
International Journal of Soft Computing and Engineering (IJSCE)

 ISSN: 2231-2307, Volume-7 Issue-3, July 2017

34

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C3030077317/2017©BEIESP



Abstract— We investigate the connection of logic with

complexity of basic operations. Upper and lower bounds for the

finite-state complexity of arbitrary strings, and for strings of

particular types, are given and incompressible strings are

studied. We prove that the upper bounds on the state complexity

of these operations, which were known to be tight for larger

alphabets, are tight also for binary alphabets.

Index Terms—Finate Automat, Formal Languages, Logic,

State Complexity.

I. INTRODUCTION

 This paper answers the following question asked by

Jean-Eric Pin. Let be a finite alphabet and let A⊆ ∑* be a

regular language, recognized by an NFA (non-deterministic

finite automaton) or a DFA (deterministic finite automaton)

with n states. How many states are sufficient (and necessary

in the worst case) for an NFA, respectively a DFA, if it is to

recognize * *.A A   (In general, ∑-A=Ā denotes

the complement of a set A in ∑*, and A.B or AB denotes

concatenation). The author shows an upper bound of 2
n -1

states for a complete DFA recognizing A , if A has an n-

state DFA. It also show that this upper bound is optimal,

even if NFAs are used to recognize A . If A has an n-

state NFA then A has an NFA with ≤ 2
n -1

 states, and

this bound is close to optimal. n spite of its complicated

appearance A has a rather simple description:

A = {w ∈ ∑*| every suffix of w belongs to A} .

(Recall that the empty word and w itself are also suffixes of

w.) Note that this expression implies that A  A does

not contain the empty word.

II. CONNECTION WITH LOGIC

The motivation of Pin’s question comes from the word

model of Propositional Temporal Logic; for terminology and

further references see [5]. Here the set of all models of a

formula φ (over a fixed alphabet ∑) is a formal language

A(φ) ⊆ ∑* , which has the non-trivial property of being

regular and aperiodic. Some of the temporal operators used

in this logic are ◯ (“next”) and ◊ (“eventually”, or “at some

Revised Version Manuscript Received on June 20, 2017.

Ms. Manju, Assistant Professor, Department of Computer Science &

Applications, CRM Jat College, Hisar (Haryana), India, E-mail:

duham.manju@gmail.com

Mr. Rajesh Kumar, Assistant Professor, Department of Computer

Science & Applications, CRM Jat College, Hisar (Haryana), India, E-mail:

rajtaya@kuk.ac.in

moment in the future”); there are also the usual boolean

operations ‾,∧ ,∨. A natural dual to the “eventually”

operator is the “forever” (or, “always in the future”) operator

□, defined to be ‾◊‾ (“not eventually not”). If only ◯ , ◊ (or

□) and the boolean operations are used, one obtains the

Restricted Propositional Temporal Logic (RPTL). One of

the main results in [5] is that a language A⊆ ∑* is the set of

models of a formula in RPTL if and only if the syntactic

semigroup of A is “locally ℒ -tivial” (see [5] for the

definition). Formulas and their models are related as follows

(as is easy to check):

A(φ̄)= A (φ)
, A(φ∧ψ) = A(φ)∩ A(ψ),

 A(φ∧ψ)=A(φ) ∪ A(ψ), A(◯ φ) = ∑.A(φ),

 A(◊φ)=∑*.A(φ),

Thus A(□φ)=
A(◊ φ̄)= ∑∗ A ¯(φ)

. In other words, in

this paper we study the state-complexity of the “forever”

operator.

For more information on NFAs and complete DFAs, see

[6]; a DFA is “complete” if the next state is always defined.

The author will also use AFAs (alternating finite automata),

because of their obvious ties to Logic (see [4,3,8,9] for the

definition of AFA.

III. THEOREM 1

Upper Bounds (a) if A⊆ ∑* is recognized by an AFA

(or, in particular, by an NFA or a DFA) with n states, then

A is recognized by an AFA with ≤ n+1

 states, and

(A)
rev

is recognized by a DFA with ≤ 2
n+1

 states. Hence

A is recognized by an NFA with ≤ 2
n+1

 +1 states.

(b) If L is recognized by a DFA (complete or not) with n

states, then A is recognized by a complete DFA with ≤

2
n-1

 states.

IV. THEOREM 2

Lower bounds (a) For every n ≥ 2 there exists a 3-letter

alphabet ∑ and a language A(⊆ ∑*) which is recognized by

a complete DFA with n states, but such that every NFA

(hence every DFA) recognizing A has at least 2
n-1

states.

Complexity of A and its Connection with Logic

Manju, Rajesh Kumar

mailto:duham.manju@gmail.com
mailto:rajtaya@kuk.ac.in

Complexity of A and its Connection with Logic

35

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C3030077317/2017©BEIESP

(b) For every n ≥ 2 there exists a 2-letter alphabet ∑ and

a language A(⊆ ∑*) which is recognized by a complete

DFA with n states, and which is expressible in RPTL (in

fact, A is the complement of a finite language, so it can be

expressed in RPTL without using ◊); however, every

complete DFA recognizing A (or ∑*.Ā) has at least 2
n-

1
 states.

