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Abstract— We investigate the connection of logic with 

complexity of basic operations. Upper and lower bounds for the 

finite-state complexity of arbitrary strings, and for strings of 

particular types, are given and incompressible strings are 

studied. We prove that the upper bounds on the state complexity 

of these operations, which were known to be tight for larger 

alphabets, are tight also for binary alphabets.  

 
Index Terms—Finate Automat, Formal Languages, Logic, 

State Complexity.  

I. INTRODUCTION 

  This paper answers the following question asked by 

Jean-Eric Pin. Let be a finite alphabet and let  A⊆ ∑* be a 

regular language, recognized by an NFA (non-deterministic 

finite automaton) or a DFA (deterministic finite automaton) 

with n states. How many states are sufficient (and necessary 

in the worst case) for an NFA, respectively a DFA, if it is to 

recognize * *.A A    (In general, ∑-A=Ā denotes 

the complement of a set A in ∑*, and A.B or AB denotes 

concatenation). The author shows an upper bound of 2
n -1

 

states for a complete DFA recognizing A , if A has an n-

state DFA. It  also  show that this upper bound is optimal, 

even if NFAs are used to recognize A . If A has an n-

state NFA then A has an NFA with ≤ 2
n -1 

 states, and 

this  bound is close to optimal. n spite of its complicated 

appearance A  has a rather simple description: 

A =  {w  ∈  ∑*|  every suffix of w belongs to A} . 

(Recall that the empty word and w itself are also suffixes of 

w.) Note that this expression implies that A   A does 

not contain the empty word.  

II. CONNECTION WITH LOGIC 

The motivation of Pin’s question comes from the word 

model of Propositional Temporal Logic; for terminology and 

further references see [5]. Here the set of all models of a 

formula φ (over a fixed alphabet ∑ ) is a formal language 

A(φ) ⊆ ∑* , which has the non-trivial property of being 

regular and aperiodic. Some of the temporal operators used 

in this logic are ◯  (“next”) and ◊ (“eventually”, or “at some 
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moment in the future”); there are also the usual boolean 

operations ‾,∧  ,∨. A natural dual to the “eventually” 

operator is the “forever” (or, “always in the future”) operator 

□, defined to be ‾◊‾ (“not eventually not”). If only   ◯ , ◊ (or 

□) and the boolean operations are used, one obtains the 

Restricted Propositional Temporal Logic (RPTL). One of 

the main results in [5] is that a language A⊆ ∑*  is the set of 

models of a formula in RPTL if and only if the syntactic 

semigroup of A is “locally ℒ -tivial” (see [5] for the 

definition). Formulas and their models are related as follows 

(as is easy to check):  

 

A( φ̄)= A (φ)
, A(φ∧ψ) = A(φ)∩ A(ψ), 

   A( φ∧ψ)=A(φ) ∪  A(ψ), A(◯ φ) = ∑.A(φ), 

  A(◊φ)=∑*.A(φ), 

Thus A(□φ)=
A(◊ φ̄)= ∑∗ A ¯(φ)

.  In other words, in 

this paper we study the state-complexity of the “forever” 

operator. 

For more information on NFAs and complete DFAs, see 

[6]; a DFA is “complete” if the next state is always defined. 

The author  will also use AFAs (alternating finite automata), 

because of their obvious ties to Logic (see [4,3,8,9] for the 

definition of AFA. 

III. THEOREM 1 

Upper Bounds (a)  if A⊆ ∑* is recognized by an AFA 

(or, in particular, by an NFA or a DFA) with n states, then 

A is recognized by an AFA with ≤ n+1
 
 states, and 

( A )
rev 

is recognized by a DFA with ≤ 2
n+1

  states. Hence 

A is recognized by an NFA with ≤ 2
n+1

 +1 states.  

(b) If L is recognized by a DFA (complete or not) with n 

states, then A is recognized by a complete DFA with ≤ 

2
n-1

 states. 

IV. THEOREM 2 

Lower bounds (a) For every n ≥ 2 there exists a 3-letter 

alphabet ∑ and a language A( ⊆ ∑*) which is recognized by 

a complete DFA with n states, but such that every NFA 

(hence every DFA) recognizing A  has at least  2
n-1

 

states.  

