖     ,        𝐭 ≥ 𝟔 𝐬 

(3) 

Light  𝟎. 𝟓, 𝟎. 𝟎        ,         𝐭 < 6 𝑠 

Heavy leadPF 𝟏. 𝟏, −𝟎. 𝟖 , 𝐭 ≥ 𝟔 𝐬 

 

In case1, a 1 (p.u) step external disturbance change is 

applied to the system at t=1s, whereas the operating point is 

changed from light load to normal load at t=6 s. The speed 

deviation and the angle deviation of the rotor, in this case, are 

depicted in Fig. 6 and Fig. 7 respectively. 

 

Fig. 6. Rotor Speed Deviation for Case Study No.1 

 

Fig. 7. Rotor Angle Deviation for Case Study No.1 

   On the other hand, the speed deviation and the angle 

deviation of the rotor in case 2 are shown in Fig. 8 and Fig. 9 

respectively where a 1 (p.u) step external disturbance change 

is applied to the system at t=1s whereas the operating point is 

changed from light load to heavy 

load at t=6s.  
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Fig. 8. Rotor Speed Deviation for Case Study No.2 

 

Fig. 9. Rotor Angle Deviation for Case study No. 2 

   Finally, Fig. 10 and Fig. 11 show the speed deviation and 

the angle deviation of the rotor in case 3 where a 1 (p.u) step 

external disturbance change is applied to the system at t=1s 

whereas the operating point is changed from light load to 

heavy-lead power factor- load at t=6 s. 

 

Fig. 10. Rotor Speed Deviation for Case Study No.3 

 

Fig.11. Rotor Angle Deviation for Case Study No.3 

   From the results obtained in case 1 and case 2, it is 

visible that the proposed ADRC method has a better dynamic 

performance regarding stability with the corresponding 

improvement in overshoots and undershoots than the CPSS. 

Moreover, the superiority of ADRC against system structural 

uncertainty is clearly demonstrated in the simulation results 

of case 3 where the ADRC maintained its robust performance 

at severe operating point while the conventional stabilizer 

failed at that point even though it has been optimally tuned. 

VI. CONCLUSION 

 Since power system is frequently undergoing changes, 

conventional power system stabilizer can become inefficient 

in the case of serious operation conditions. In this paper, the 

ADRC controller has been employed as a satisfactory 

solution to damp low-frequency oscillations in a wide range 

of circumstances. The considered control approach has been 

compared, in this study, to an optimally tuned classical PSS 

controller. All conditions were chosen to be equal for both of 

the controllers to have a fair comparison. For the purpose of 

testing the robustness, both of the control methods were first 

designed for a certain operating point. Then, this point was 

changed several times in the presence of external disturbance, 

and simulations were repeated without any change in the 

controller parameters. 

   The simulation results were obtained under MATLAB 

environment, and the effectiveness of the proposed ADRC 

method has been evaluated through time–domain 

simulations. The results demonstrate that the Extended State 

Observer (ESO), being a main part of ADRC, effectively 

estimated the total disturbance, which includes the external 

disturbances, modelling imprecision, and other system 

perturbations. And therefore The ADRC exhibited 

magnificent performance in terms of making the power 

system more robust against high external disturbances as well 

as system uncertainty problems. 

APPENDIX A 

Generator parameters (p.u.):  

𝐗𝐝 = 𝟏. 𝟗𝟕 , 𝐗𝐪 = 𝟏. 𝟗 , 𝐗𝐝
, = 𝟎. 𝟑 , 𝐓𝐝𝐨 = 𝟔. 𝟖𝟒 , 𝐇 = 𝟑 ,  

          𝐃 = 𝟎 , 𝐕𝐭 = 𝟏. 𝟎𝟏, 𝐅 = 𝟓𝟎 𝐇𝐳.  
Exciter parameters:     

                       𝐊𝐀 = 𝟏𝟎𝟎 , 𝐓𝐀 =. 𝟎𝟐 𝐬 

Transmission line parameters (p.u.):                                                  

