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Abstract: Traffic accidents are the main cause of deaths and 

injury in Saudi Arabia, this work is a challenge to examine the 

best ARIMA model for forecast a car accident. Results show that 

an appropriate model is simply an ARIMA (1, 0, 0, 0) due to the 

fact that, the ACF has an exponential decay and the PACF has a 

spike at lag2 which is an indication of the said model. The 

forecasted car accident cases from 1998 to 2016. The selected 

model with least AIC value will be selected. We entertained nine 

tentative ARMA models and Chose that model which has 

minimum AIC (Akaike Information Criterion).The chosen model 

is the first one AIC (-0.274306) The selected ARIMA (1, 0) (0, 0), 

model to forecast for the future values of our time series (car 

accident). Forecasted for the next 7 years with (95%) prediction 

intervals The prediction values of traffic accidents show that 

there will be increasing in deaths and injury coming years 

     Keywords: Forecasting, ARIMA models, car accident, Akaike 

Information Criterion (AIC), Bayessian Information Criterion 

(BIC). 

I. INTRODUCTION 

Saudi Arabia has among the world’s most dangerous 

roads. The highest rate of road accidents and death toll in 

the area. Statistics from the General Directorate of Traffic 

show that the Kingdom has 23 deaths per 100,000 people, 

with on average 19.1 road fatalities occurring daily. 

According to a study conducted by Hany Hassan, assistant 

professor of transportation engineering at King Saud 

University, there were 600,000 crashes recorded in the 

Kingdom in 2012, resulting in the death of around 7,638 

people. 

    Having a system by which to predict traffic accidents 

would have a major impact in the development of 

appropriate solutions to combat this phenomenon, and can 

provide important information in accident trends. Based on 

the Traffic Department statistics Saudi Arabia records 

526,000 accidents annually with up to 17 deaths daily. “A 

total of SR 21 billion is spent annually on road accidents. 

Saudi Arabia is ranked 23rd on the list of countries 

witnessing the highest death rates in road accidents in the 

world. It is second among Arab countries in terms of road 

deaths,”  

There are many different statistical methods to forecast 

upcoming situations.  

   This study will use time series analysis; to modeling 

and forecasting track accident and provide awareness for 

decision makers to help them to adjust their plans and 

implement elective appropriate actions plan. 
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II. LITERATURE REVIEW 

The Box-Jenkins approach to forecasting was first 

described by statisticians George Box and Gwilym Jenkins 

and was developed as a direct result of their experience with 

forecast problems in the business, economic, and control 

engineering applications (Box & Jenkins, 1994). 

    ARIMA processes are a class of stochastic processes 

used to analyze time series. The application of the ARIMA 

methodology for the study of time series analysis is due to 

Box and Jenkins [11]. Meyler et al (1998) drew a framework 

for ARIMA time series models for forecasting Irish 

inflation. In their research, they emphasized heavily on 

optimizing forecast performance while focusing more on 

minimizing out-of-sample forecast errors rather than 

maximizing in-sample ‘goodness of fit’. Contreras et al 

(2003) in their study, using ARIMA methodology, provided 

a method to predict next-day electricity prices both for spot 

markets and long-term contracts for mainland Spain and 

Californian markets. 

  Contreras et al. (2003) used ARIMA models to predict 

next day electricity prices; they have found two ARIMA 

models to predict hourly prices in the electricity markets of 

Spain & California. The Spanish model needs 5 hours to 

predict future prices as opposed to the 2 hours needed by the 

Californian model. Datta (2011) used ARIMA model in 

forecasting inflation in the Bangladesh Economy. He 

showed that ARIMA (1, 0, 1) model fits the inflation data of 

Bangladesh satisfactorily. 

Al-Zeaud (2011) used ARIMA model in modeling 

&forecasting volatility. The result shows that best ARIMA 

models at 95% confidence interval for banks sector is 

ARIMA (2, 0, and 2) model.  