 

 

 

Complexity of A  and its Connection with Logic 

Manju, Rajesh Kumar 

mailto:duham.manju@gmail.com
mailto:rajtaya@kuk.ac.in


 

Complexity of A and its Connection with Logic 

35 

 

Published By: 

Blue Eyes Intelligence Engineering  

& Sciences Publication  

Retrieval Number: C3030077317/2017©BEIESP 

(b) For every n ≥ 2 there exists a 2-letter alphabet ∑ and 

a language A( ⊆ ∑*)  which is recognized by a complete 

DFA with n states, and which is expressible in RPTL (in 

fact, A is the complement of  a finite language, so it can be 

expressed in RPTL without using ◊); however, every 

complete DFA  recognizing A (or ∑*.Ā ) has at least 2
n-

1
 states. 

Theorem 2 implies that for complete DFAs the upper bound 

2
n-1 

 of Theorem I(b) is optimal; for  

NFAs, the upper bound in Theorem l(a) is almost optimal.  

V. PROOF OF THEOREM 1 

A. Upper Bound 1{a] 

Suppose A ⊆ ∑* is recognized by an AFA A1, with n 

states, and with initial boolean function f1. Then Ā  is also 

recognized by an AFA A2, with n states and with initial 

boolean function f2 (one only has to negate the initial 

boolean function: f2 = ḟ1 ). From this one obtains an AFA 

A3,with n + 1 states, recognizing A ⊆ ∑* (one adds a new 

start state s and introduces the transitions s.a = {s} ∪ {start 

states of A2}, for each a ∈  ∑; the new initial boolean 

function is f3 = s ∨ f2). Finally, we obtain an AFA A4 

recognizing A   by negating the initial boolean function 

of A3: f4 = 
s∨ f 2

; the number of states of A 4 is n + 1. 

Author obtain an NFA with 2
n+1

+1 states for A by 

applying the following theorem of Kozen (see [7,4]) to the 

AFA A4: If a language R is recognized by an AFA with m 

states, then R
rev

 (the reverse of R) is recognized by a 

complete DFA with 2
m
 states.  

Thus A
rev

  has a complete DFA with 2
n+1 

states. By 

reversing this DFA (i.e., reversing the direction of every 

arrow, and exchanging accept and start states)  an NFA with 

2
n+1

 +1 states is obtained which recognized the A . (An 

additional state had to be added to the NFA since the DFA 

could have had many accept states, which would yield an 

NFA with many start states; but we want an NFA to have 

only one start state; this is a classical construction.)  

B. Lover Bound 1(b) 

Let � = (Q,∑ , . , q0, F) be a DFA recognizing A with |Q| = 

n. Recall that A = {w  ∈  ∑*|  every suffix of w belongs 

to A}. Since A if A does not contain the empty word, 

the claimed upper bound certainly holds in this case. Let us 

henceforth assume that q0 ∈  F. The following complete 

DFA, inspired from the subset construction (see [6]), 

recognizes A : 

B=( {P  ∈  Ꝩ (Q)| q0 ∈  P}, ∑, ◦, {q0},  

 {P  ∈  Ꝩ (Q)| q0 ∈  P and  P ⊆  F};  

here Ꝩ (Q) denotes the power set of Q. The next-state 

function ◦ is defined as follows for a ∈  ∑:  

P ◦ a={q0} ∪ P .  a ={q0 }  ∪ { p . a | p ∈   P }. 

Proof that B recognizes A :  

B accepts w = a1, a2 . . . . .am, if and only if{q0} ◦ a1a2 . . . 

.am={q0} ∪ {q0  . ak . . . .am-1 am | k=1,  . . . . m} ⊆  F this 

holds if and only if for all k ∈  {1,  . m}: q0  . ak . .am-1 am  ∈   

F (already assumed q0   ∈  F) ; this hold  if  and only if  

every suffix  ak . . am-1 am of w ( and the  empty suffix as well, 

by assumption) belongs to A; this holds if and only if w 

∈ A .  