                          𝐑𝐞 = 𝟎 ,    𝐗𝐞 = 𝟎. 𝟒        
CPSS parameters:    

𝐓𝟏 = 𝟎. 𝟐 𝐬 , 𝐓𝟐 = 𝟎. 𝟎𝟖𝟗𝟓 𝐬 , 𝐓𝐰 = 𝟎. 𝟓 𝐬 , 
 𝐊𝐩𝐬𝐬 = 𝟏𝟕. 𝟑𝟔𝟏𝟖 

 

APPENDIX B 

Calculation of Heffron-Phillips K-constants: 

𝐊𝟏 =
(𝐱𝐪 − 𝐱𝐝

′ )𝐢𝐪𝟎𝐄𝟎𝐬𝐢𝐧𝛅𝟎

𝐱𝐞 + 𝐱𝐝
′ +

𝐄𝐪𝟎𝐄𝟎𝐜𝐨𝐬𝛅𝟎

𝐱𝐞 + 𝐱𝐪

  ; 

𝐊𝟐 =
𝐄𝟎𝐬𝐢𝐧𝛅𝟎

𝐱𝐞 + 𝐱𝐪
′

    ;      𝐊𝟑 =
𝐱𝐞 + 𝐱𝐝

′

𝐱𝐞 + 𝐱𝐝

   ;     

𝐊𝟒 =
(𝐱𝐝 − 𝐱𝐝

′ )𝐄𝟎𝐬𝐢𝐧𝛅𝟎

𝐱𝐞 + 𝐱𝐝
′   ; 

𝐊𝟓 =
𝐱𝐪𝐞𝐝𝟎𝐄𝟎𝐜𝐨𝐬𝛅𝟎

(𝐱𝐞 + 𝐱𝐪)𝐞𝐭𝟎

+
𝐱𝐝

′ 𝐞𝐪𝟎𝐄𝟎𝐬𝐢𝐧𝛅𝟎

(𝐱𝐞 + 𝐱𝐝
′ )𝐞𝐭𝟎

  ;  

𝐊𝟔 =
𝐱𝐞𝐞𝐪𝟎

(𝐱𝐞 + 𝐱𝐝
′ )𝐞𝐭𝟎

 

   The parameters 𝐢𝐪𝟎 ,  𝐞𝐝𝟎,  𝐞𝐪𝟎,  𝐢𝐝𝟎 ,  𝐄𝟎,  𝐄𝐪𝟎  and 𝛅𝟎  can 

be calculated for given operating point (𝐏𝟎, 𝐐𝟎 , 𝐞𝐭𝟎) using the 

following equations: 

𝐢𝐪𝟎 =
𝐏𝟎𝐞𝐭𝟎

 (𝐏𝟎𝐱𝐪)𝟐 + (𝐞𝐭𝟎
𝟐 + 𝐐𝟎𝐱𝐪)𝟐

       ; 
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𝐞𝐝𝟎 = 𝐢𝐪𝟎𝐱𝐪    ;    

 

       𝐞𝐪𝟎 =  𝐞𝐭𝟎
𝟐 − 𝐞𝐝𝟎

𝟐            ;             𝐢𝐝𝟎 =
𝐐𝟎 + 𝐢𝐪𝟎

𝟐 𝐱𝐪

𝐞𝐪𝟎

   ;  

𝐄𝟎 =  (𝐞𝐝𝟎 + 𝐢𝐪𝟎𝐱𝐞)𝟐 + (𝐞𝐪𝟎 − 𝐢𝐝𝟎𝐱𝐞)𝟐    ; 

𝐄𝐪𝟎 = 𝐞𝐪𝟎 + 𝐢𝐝𝟎𝐱𝐪        ;      𝛅𝟎 = 𝐭𝐚𝐧−𝟏(
𝐞𝐝𝟎 + 𝐢𝐪𝟎𝐱𝐞

𝐞𝐪𝟎 − 𝐢𝐝𝟎𝐱𝐞

) 
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