    Uko et al. (2012) examined the relative predictive 

power of ARIMA, VAR & ECM models in forecasting 

inflation in Nigeria. The result shows that ARIMA is a good 

predictor of inflation in Nigeria & serves as a benchmark 

model in inflation forecasting. 

III. MATERIALS AND METHODOLOGY 

In this research, the main objective was to find the best 

model to efficiently forecast the car accident in Saudi Arabia 

applying Box and Jenkins method. The selection strategy for 

such models was developed and selected by the Box and 

Jenkins method (Box and Jenkins 1976). 

This is a forecasting technique use a historical data and 

molders it into an Autoregressive technique. Looking at 

Table in the Appendix, it shows the data of Car accident 

from 8991 to December 5182,  

 

 

mailto:amman2121@yahoo.com


 

Forecast Car Accident in Saudi Arabia with ARIMA Models 

31 

Published By: 

Blue Eyes Intelligence Engineering 
& Sciences Publication  

Retrieval Number: C3028077317/2017©BEIESP 

Totaling 7006698 Car accident, 602623 Injured and 

102713 dead. The data were obtained According to traffic 

Department statistics. 

   The methodology which used in this paper is Box and 

Jenkins called the Autoregressive Moving Average 

(ARIMA).  

The ARIMA model is a useful statistical method for 

analyzing longitudinal data with a correlation among 

neighboring observations. This method has proven to be 

very useful in the analysis of multivariate time series. (Sales 

etal, 1980) 

“Experience with real-world data, however, soon 

convinces one that both stationarity and Gaussianity are 

fairy tales invented for the amusement of under 

graduates.”(Thomson 1994) 

   According to Heizer and Render (2009) ARIMA 

(Autoregressive Integrated Moving Average), is basically 

using the time series function, which requires a model 

approach to early identification and assessment of its 

parameters. 

In ARIMA analysis, there are two simple components for 

representing the behavior of observed time series processes, 

namely the autoregressive (AR) and moving average (MA) 

models (Pankratz, A.1988). 

ARIMA models are the most general class of models that 

seek to explain the autocorrelation frequently found in time 

series data (Hyndman and Athanasopoulos, 2014). 

   The Suitable forecasting methods were chosen for 

finding the method that was suitable for more than one year. 

The proposed forecasting time series process and the steps 

are shown in Fig.1.  

 

 

Fig.1. Time series modeling is accomplished through 

three steps: 

These three stages may be repeated to realize the Best model 

for forecasting. 

A. Identification 

In the identification stage of model building, we determine 

the possible models based on the data pattern, But before we 

can begin to search for the best model for the data, first 

condition is to check whether the series is stationary or not. 

(See T. Of ori, 2012). Also if a data series is stationary then 

the variance of any major subset of the series will be 

different from the variance of any other major subset only 

by chance (see Pankratz, 1983). 

   The stationarity condition ensures that the autoregressive 

parameters invertible. If this condition is assured then, the 

estimated model can be forecasted (see Hamilton, 1994). 

  A time series is said to be stationary when these 

properties remain constant (Cryer and Chan, 2008, p. 16). 

To determine the stationarity of the data we used the 

autocorrelation function (ACF) and partial autocorrelation 

(PACF). 

   The final model can be selected using a penalty function 

statistics such as the Akaike Information Criterion (AIC) or 

Bayessian Information Criterion (BIC). See Sakamoto et al 

(1986), Akaike (1974). 

B. Estimation 

In this stage we find the values of the model factors which 

provide the fit model to the data.  

C. Diagnosis 

In this stage we testing the potentials of the model to 

identify any areas where the model is insufficient. If the 

model is found to be insufficient, it is essential to repeat 

Estimation then identify the best model. 

IV. RESULTS AND DISCUSSION 

A. Model Selection  

The methodology of Box-Jenkins’s for forecasting needs the 

series to be stationary. 