Theorem 2 implies that for complete DFAs the upper bound

2
n-1

 of Theorem I(b) is optimal; for

NFAs, the upper bound in Theorem l(a) is almost optimal.

V. PROOF OF THEOREM 1

A. Upper Bound 1{a]

Suppose A ⊆ ∑* is recognized by an AFA A1, with n

states, and with initial boolean function f1. Then Ā is also

recognized by an AFA A2, with n states and with initial

boolean function f2 (one only has to negate the initial

boolean function: f2 = ḟ1). From this one obtains an AFA

A3,with n + 1 states, recognizing A ⊆ ∑* (one adds a new

start state s and introduces the transitions s.a = {s} ∪ {start

states of A2}, for each a ∈ ∑; the new initial boolean

function is f3 = s ∨ f2). Finally, we obtain an AFA A4

recognizing A by negating the initial boolean function

of A3: f4 =
s∨ f 2

; the number of states of A 4 is n + 1.

Author obtain an NFA with 2
n+1

+1 states for A by

applying the following theorem of Kozen (see [7,4]) to the

AFA A4: If a language R is recognized by an AFA with m

states, then R
rev

 (the reverse of R) is recognized by a

complete DFA with 2
m
 states.

Thus A
rev

 has a complete DFA with 2
n+1

states. By

reversing this DFA (i.e., reversing the direction of every

arrow, and exchanging accept and start states) an NFA with

2
n+1

 +1 states is obtained which recognized the A . (An

additional state had to be added to the NFA since the DFA

could have had many accept states, which would yield an

NFA with many start states; but we want an NFA to have

only one start state; this is a classical construction.)

B. Lover Bound 1(b)

Let � = (Q,∑ , . , q0, F) be a DFA recognizing A with |Q| =

n. Recall that A = {w ∈ ∑*| every suffix of w belongs

to A}. Since A if A does not contain the empty word,

the claimed upper bound certainly holds in this case. Let us

henceforth assume that q0 ∈ F. The following complete

DFA, inspired from the subset construction (see [6]),

recognizes A :

B=({P ∈ Ꝩ (Q)| q0 ∈ P}, ∑, ◦, {q0},

 {P ∈ Ꝩ (Q)| q0 ∈ P and P ⊆ F};

here Ꝩ (Q) denotes the power set of Q. The next-state

function ◦ is defined as follows for a ∈ ∑:

P ◦ a={q0} ∪ P . a ={q0 } ∪ { p . a | p ∈ P }.

Proof that B recognizes A :

B accepts w = a1, a2am, if and only if{q0} ◦ a1a2 . . .

.am={q0} ∪ {q0 . akam-1 am | k=1, m} ⊆ F this

holds if and only if for all k ∈ {1, . m}: q0 . ak . .am-1 am ∈

F (already assumed q0 ∈ F) ; this hold if and only if

every suffix ak . . am-1 am of w (and the empty suffix as well,

by assumption) belongs to A; this holds if and only if w

∈ A .

VI. PROOF OF THEOREM 2

A. Upper Bound 2(a)

For every n ≥ 1 , let n = (l, . . . , n), and let Fn, be the set of

all total functions from n to n. For x ∈ n and f ∈Fn , we

denote the image of x under f by (x)f; in this notation,

functions compose from left to right, e.g., (x)(f1 f2 f3=

(((x)f1)f2)f3..

we will pick Fn as our alphabet, and for n ≥ 2 we consider

the following language:

An= {w ∈ (Fn)* | (l) f 1 . . . fk ≠ 2 ,

where w=(f1 , . . . fk), k ≥ 0}.(The empty word is also in An,

when k = 0 in the above definition.)

Then A is recognized by the complete DFA � = (n, Fn, . ,

1, n - {2}}, where the next-state function “ .” is defined by i

.f= (i)f, for i ∈ n and f ∈ Fn,. So An has an n-state

complete DFA.

The alphabet Fn has size n
n

but we shall see later how one

can modify the above example (without changing the main

properties of the languages) so that the alphabet has size 3.

Fact 1. The minimum complete DFA B of A has 2
n-1

states.

Proof. We consider the complete DFA B that was

constructed in the proof of Theorem l(b), and we show that

B is minimum for this example. Thus the minimum

complete DFA for A has 2
n-1

 states. Here B=({P ⊆ n |

1 ∈ P} , Fn, ◦ , {l}, {P ⊆ n| 1∈ P and 2 ∉ P}), where the

next-state function ◦ is given by P ◦ a=(l) ∪ {(i)a| i ∈ P)

when a ∈ Fn, and P ⊆ n . Let us prove minimality of B.