VI. PROOF OF THEOREM 2 

A. Upper Bound 2(a) 

For every  n ≥ 1 , let n = (l, . . . , n), and let Fn, be the set of 

all total functions from n to n. For x ∈   n and f ∈Fn , we 

denote the image of x under f by (x)f; in this notation, 

functions compose from left to right, e.g., (x)(f1 f2 f3= 

(((x)f1)f2)f3..  

we will pick Fn  as our alphabet, and for  n ≥ 2 we consider 

the following language:  

An= {w ∈ (Fn)* | (l) f 1 . . . fk ≠ 2 , 

where w=(f1 , . . . fk ), k ≥ 0}.(The empty word is also in An, 

when k = 0 in the above definition.)  

Then A is recognized by the complete DFA � = (n, Fn,  .  , 

1, n - {2}}, where the next-state function “ .” is defined by i 

.f= (i)f, for i  ∈  n and f ∈  Fn,. So An has an  n-state 

complete DFA.  

The alphabet Fn has size n
n 

but we shall see later how one 

can modify the above example (without changing the main 

properties of the languages) so that the alphabet has size 3. 

Fact 1.  The minimum complete DFA B of A has  2
n-1  

 

states. 

Proof. We consider the complete DFA B that was  

constructed in the proof of Theorem l(b), and we show that 

B is minimum for this example. Thus the  minimum 

complete DFA for A  has 2
n-1  

 states. Here B=({P ⊆  n | 

1 ∈  P} ,  Fn, ◦ , {l}, {P ⊆  n| 1∈  P and 2 ∉ P}), where the 

next-state function ◦ is given by P ◦ a=(l) ∪ {(i)a| i ∈  P) 

when a ∈  Fn, and P ⊆  n . Let us prove minimality of B. 

Claim 1 (Reachability from the start state (1)). For every  P 

⊆  n with 1 ∈  P there exists up ∈  (Fn)* such that {1} ◦ up = 

P 

B. Proff of Claim 1 

 Let P = {1, p1, . . ., pk) ⊆  n with l <p1< . . . <pk. We let up= 

f1f2 . . .fk ∈  (Fn)* where fi (for 1 ≤ i ≤ k) is defined by:  

(1)fi = pi, and (x) fi = x for x  ≠ 1. It is straightforward to 

check that {l}◦ f1 = {1, p1}, {1, p1}◦ f2 = { 1, p2, p1  }, { 1, p2, 

p1  }◦ f3  = { 1, p3,  p2, p1  }, etc., 

and {1} ◦  up = P. 
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Fact 2.Every NFA recognizing nA has ≥ 2
n-1 

states.  

The following lemma from [1,2] is a convenient tool for 

proving lower bounds on the number of states of NFAs.  

(See [l] for a proof.) 

Lemma. Let R ⊆ ∑* be a regular language, and let X be a 

finite set. Assume that with every x ∈ X one can associate 

words ux and vx ∈  ∑*  such that  

(1) x∈ X) uxvx ∈  R,  

(2) x,y ∈  X with x ≠ y ) uxvy ∈  R or uyvx ∉  R  

Then every NFA recognizing R has ≥ | X | states. 

C. Proof of Fact 2 

We apply the lemma. For X we take the set X={P  ⊆  n| 1 ∈  

P}.Then |X|=2
n-1

 . With every P ∈  X we associate two 

words up, vp ∈  (Fn)* as follows: up is the word defined in 

the proof of Fact 1, Claim 1 (Reach ability from (1)); and vp 

is the function in Fn defined as follows (for any q): (q)up = 1 

if q ∈  P, and (q)vp = 2 if q ∉  P (so vp is just a one-letter 

word.)  

Then we have:  

(1) upvp ∈  nA Indeed, {l}◦ upvp= P◦  vp, by the proof of 

Claim 1. Moreover, P ◦ vp = {l}, so upvp  is accepted by the 

DFA B of nA  

2) up vs  or   us vp ∉  nA if P ≠ S: Indeed, if P-S ≠ Φ then 

{1} ◦ upvp= P◦  vs  = {1,2} (which is a non-accept state of B, 

as it contains 2), so upvs ∈ nA .This proves fact 
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