The stationary condition ensures that the autoregressive 

parameters invertible. If this condition is assured then, the 

estimated model can be forecasted (see Hamilton, 1994). 

  As we see in Fig 2 and Fig 3 and Fig 4 the plot of time 

series and ACF and PACF of data provide a good indication 

of a non-stationary series. 

  Also if a data series is stationary then the variance of any 

major subset of the series will differ from the variance of 

any other major subset only by chance (see Pankratz, 1983).  
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Fig.2: Graph of Number of accidents plot of original 

series) 

The graphs of the sample ACF and PACF were plotted (Fig. 

3 and 4). 

 

Fig 3: Autocorrelations (ACF) of first differenced series 

by lag 

Identification Estimation    Diagnosis 
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Figure 4: Partial Autocorrelations (PACF) of first 

differenced series by lag 

B. Model Estimation 

We will used Akaike information criterion (AIC) 

[2].According to this the model with least AIC value will be 

selected. We entertained nine tentative ARMA models and 

Chose that model which has minimum AIC (Akaike 

Information Criterion).The chosen model is the first one 

AIC (-0.274306) see table 1 and Fig 4 and Fig 5 

Table 1: AIC and BIC values of fitted ARIMA models 

       

Model LogL AIC* BIC HQ  

      
      

(1,0)(0,0) 4.782988 -0.274306 -0.143933 -0.301103 

(1,1)(0,0) 4.796743 -0.122576 0.051255 -0.158306 

(2,0)(0,0) 4.795937 -0.122452 0.051379 -0.158182 

(0,2)(0,0) 4.312220 -0.048034 0.125797 -0.083764 

(2,1)(0,0) 4.801656 0.030514 0.247803 -0.014148 

(1,2)(0,0) 4.799571 0.030835 0.248123 -0.013827 

(2,2)(0,0) 5.570777 0.066034 0.326780 0.012439 

(0,1)(0,0) 2.467491 0.081924 0.212297 0.055127 

(0,0)(0,0) -0.970710 0.457032 0.543948 0.439167 

      

 
 From table 1 we can clearly observe that the lowest AIC 

and BIC values are for the ARIMA (1, 0)(0,0), model with 

(p=1, d=0 and q=0) and henceforth this model can be the 

best model for making forecasts for future values of our 

time series data. 
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   Fig 4 Forecast Comparison Graph
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 Fig 5 Akaike Information Criteria

 

C. Forecasting using selected ARIMA model 

The above selected model ARIMA ((1, 0) (0, 0), which we 

are the best model to our time Series data. 

 We now will fit the best ARIMA ((1, 0) (0, 0), model to 

forecast for the future values of our time series (car 

accident). See Table 3 shows the forecast for the next 7 

years with (95%) prediction intervals: 

Table 3: Car accident Forecast data 

For 95% confidence intervals 

Year Car accident Forecasting Car accident 

1998 264326 NA 

1999 267772 NA 

2000 280401 NA 

2001 305649 NA 

2002 223816 NA 

2003 261872 NA 

2004 293281 NA 

2005 295405 NA 

2006 283024 NA 

2007 432416 NA 

2008 484045 NA 

2009 482852 NA 

2010 482852 497229.1346741808 

2011 536055 530894.8687150868 

2012 539258 537665.2575975068 

2013 526429 530440.7439012367 

2014 478450 470442.7310111016 

2015 518795 529947.7377273633 

2016 533400 538618.5263735236 

 

Fig 4 below show the plot for 7 years’ forecast of the Car 

accident by fitting ARIMA (1, 0, 0, 0 ) model to our time 

series data: 
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(Fig.4: Plot of actual and forecast data) 

V. CONCLUSION 

In this study, the ARIMA (1, 0, 0, 0) was the best 

applicant model selected for making forecasts for up to 7 

years for the car accident. ARIMA was used for the reasons 

of its abilities to make Forecasts using a time series data. 

The prediction values of traffic accidents show that there 

will be increasing in deaths and injury coming years. 
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