Claim 1 (Reachability from the start state (1)). For every P

⊆ n with 1 ∈ P there exists up ∈ (Fn)* such that {1} ◦ up =

P

B. Proff of Claim 1

 Let P = {1, p1, . . ., pk) ⊆ n with l <p1< . . . <pk. We let up=

f1f2 . . .fk ∈ (Fn)* where fi (for 1 ≤ i ≤ k) is defined by:

(1)fi = pi, and (x) fi = x for x ≠ 1. It is straightforward to

check that {l}◦ f1 = {1, p1}, {1, p1}◦ f2 = { 1, p2, p1 }, { 1, p2,

p1 }◦ f3 = { 1, p3, p2, p1 }, etc.,

and {1} ◦ up = P.

International Journal of Soft Computing and Engineering (IJSCE)

 ISSN: 2231-2307, Volume-7 Issue-3, July 2017

36

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C3030077317/2017©BEIESP

Fact 2.Every NFA recognizing nA has ≥ 2
n-1

states.

The following lemma from [1,2] is a convenient tool for

proving lower bounds on the number of states of NFAs.

(See [l] for a proof.)

Lemma. Let R ⊆ ∑* be a regular language, and let X be a

finite set. Assume that with every x ∈ X one can associate

words ux and vx ∈ ∑* such that

(1) x∈ X) uxvx ∈ R,

(2) x,y ∈ X with x ≠ y) uxvy ∈ R or uyvx ∉ R

Then every NFA recognizing R has ≥ | X | states.

C. Proof of Fact 2

We apply the lemma. For X we take the set X={P ⊆ n| 1 ∈

P}.Then |X|=2
n-1

 . With every P ∈ X we associate two

words up, vp ∈ (Fn)* as follows: up is the word defined in

the proof of Fact 1, Claim 1 (Reach ability from (1)); and vp

is the function in Fn defined as follows (for any q): (q)up = 1

if q ∈ P, and (q)vp = 2 if q ∉ P (so vp is just a one-letter

word.)

Then we have:

(1) upvp ∈ nA Indeed, {l}◦ upvp= P◦ vp, by the proof of

Claim 1. Moreover, P ◦ vp = {l}, so upvp is accepted by the

DFA B of nA

2) up vs or us vp ∉ nA if P ≠ S: Indeed, if P-S ≠ Φ then

{1} ◦ upvp= P◦ vs = {1,2} (which is a non-accept state of B,

as it contains 2), so upvs ∈ nA .This proves fact

REFERENCES

1. J.C. Birget, Intersection and union of regular languages, and state-

complexity, Inform. Process. Lett. 43 (1992) 185- 190.

2. J.C. Birget, Partial orders on words, minimal elements of regular

languages, and state-complexity, Theoret. Comput. Sci. 119 (1993)

267-291.

3. J. Btzozowski and E. Leiss. On equations for regular languages,

finite automata, and sequential networks, Theoret. Comput. Sci. 10

(1980) 19-35.

4. A. Chandra, D. Kozen and L. Stockmeyer, Alternation, J. ACM 28

(1981) 114-133.

5. J. Cohen, D. Penin and J.-E. Pin, On the expressive power of

temporal logic, J. Comput. System Sci. 46 (1993) 271-294.

6. J. Hopcroft and J. Ullman, Introduction to Automata, Languages

and Computation (Addison-Wesley, Reading, MA, 19791.

7. D. Kozen, On parallelism in Turing machines, in: Proc. Ann. Symp.

on Founaiuions of Computer Science (1976) 89-97.

8. E. Leiss, Succinct representation of regular languages by boolean

automata, Theoret. Comput. Sci. 13 (198 1) 323-330.

9. E. Leiss, Succinct representation of regular languages by boolean

automata, Part II, Theoret. Comput. Sci. 38 (1985) 133-136.

10. A.R. Meyer and M.J. Fischer, Economy of description by automata,

grammars, and formal systems, in: Proc. 12Th IEEE Ann. Symp. on

Switching atul Automata Theory (1971) 188-191.

AUTHORS PROFILE

Miss Manju, obtained her B.Sc. degree(Computer

Science) from Govt. college, Jind and Master’s

Degree (Master of Computer Applications) from

Banasthali University, Rajasthan. She is UGC

NET qualified. Currently, She is Research Scholar

in Guru Jambheshwar University, Hisar,

Haryana,India. Her research interest in Software Quality Metrics in Object

Oriented environment.

Rajesh Kumar. obtained his B.Sc.Degree,

Master’s degree – (Master of Computer

Applications from Kurukshetra University,

Kurukshetra. He had qualified UGC-NET Exam

two times. Currently, He isan Assistant Professor

in the Department of Computer Science and

Applications, C R M Jat College, Hisar,

Haryana, India. His research interests are in

Genetic Algorithm, Software Testing and Design

of Algorithms.

